Abstract
We consider one-dimensional Schrödinger-type operators in a bounded interval with non-self-adjoint Robin-type boundary conditions. It is well known that such operators are generically conjugate to normal operators via a similarity transformation. Motivated by recent interests in quasi-Hermitian Hamiltonians in quantum mechanics, we study properties of the transformations and similar operators in detail. In the case of parity and time reversal boundary conditions, we establish closed integral-type formulae for the similarity transformations, derive a non-local self-adjoint operator similar to the Schrödinger operator and also find the associated “charge conjugation” operator, which plays the role of fundamental symmetry in a Krein-space reformulation of the problem.
Similar content being viewed by others
Notes
\(A\) is positive if \(\langle f, A f \rangle > 0\) for all \(f \in \mathcal{H }, f\ne 0\).
References
Adduci, J., Mityagin, B.: Eigensystem of an \(L^2\)-perturbed harmonic oscillator is an unconditional basis. Central Eur. J. Math. 10, 569–589 (2012)
Albeverio, S., Kuzhel, S.: One-dimensional Schrödinger operators with \({\cal{P}}\)-symmetric zero-range potentials. J. Phys. A Math. Gen. 38, 4975–4988 (2005)
Albeverio, S., Motovilov, A., Shkalikov, A.: Bounds on variation of spectral subspaces under \(J\)-self-adjoint perturbations. Integral Equ. Oper. Theory 64, 455–486 (2009)
Benamara, N.-E., Nikolski, N.: Resolvent tests for similarity to a normal operator. Proc. Lond. Math. Soc. 78, 585–626 (1999)
Bender, C.M.: Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947–1018 (2007)
Bender, C.M., Boettcher, S., Meisinger, P.: PT-symmetric quantum mechanics. J. Math. Phys. 40, 2201–2229 (1999)
Bender, C.M., Brody, D.C., Jones, H.F.: Complex extension of quantum mechanics. Phys. Rev. Lett. 89, 270401 (2002)
Borisov, D., Krejčiřík, D.: PT-symmetric waveguides. Integral Equ. Oper. Theory 62, 489–515 (2008)
Ćurgus, B., Najman, B.: The operator \((\text{sgn } x)\frac{\text{ d }^2}{\text{ d }x^2}\) is similar to a selfadjoint operator in \(L^2({\mathbb{R}})\). Proc. Am. Math. Soc. 123, 1125–1128 (1995)
Davies, E.B.: Spectral theory and differential operators. Cambridge University Press, Cambridge (1995)
Dieudonné, J.: Quasi-Hermitian operators. In: Proceedings of the International Symposium on Linear Spaces, pp. 115–123 (1961)
Djakov, P., Mityagin, B.: Criteria for existence of Riesz bases consisting of root functions of Hill and 1D Dirac operators J. Funct. Anal. 263, 2300–2332 (2012)
Dunford, N., Schwartz, J.T.: Linear operators, Part 3. In: Spectral Operators. Wiley, New York (1971)
Edmunds, D.E., Evans, W.D.: Spectral Theory and Differential Operators (Oxford Mathematical Monographs). Oxford University Press, USA (1987)
Faddeev, M., Shterenberg, R.: On the similarity of some differential operators to self-adjoint ones. Math. Notes 72, 261–270 (2002)
Gesztesy, F., Tkachenko, V.: A criterion for Hill operators to be spectral operators of scalar type. J. Anal. Math. 107, 287–353 (2009)
Gohberg, I.C., Krein, M.G.: Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Space. AMS, Providence (1969)
Günther, U., Kuzhel, S.: \({\cal{PT}}\)-symmetry, Cartan decompositions, Lie triple systems and Krein space-related Clifford algebras. J. Phys. A Math. Theoret. 43, 392002 (2010)
Hernandez-Coronado, H., Krejčiřík, D., Siegl, P.: Perfect transmission scattering as a \({\cal{PT}}\)-symmetric spectral problem. Phys. Lett. A 375, 2149–2152 (2011)
Kaiser, H.-C., Neidhardt, H., Rehberg, J.: Density and current of a dissipative Schrödinger operator. J. Math. Phys. 43, 5325–5350 (2002)
Kaiser, H.-C., Neidhardt, H., Rehberg, J.: Macroscopic current induced boundary conditions for Schrödinger-type operators. Integral Equ. Oper. Theory 45, 39–63 (2003)
Kaiser, H.-C., Neidhardt, H., Rehberg, J.: On 1-dimensional dissipative Schrödinger-type operators their dilations and eigenfunction expansions. Mathematische Nachrichten 252, 51–69 (2003)
Karabash, I., Kostenko, A.: Similarity of \({\rm sgn} x(-\tfrac{{\rm d}^2}{{\rm d}x^2} + c\delta )\) type operators to normal and self-adjoint operators. Math. Notes 74, 127–131 (2003)
Karabash, I., Kostenko, A.: On the similarity of a \(J\) -nonnegative Sturm-Liouville operator to a self-adjoint operator. Funct. Anal. Appl. 43, 65–68 (2009)
