[go: up one dir, main page]

Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Saved research
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Scattering amplitudes over finite fields and multivariate functional reconstruction

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 07 December 2016
  • Volume 2016, article number 30, (2016)
  • Cite this article

You have full access to this open access article

Download PDF
View saved research
Journal of High Energy Physics Aims and scope Submit manuscript
Scattering amplitudes over finite fields and multivariate functional reconstruction
Download PDF
  • Tiziano Peraro1 
  • 776 Accesses

  • 211 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

Several problems in computer algebra can be efficiently solved by reducing them to calculations over finite fields. In this paper, we describe an algorithm for the reconstruction of multivariate polynomials and rational functions from their evaluation over finite fields. Calculations over finite fields can in turn be efficiently performed using machine-size integers in statically-typed languages. We then discuss the application of the algorithm to several techniques related to the computation of scattering amplitudes, such as the four- and six-dimensional spinor-helicity formalism, tree-level recursion relations, and multi-loop integrand reduction via generalized unitarity. The method has good efficiency and scales well with the number of variables and the complexity of the problem. As an example combining these techniques, we present the calculation of full analytic expressions for the two-loop five-point on-shell integrands of the maximal cuts of the planar penta-box and the non-planar double-pentagon topologies in Yang-Mills theory, for a complete set of independent helicity configurations.

Article PDF

Download to read the full article text

Similar content being viewed by others

FiniteFlow: multivariate functional reconstruction using finite fields and dataflow graphs

Article Open access 05 July 2019

Analytic helicity amplitudes for two-loop five-gluon scattering: the single-minus case

Article Open access 24 January 2019

Polynomial reduction and evaluation of tree- and loop-level CHY amplitudes

Article Open access 24 August 2016

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Computational Number Theory
  • Crystallography and Scattering Methods
  • Field Theory and Polynomials
  • Multilinear Algebra
  • Special Functions
  • Quantum Electrodynamics, Relativistic and Many-body Calculations

References

  1. T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].

  2. G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP 03 (2008) 042 [arXiv:0711.3596] [INSPIRE].

    Article  ADS  Google Scholar 

  3. T. Binoth, J.P. Guillet, G. Heinrich, E. Pilon and T. Reiter, Golem95: a numerical program to calculate one-loop tensor integrals with up to six external legs, Comput. Phys. Commun. 180 (2009) 2317 [arXiv:0810.0992] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  4. G. Cullen et al., Golem95C: a library for one-loop integrals with complex masses, Comput. Phys. Commun. 182 (2011) 2276 [arXiv:1101.5595] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. J.P. Guillet, G. Heinrich and J.F. von Soden-Fraunhofen, Tools for NLO automation: extension of the Golem95C integral library, Comput. Phys. Commun. 185 (2014) 1828 [arXiv:1312.3887] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  6. P. Mastrolia, G. Ossola, T. Reiter and F. Tramontano, Scattering amplitudes from unitarity-based reduction algorithm at the integrand-level, JHEP 08 (2010) 080 [arXiv:1006.0710] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  7. P. Mastrolia, E. Mirabella and T. Peraro, Integrand reduction of one-loop scattering amplitudes through Laurent series expansion, JHEP 06 (2012) 095 [Erratum ibid. 11 (2012) 128] [arXiv:1203.0291] [INSPIRE].

  8. T. Peraro, Ninja: automated integrand reduction via Laurent expansion for one-loop amplitudes, Comput. Phys. Commun. 185 (2014) 2771 [arXiv:1403.1229] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  9. A. Denner, S. Dittmaier and L. Hofer, Collier: a fortran-based complex one-loop library in extended regularizations, arXiv:1604.06792 [INSPIRE].

  10. A. van Hameren, C.G. Papadopoulos and R. Pittau, Automated one-loop calculations: a proof of concept, JHEP 09 (2009) 106 [arXiv:0903.4665] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  11. G. Bevilacqua et al., HELAC-NLO, Comput. Phys. Commun. 184 (2013) 986 [arXiv:1110.1499] [INSPIRE].

    Article  ADS  Google Scholar 

  12. C.F. Berger et al., An automated implementation of on-shell methods for one-loop amplitudes, Phys. Rev. D 78 (2008) 036003 [arXiv:0803.4180] [INSPIRE].

    ADS  Google Scholar 

  13. V. Hirschi, R. Frederix, S. Frixione, M.V. Garzelli, F. Maltoni and R. Pittau, Automation of one-loop QCD corrections, JHEP 05 (2011) 044 [arXiv:1103.0621] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  14. G. Cullen et al., Automated one-loop calculations with GoSam, Eur. Phys. J. C 72 (2012) 1889 [arXiv:1111.2034] [INSPIRE].

    Article  ADS  Google Scholar 

  15. G. Cullen et al., GoSam-2.0: a tool for automated one-loop calculations within the Standard Model and beyond, Eur. Phys. J. C 74 (2014) 3001 [arXiv:1404.7096] [INSPIRE].

