[go: up one dir, main page]

Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Low-energy effective field theory below the electroweak scale: anomalous dimensions

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 18 January 2018
  • Volume 2018, article number 84, (2018)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Low-energy effective field theory below the electroweak scale: anomalous dimensions
Download PDF
  • Elizabeth E. Jenkins1,
  • Aneesh V. Manohar1 &
  • Peter Stoffer1 
  • 910 Accesses

  • 183 Citations

  • 1 Altmetric

  • Explore all metrics

An Erratum to this article was published on 06 December 2023

This article has been updated

A preprint version of the article is available at arXiv.

Abstract

We compute the one-loop anomalous dimensions of the low-energy effective Lagrangian below the electroweak scale, up to terms of dimension six. The theory has 70 dimension-five and 3631 dimension-six Hermitian operators that preserve baryon and lepton number, as well as additional operators that violate baryon number and lepton number. The renormalization group equations for the quark and lepton masses and the QCD and QED gauge couplings are modified by dimension-five and dimension-six operator contributions. We compute the renormalization group equations from one insertion of dimension-five and dimension-six operators, as well as two insertions of dimension-five operators, to all terms of dimension less than or equal to six. The use of the equations of motion to eliminate operators can be ambiguous, and we show how to resolve this ambiguity by a careful use of field redefinitions.

Article PDF

Download to read the full article text

Similar content being viewed by others

Renormalization-group equations of the LEFT at two loops: dimension-six baryon-number-violating operators

Article Open access 23 July 2025

Renormalization-group equations of the LEFT at two loops: dimension-five effects

Article Open access 03 June 2025

Low-energy effective field theory below the electroweak scale: operators and matching

Article Open access 06 March 2018

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Crystal Field Theory
  • Elementary Particles, Quantum Field Theory
  • Field Theory and Polynomials
  • String Theory
  • Theoretical Particle Physics
  • Quantum Electrodynamics, Relativistic and Many-body Calculations
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Change history

  • 06 December 2023

    An Erratum to this paper has been published: https://doi.org/10.1007/JHEP12(2023)042

References

  1. W. Buchmüller and D. Wyler, Effective Lagrangian analysis of new interactions and flavor conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].

    Article  ADS  Google Scholar 

  2. B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  3. E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the Standard Model dimension six operators I: formalism and lambda dependence, JHEP 10 (2013) 087 [arXiv:1308.2627] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  4. E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the Standard Model dimension six operators II: Yukawa dependence, JHEP 01 (2014) 035 [arXiv:1310.4838] [INSPIRE].

    Article  ADS  Google Scholar 

  5. R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the Standard Model dimension six operators III: gauge coupling dependence and phenomenology, JHEP 04 (2014) 159 [arXiv:1312.2014] [INSPIRE].

    Article  ADS  Google Scholar 

  6. I. Brivio and M. Trott, The Standard Model as an effective field theory, arXiv:1706.08945 [INSPIRE].

  7. I. Brivio, Y. Jiang and M. Trott, The SMEFTsim package, theory and tools, JHEP 12 (2017) 070 [arXiv:1709.06492] [INSPIRE].

    Article  ADS  Google Scholar 

  8. F. Feruglio, The chiral approach to the electroweak interactions, Int. J. Mod. Phys. A 8 (1993) 4937 [hep-ph/9301281] [INSPIRE].

  9. B. Grinstein and M. Trott, A Higgs-Higgs bound state due to new physics at a TeV, Phys. Rev. D 76 (2007) 073002 [arXiv:0704.1505] [INSPIRE].

  10. R. Alonso, M.B. Gavela, L. Merlo, S. Rigolin and J. Yepes, The effective chiral Lagrangian for a light dynamical “Higgs particle”, Phys. Lett. B 722 (2013) 330 [Erratum ibid. B 726 (2013) 926] [arXiv:1212.3305] [INSPIRE].

  11. G. Buchalla, O. Catà and C. Krause, Complete electroweak chiral Lagrangian with a light Higgs at NLO, Nucl. Phys. B 880 (2014) 552 [Erratum ibid. B 913 (2016) 475] [arXiv:1307.5017] [INSPIRE].

  12. M.B. Gavela, K. Kanshin, P.A.N. Machado and S. Saa, On the renormalization of the electroweak chiral Lagrangian with a Higgs, JHEP 03 (2015) 043 [arXiv:1409.1571] [INSPIRE].

    Article  ADS  Google Scholar 

  13. I. Brivio, J. Gonzalez-Fraile, M.C. Gonzalez-Garcia and L. Merlo, The complete HEFT Lagrangian after the LHC run I, Eur. Phys. J. C 76 (2016) 416 [arXiv:1604.06801] [INSPIRE].

  14. R. Alonso, E.E. Jenkins and A.V. Manohar, A geometric formulation of Higgs effective field theory: measuring the curvature of scalar field space, Phys. Lett. B 754 (2016) 335 [arXiv:1511.00724] [INSPIRE].

  15. F.-K. Guo, P. Ruiz-Femenía and J.J. Sanz-Cillero, One loop renormalization of the electroweak chiral Lagrangian with a light Higgs boson, Phys. Rev. D 92 (2015) 074005 [arXiv:1506.04204] [INSPIRE].

