[go: up one dir, main page]

Module linear

Module linear 

Source
Expand description

Supervised classification and regression models that assume linear relationship between dependent and explanatory variables.

§Linear Models

Linear models describe a continuous response variable as a function of one or more predictor variables. The model describes the relationship between a dependent variable y (also called the response) as a function of one or more independent, or explanatory variables \(X_i\). The general equation for a linear model is: \[y = \beta_0 + \sum_{i=1}^n \beta_iX_i + \epsilon\]

where \(\beta_0 \) is the intercept term (the expected value of Y when X = 0), \(\epsilon \) is an error term that is is independent of X and \(\beta_i \) is the average increase in y associated with a one-unit increase in \(X_i\)

Model assumptions:

  • Linearity. The relationship between X and the mean of y is linear.
  • Constant variance. The variance of residual is the same for any value of X.
  • Normality. For any fixed value of X, Y is normally distributed.
  • Independence. Observations are independent of each other.

§References:

Modules§

bg_solver
This is a generic solver for Ax = b type of equation
elastic_net
Elastic Net
lasso
Lasso
lasso_optimizer
An Interior-Point Method for Large-Scale l1-Regularized Least Squares
linear_regression
Linear Regression
logistic_regression
Logistic Regression
ridge_regression
Ridge Regression