  16. F. Cascioli, P. Maierhofer and S. Pozzorini, Scattering amplitudes with open loops, Phys. Rev. Lett. 108 (2012) 111601 [arXiv:1111.5206] [INSPIRE].

    Article  ADS  Google Scholar 

  17. S. Badger, B. Biedermann and P. Uwer, NGluon: a package to calculate one-loop multi-gluon amplitudes, Comput. Phys. Commun. 182 (2011) 1674 [arXiv:1011.2900] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  18. S. Badger, B. Biedermann, P. Uwer and V. Yundin, Numerical evaluation of virtual corrections to multi-jet production in massless QCD, Comput. Phys. Commun. 184 (2013) 1981 [arXiv:1209.0100] [INSPIRE].

    Article  ADS  Google Scholar 

  19. S. Actis, A. Denner, L. Hofer, J.-N. Lang, A. Scharf and S. Uccirati, RECOLA: REcursive Computation of One-Loop Amplitudes, arXiv:1605.01090 [INSPIRE].

  20. T. Gehrmann, J.M. Henn and N.A. Lo Presti, Analytic form of the two-loop planar five-gluon all-plus-helicity amplitude in QCD, Phys. Rev. Lett. 116 (2016) 062001 [Erratum ibid. 116 (2016) 189903] [arXiv:1511.05409] [INSPIRE].

  21. C.G. Papadopoulos, D. Tommasini and C. Wever, The pentabox master integrals with the simplified differential equations approach, JHEP 04 (2016) 078 [arXiv:1511.09404] [INSPIRE].

    ADS  Google Scholar 

  22. J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].

  23. R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys. B 725 (2005) 275 [hep-th/0412103] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. W.T. Giele, Z. Kunszt and K. Melnikov, Full one-loop amplitudes from tree amplitudes, JHEP 04 (2008) 049 [arXiv:0801.2237] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. A. von Manteuffel and R.M. Schabinger, A novel approach to integration by parts reduction, Phys. Lett. B 744 (2015) 101 [arXiv:1406.4513] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. I. Kotsireas, B. Mourrain, V. Pan, A. Cuyt and W. Shin Lee, Symbolic and numerical algorithms sparse interpolation of multivariate rational functions, Theor. Comput. Sci. 412 (2011) 1445.

    Article  Google Scholar 

  27. G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B 763 (2007) 147 [hep-ph/0609007] [INSPIRE].

  28. P. Mastrolia and G. Ossola, On the integrand-reduction method for two-loop scattering amplitudes, JHEP 11 (2011) 014 [arXiv:1107.6041] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. S. Badger, H. Frellesvig and Y. Zhang, Hepta-cuts of two-loop scattering amplitudes, JHEP 04 (2012) 055 [arXiv:1202.2019] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Y. Zhang, Integrand-level reduction of loop amplitudes by computational algebraic geometry methods, JHEP 09 (2012) 042 [arXiv:1205.5707] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  31. P. Mastrolia, E. Mirabella, G. Ossola and T. Peraro, Scattering amplitudes from multivariate polynomial division, Phys. Lett. B 718 (2012) 173 [arXiv:1205.7087] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. S. Badger, H. Frellesvig and Y. Zhang, An integrand reconstruction method for three-loop amplitudes, JHEP 08 (2012) 065 [arXiv:1207.2976] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  33. R.H.P. Kleiss, I. Malamos, C.G. Papadopoulos and R. Verheyen, Counting to one: reducibility of one- and two-loop amplitudes at the integrand level, JHEP 12 (2012) 038 [arXiv:1206.4180] [INSPIRE].

    Article  ADS  Google Scholar 

  34. B. Feng and R. Huang, The classification of two-loop integrand basis in pure four-dimension, JHEP 02 (2013) 117 [arXiv:1209.3747] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. P. Mastrolia, E. Mirabella, G. Ossola and T. Peraro, Integrand-reduction for two-loop scattering amplitudes through multivariate polynomial division, Phys. Rev. D 87 (2013) 085026 [arXiv:1209.4319] [INSPIRE].

    ADS  MATH  Google Scholar 

  36. P. Mastrolia, E. Mirabella, G. Ossola and T. Peraro, Multiloop integrand reduction for dimensionally regulated amplitudes, Phys. Lett. B 727 (2013) 532 [arXiv:1307.5832] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  37. S. Badger, H. Frellesvig and Y. Zhang, A two-loop five-gluon helicity amplitude in QCD, JHEP 12 (2013) 045 [arXiv:1310.1051] [INSPIRE].

    Article  ADS  Google Scholar 

  38. P. Mastrolia, T. Peraro and A. Primo, Adaptive integrand decomposition in parallel and orthogonal space, JHEP 08 (2016) 164 [arXiv:1605.03157] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  39. D.A. Kosower and K.J. Larsen, Maximal unitarity at two loops, Phys. Rev. D 85 (2012) 045017 [arXiv:1108.1180] [INSPIRE].

    ADS  Google Scholar 

  40. K.J. Larsen, Global poles of the two-loop six-point N = 4 SYM integrand, Phys. Rev. D 86 (2012) 085032 [arXiv:1205.0297] [INSPIRE].

    ADS  Google Scholar 

  41. S. Caron-Huot and K.J. Larsen, Uniqueness of two-loop master contours, JHEP 10 (2012) 026 [arXiv:1205.0801] [INSPIRE].

    Article  ADS  Google Scholar 

  42. H. Johansson, D.A. Kosower and K.J. Larsen, Two-loop maximal unitarity with external masses, Phys. Rev. D 87 (2013) 025030 [arXiv:1208.1754] [INSPIRE].

    ADS  Google Scholar 

  43. H. Johansson, D.A. Kosower and K.J. Larsen, Maximal unitarity for the four-mass double box, Phys. Rev. D 89 (2014) 125010 [arXiv:1308.4632] [INSPIRE].

    ADS  Google Scholar 

  44. H. Johansson, D.A. Kosower, K.J. Larsen and M. Søgaard, Cross-order integral relations from maximal cuts, Phys. Rev. D 92 (2015) 025015 [arXiv:1503.06711] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  45. H. Ita, Two-loop integrand decomposition into master integrals and surface terms, arXiv:1510.05626 [INSPIRE].

  46. K.J. Larsen and Y. Zhang, Integration-by-parts reductions from unitarity cuts and algebraic geometry, Phys. Rev. D 93 (2016) 041701 [arXiv:1511.01071] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  47. S. Badger, G. Mogull, A. Ochirov and D. O’Connell, A complete two-loop, five-gluon helicity amplitude in Yang-Mills theory, JHEP 10 (2015) 064 [arXiv:1507.08797] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  48. S. Badger, G. Mogull and T. Peraro, Local integrands for two-loop all-plus Yang-Mills amplitudes, JHEP 08 (2016) 063 [arXiv:1606.02244] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  49. M.L. Mangano, S.J. Parke and Z. Xu, Duality and multi-gluon scattering, Nucl. Phys. B 298 (1988) 653 [INSPIRE].

    Article  ADS  Google Scholar 

  50. F.A. Berends and W.T. Giele, Recursive calculations for processes with n gluons, Nucl. Phys. B 306 (1988) 759 [INSPIRE].

    Article  ADS  Google Scholar 

  51. C. Cheung and D. O’Connell, Amplitudes and spinor-helicity in six dimensions, JHEP 07 (2009) 075 [arXiv:0902.0981] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  52. Z. Bern, J.J. Carrasco, T. Dennen, Y.-T. Huang and H. Ita, Generalized unitarity and six-dimensional helicity, Phys. Rev. D 83 (2011) 085022 [arXiv:1010.0494] [INSPIRE].

    ADS  Google Scholar 

  53. S. Davies, One-loop QCD and Higgs to partons processes using six-dimensional helicity and generalized unitarity, Phys. Rev. D 84 (2011) 094016 [arXiv:1108.0398] [INSPIRE].

    ADS  Google Scholar 

  54. P.S. Wang, A p-adic algorithm for univariate partial fractions, in Proceedings of the Fourth ACM Symposium on Symbolic and Algebraic Computation, SYMSAC ′81, ACM, New York NY U.S.A. 1981, pg. 212.

  55. M. Abramowitz and I. Stegun, Handbook of mathematical functions: with formulas, graphs, and mathematical tables, Dover Publications, New York NY U.S.A. (1964).

    MATH  Google Scholar 

  56. A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, JHEP 05 (2013) 135 [arXiv:0905.1473] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. S. Badger, Automating QCD amplitudes with on-shell methods, in 17th International workshop on Advanced Computing and Analysis Techniques in physics research (ACAT 2016), Valparaiso Chile January 18-22 2016 [J. Phys. Conf. Ser. 762 (2016) 012057] [arXiv:1605.02172] [INSPIRE].

  58. Z. Bern, A. De Freitas, L.J. Dixon and H.L. Wong, Supersymmetric regularization, two loop QCD amplitudes and coupling shifts, Phys. Rev. D 66 (2002) 085002 [hep-ph/0202271] [INSPIRE].

  59. G. ’t Hooft and M.J.G. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys. B 44 (1972) 189 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Higgs Centre for Theoretical Physics, School of Physics and Astronomy, The University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, U.K.

    Tiziano Peraro

Authors
  1. Tiziano Peraro
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Tiziano Peraro.

Additional information

ArXiv ePrint: 1608.01902

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peraro, T. Scattering amplitudes over finite fields and multivariate functional reconstruction. J. High Energ. Phys. 2016, 30 (2016). https://doi.org/10.1007/JHEP12(2016)030

Download citation

  • Received: 16 August 2016

  • Revised: 23 November 2016

  • Accepted: 24 November 2016

  • Published: 07 December 2016

  • DOI: https://doi.org/10.1007/JHEP12(2016)030

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Scattering Amplitudes
  • Perturbative QCD

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2026 Springer Nature