  16. G. Buchalla, O. Catà, A. Celis, M. Knecht and C. Krause, Complete one-loop renormalization of the Higgs-electroweak chiral Lagrangian, arXiv:1710.06412 [INSPIRE].

  17. R. Alonso, K. Kanshin and S. Saa, Renormalization group evolution of Higgs effective field theory, arXiv:1710.06848 [INSPIRE].

  18. Particle Data Group collaboration, C. Patrignani et al., Review of particle physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].

  19. G. Buchalla, A.J. Buras and M.E. Lautenbacher, Weak decays beyond leading logarithms, Rev. Mod. Phys. 68 (1996) 1125 [hep-ph/9512380] [INSPIRE].

  20. E.E. Jenkins, A.V. Manohar and P. Stoffer, Low-energy effective field theory below the electroweak scale: operators and matching, arXiv:1709.04486 [INSPIRE].

  21. C. Grojean, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group scaling of Higgs operators and h → γγ decay, JHEP 04 (2013) 016 [arXiv:1301.2588] [INSPIRE].

  22. R. Alonso, H.-M. Chang, E.E. Jenkins, A.V. Manohar and B. Shotwell, Renormalization group evolution of dimension-six baryon number violating operators, Phys. Lett. B 734 (2014) 302 [arXiv:1405.0486] [INSPIRE].

  23. J. Elias-Miró, J.R. Espinosa, E. Masso and A. Pomarol, Renormalization of dimension-six operators relevant for the Higgs decays h → γγ, γZ, JHEP 08 (2013) 033 [arXiv:1302.5661] [INSPIRE].

  24. J. Elias-Miró, J.R. Espinosa, E. Masso and A. Pomarol, Higgs windows to new physics through D = 6 operators: constraints and one-loop anomalous dimensions, JHEP 11 (2013) 066 [arXiv:1308.1879] [INSPIRE].

  25. M. Misiak and M. Steinhauser, Three loop matching of the dipole operators for b → sγ and b→sg, Nucl. Phys. B 683 (2004) 277 [hep-ph/0401041] [INSPIRE].

  26. M. Czakon, U. Haisch and M. Misiak, Four-loop anomalous dimensions for radiative flavour-changing decays, JHEP 03 (2007) 008 [hep-ph/0612329] [INSPIRE].

  27. V. Cirigliano, M. González-Alonso and M.L. Graesser, Non-standard charged current interactions: beta decays versus the LHC, JHEP 02 (2013) 046 [arXiv:1210.4553] [INSPIRE].

    Article  ADS  Google Scholar 

  28. W. Dekens and J. de Vries, Renormalization group running of dimension-six sources of parity and time-reversal violation, JHEP 05 (2013) 149 [arXiv:1303.3156] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  29. J. Heeck and W. Rodejohann, Neutrinoless quadruple beta decay, EPL 103 (2013) 32001 [arXiv:1306.0580] [INSPIRE].

    Article  ADS  Google Scholar 

  30. G.M. Pruna and A. Signer, The μ → eγ decay in a systematic effective field theory approach with dimension 6 operators, JHEP 10 (2014) 014 [arXiv:1408.3565] [INSPIRE].

  31. T. Bhattacharya, V. Cirigliano, R. Gupta, E. Mereghetti and B. Yoon, Dimension-5 CP-odd operators: QCD mixing and renormalization, Phys. Rev. D 92 (2015) 114026 [arXiv:1502.07325] [INSPIRE].

  32. J. Aebischer, A. Crivellin, M. Fael and C. Greub, Matching of gauge invariant dimension-six operators for b → s and b → c transitions, JHEP 05 (2016) 037 [arXiv:1512.02830] [INSPIRE].

  33. S. Davidson, μ → eγ and matching at m W , Eur. Phys. J. C 76 (2016) 370 [arXiv:1601.07166] [INSPIRE].

  34. A. Crivellin, S. Davidson, G.M. Pruna and A. Signer, Renormalisation-group improved analysis of μ → e processes in a systematic effective-field-theory approach, JHEP 05 (2017) 117 [arXiv:1702.03020] [INSPIRE].

  35. M. Bordone, G. Isidori and S. Trifinopoulos, Semileptonic B-physics anomalies: a general EFT analysis within U(2)n flavor symmetry, Phys. Rev. D 96 (2017) 015038 [arXiv:1702.07238] [INSPIRE].

  36. M. Misiak, A. Rehman and M. Steinhauser, NNLO QCD counterterm contributions to \( \overline{B}\to {X}_{s\gamma } \) for the physical value of m c , Phys. Lett. B 770 (2017) 431 [arXiv:1702.07674] [INSPIRE].

  37. V. Cirigliano, S. Davidson and Y. Kuno, Spin-dependent μ → e conversion, Phys. Lett. B 771 (2017) 242 [arXiv:1703.02057] [INSPIRE].

  38. A. Celis, J. Fuentes-Martín, A. Vicente and J. Virto, DsixTools: the Standard Model effective field theory toolkit, Eur. Phys. J. C 77 (2017) 405 [arXiv:1704.04504] [INSPIRE].