Karabash, I.M., Kostenko, A.S., Malamud, M.M.: The similarity problem for \(J\)-nonnegative Sturm–Liouville operators. J. Differ. Equ. 246, 964–997 (2009)
Kato, T.: Perturbation theory for linear operators. Springer, Berlin (1966)
Kostenko, A.S.: Similarity of indefinite Sturm-Liouville operators with singular potential to a self-adjoint operator. Math. Notes 78, 134–139 (2005)
Krein, M. G.: On Bari bases of a Hilbert space. Uspekhi Matematicheskikh Nauk 12, 333–341 (1957, in Russian)
Krejčiřík, D.: Calculation of the metric in the Hilbert space of a \({\cal{PT}}\)-symmetric model via the spectral theorem. J. Phys. A Math. Theoret. 41, 244012 (2008)
Krejčiřík, D., Bíla, H., Znojil, M.: Closed formula for the metric in the Hilbert space of a \({\cal{PT}}\)-symmetric model. J. Phys. A Math. Gen. 39, 10143–10153 (2006)
Krejčiřík, D., Siegl, P.: \({\cal{PT}}\) -symmetric models in curved manifolds. J. Phys. A Math. Theoret. 43, 485204 (2010)
Kuzhel, S., Shapovalova, O., Vavrykovych, L.: On \(J\)-self-adjoint extensions of the Phillips symmetric operator. Methods Funct. Anal. Topol. 16, 333–348 (2010)
Kuzhel, S., Trunk, C.: On a class of J-self-adjoint operators with empty resolvent set. J. Math. Anal. Appl. 379, 272–289 (2011)
Langer, H., Tretter, C.: A Krein space approach to PT-symmetry. Czechoslovak J. Phys. 54, 1113–1120 (2004)
Malamud, M.: A criterion for a closed operator to be similar to a selfadjo int operator (English translation). Ukrainian Math. J. 37, 41–48 (1985)
Mikhajlov, V.: Riesz bases in \({\cal{L}}_{2} (0,1)\). Soviet Math. Dokl. 3, 851–855 (1962)
Mostafazadeh, A.: Pseudo-Hermitian representation of quantum mechanics. Int. J. Geom. Methods Modern Phys. 7, 1191–1306 (2010)
Naboko, S.: Conditions for similarity to unitary and selfadjoint operators. Funct. Anal. Appl. 18, 13–22 (1984)
Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. 1. Functional Analysis. Academic Press, Dublin (1980)
Scholtz, F.G., Geyer, H.B., Hahne, F.J.W.: Quasi-Hermitian operators in quantum mechanics and the variational principle. Ann. Phys. 213, 74–101 (1992)
Shkalikov, A.: On the basis property of root vectors of a perturbed self-adjoint operator. Proc. Steklov Inst. Math. 269, 284–298 (2010)
Siegl, P.: Quasi-Hermitian Models. Master’s thesis, FNSPE, CTU in Prague (2007/2008)
Siegl, P.: Supersymmetric quasi-Hermitian Hamiltonians with point interactions on a loop. J. Phys. A Math. Theoret. 41, 244025 (2008)
Siegl, P.: \({\cal{PT}}\)-symmetric square well-perturbations and the existence of metric operator. Int. J. Theoret. Phys. 50, 991–996 (2011)
van Casteren, J.A.: Operators similar to unitary or selfadjoint ones. Pacific J. Math. 104, 241–255 (1983)
Železný, J.: The Krein-space theory for non-Hermitian \({\cal {PT}}\)-symmetric operators. Master’s thesis, FNSPE, CTU in Prague (2010/2011)
Železný, J.: Spectrum of the metric operator of a simple \({\cal{PT}}\)-symmetric model. Int. J. Theoret. Phys. 50, 1012–1018 (2011)
Acknowledgments
D.K. acknowledges the hospitality of the Deusto Public Library in Bilbao. This work has been partially supported by the Czech Ministry of Education, Youth, and Sports within the project LC06002 and by the GACR grant No. P203/11/0701. P.S. appreciates the support by GACR grant No. 202/08/H072 and by the Grant Agency of the Czech Technical University in Prague, grant No. SGS OHK4-010/10. J.Ž. appreciates the support by the Czech Ministry of Education, Youth, and Sports within the project LC527.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Henk de Snoo.
Rights and permissions
About this article
Cite this article
Krejčiřík, D., Siegl, P. & Železný, J. On the Similarity of Sturm–Liouville Operators with Non-Hermitian Boundary Conditions to Self-Adjoint and Normal Operators. Complex Anal. Oper. Theory 8, 255–281 (2014). https://doi.org/10.1007/s11785-013-0301-y
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1007/s11785-013-0301-y
Keywords
- Sturm–Liouville operators
- Non-symmetric Robin boundary conditions
- Similarity to normal or self-adjoint operators
- Discrete spectral operator
- Complex symmetric operator
- \(\mathcal{PT }\)-symmetry
- Metric operator
- \(\mathcal{C }\) operator
- Hilbert–Schmidt operators