  39. J. Aebischer, M. Fael, C. Greub and J. Virto, B-physics beyond the Standard Model at one loop: complete renormalization group evolution below the electroweak scale, JHEP 09 (2017) 158 [arXiv:1704.06639] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. M. González-Alonso, J. Martin Camalich and K. Mimouni, Renormalization-group evolution of new physics contributions to (semi)leptonic meson decays, Phys. Lett. B 772 (2017) 777 [arXiv:1706.00410] [INSPIRE].

    Article  ADS  Google Scholar 

  41. A. Falkowski, M. González-Alonso and K. Mimouni, Compilation of low-energy constraints on 4-fermion operators in the SMEFT, JHEP 08 (2017) 123 [arXiv:1706.03783] [INSPIRE].

    Article  ADS  Google Scholar 

  42. R. Alonso, E.E. Jenkins and A.V. Manohar, Holomorphy without supersymmetry in the Standard Model effective field theory, Phys. Lett. B 739 (2014) 95 [arXiv:1409.0868] [INSPIRE].

  43. B.M. Gavela, E.E. Jenkins, A.V. Manohar and L. Merlo, Analysis of general power counting rules in effective field theory, Eur. Phys. J. C 76 (2016) 485 [arXiv:1601.07551] [INSPIRE].

  44. H.D. Politzer, Power corrections at short distances, Nucl. Phys. B 172 (1980) 349 [INSPIRE].

  45. H. Georgi, On-shell effective field theory, Nucl. Phys. B 361 (1991) 339 [INSPIRE].

  46. C. Arzt, Reduced effective Lagrangians, Phys. Lett. B 342 (1995) 189 [hep-ph/9304230] [INSPIRE].

  47. O. Cheyette, Derivative expansion of the effective action, Phys. Rev. Lett. 55 (1985) 2394 [INSPIRE].

    Article  ADS  Google Scholar 

  48. M.K. Gaillard, The effective one loop Lagrangian with derivative couplings, Nucl. Phys. B 268 (1986) 669 [INSPIRE].

  49. B. Henning, X. Lu and H. Murayama, How to use the Standard Model effective field theory, JHEP 01 (2016) 023 [arXiv:1412.1837] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  50. A. Drozd, J. Ellis, J. Quevillon and T. You, The universal one-loop effective action, JHEP 03 (2016) 180 [arXiv:1512.03003] [INSPIRE].

    Article  ADS  Google Scholar 

  51. B. Henning, X. Lu and H. Murayama, One-loop matching and running with covariant derivative expansion, arXiv:1604.01019 [INSPIRE].

  52. J. Fuentes-Martin, J. Portoles and P. Ruiz-Femenia, Integrating out heavy particles with functional methods: a simplified framework, JHEP 09 (2016) 156 [arXiv:1607.02142] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  53. C. Cheung and C.-H. Shen, Nonrenormalization theorems without supersymmetry, Phys. Rev. Lett. 115 (2015) 071601 [arXiv:1505.01844] [INSPIRE].

    Article  ADS  Google Scholar 

  54. L.F. Abbott, The background field method beyond one loop, Nucl. Phys. B 185 (1981) 189 [INSPIRE].

  55. A.V. Manohar and I.W. Stewart, The QCD heavy quark potential to order v 2 : one loop matching conditions, Phys. Rev. D 62 (2000) 074015 [hep-ph/0003032] [INSPIRE].

  56. R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Dimension-six renormalization group equations, http://einstein.ucsd.edu/smeft.

  57. A. Yu. Morozov, Matrix of mixing of scalar and vector mesons of dimension d ≤ 8 in QCD (in Russian), Sov. J. Nucl. Phys. 40 (1984) 505 [Yad. Fiz. 40 (1984) 788] [INSPIRE].

  58. A. Manohar and H. Georgi, Chiral quarks and the nonrelativistic quark model, Nucl. Phys. B 234 (1984) 189 [INSPIRE].

  59. E.E. Jenkins, A.V. Manohar and M. Trott, Naive dimensional analysis counting of gauge theory amplitudes and anomalous dimensions, Phys. Lett. B 726 (2013) 697 [arXiv:1309.0819] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Department of Physics, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0319, U.S.A.

    Elizabeth E. Jenkins, Aneesh V. Manohar & Peter Stoffer

Authors
  1. Elizabeth E. Jenkins
    View author publications

    Search author on:PubMed Google Scholar

  2. Aneesh V. Manohar
    View author publications

    Search author on:PubMed Google Scholar

  3. Peter Stoffer
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Peter Stoffer.

Additional information

ArXiv ePrint: 1711.05270

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jenkins, E.E., Manohar, A.V. & Stoffer, P. Low-energy effective field theory below the electroweak scale: anomalous dimensions. J. High Energ. Phys. 2018, 84 (2018). https://doi.org/10.1007/JHEP01(2018)084

Download citation

  • Received: 21 November 2017

  • Accepted: 29 December 2017

  • Published: 18 January 2018

  • DOI: https://doi.org/10.1007/JHEP01(2018)084

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Effective Field Theories
  • Renormalization Group
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature