[go: up one dir, main page]

libm/math/
fma.rs

1/* SPDX-License-Identifier: MIT */
2/* origin: musl src/math/fma.c. Ported to generic Rust algorithm in 2025, TG. */
3
4use super::support::{DInt, FpResult, HInt, IntTy, Round, Status};
5use super::{CastFrom, CastInto, Float, Int, MinInt};
6
7/// Fused multiply add (f64)
8///
9/// Computes `(x*y)+z`, rounded as one ternary operation (i.e. calculated with infinite precision).
10#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
11pub fn fma(x: f64, y: f64, z: f64) -> f64 {
12    select_implementation! {
13        name: fma,
14        use_arch: all(target_arch = "aarch64", target_feature = "neon"),
15        args: x, y, z,
16    }
17
18    fma_round(x, y, z, Round::Nearest).val
19}
20
21/// Fused multiply add (f128)
22///
23/// Computes `(x*y)+z`, rounded as one ternary operation (i.e. calculated with infinite precision).
24#[cfg(f128_enabled)]
25#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
26pub fn fmaf128(x: f128, y: f128, z: f128) -> f128 {
27    fma_round(x, y, z, Round::Nearest).val
28}
29
30/// Fused multiply-add that works when there is not a larger float size available. Computes
31/// `(x * y) + z`.
32#[inline]
33pub fn fma_round<F>(x: F, y: F, z: F, _round: Round) -> FpResult<F>
34where
35    F: Float,
36    F: CastFrom<F::SignedInt>,
37    F: CastFrom<i8>,
38    F::Int: HInt,
39    u32: CastInto<F::Int>,
40{
41    let 
42    let zero = IntTy::<F>::ZERO;
43
44    // Normalize such that the top of the mantissa is zero and we have a guard bit.
45    let nx = Norm::from_float(x);
46    let ny = Norm::from_float(y);
47    let nz = Norm::from_float(z);
48
49    if nx.is_zero_nan_inf() || ny.is_zero_nan_inf() {
50        // Value will overflow, defer to non-fused operations.
51        return FpResult::ok(x * y + z);
52    }
53
54    if nz.is_zero_nan_inf() {
55        if nz.is_zero() {
56            // Empty add component means we only need to multiply.
57            return FpResult::ok(x * y);
58        }
59        // `z` is NaN or infinity, which sets the result.
60        return FpResult::ok(z);
61    }
62
63    // multiply: r = x * y
64    let zhi: F::Int;
65    let zlo: F::Int;
66    let (mut rlo, mut rhi) = nx.m.widen_mul(ny.m).lo_hi();
67
68    // Exponent result of multiplication
69    let mut e: i32 = nx.e + ny.e;
70    // Needed shift to align `z` to the multiplication result
71    let mut d: i32 = nz.e - e;
72    let sbits = F::BITS as i32;
73
74    // Scale `z`. Shift `z <<= kz`, `r >>= kr`, so `kz+kr == d`, set `e = e+kr` (== ez-kz)
75    if d > 0 {
76        // The magnitude of `z` is larger than `x * y`
77        if d < sbits {
78            // Maximum shift of one `F::BITS` means shifted `z` will fit into `2 * F::BITS`. Shift
79            // it into `(zhi, zlo)`. No exponent adjustment necessary.
80            zlo = nz.m << d;
81            zhi = nz.m >> (sbits - d);
82        } else {
83            // Shift larger than `sbits`, `z` only needs the top half `zhi`. Place it there (acts
84            // as a shift by `sbits`).
85            zlo = zero;
86            zhi = nz.m;
87            d -= sbits;
88
89            // `z`'s exponent is large enough that it now needs to be taken into account.
90            e = nz.e - sbits;
91
92            if d == 0 {
93                // Exactly `sbits`, nothing to do
94            } else if d < sbits {
95                // Remaining shift fits within `sbits`. Leave `z` in place, shift `x * y`
96                rlo = (rhi << (sbits - d)) | (rlo >> d);
97                // Set the sticky bit
98                rlo |= IntTy::<F>::from((rlo << (sbits - d)) != zero);
99                rhi = rhi >> d;
100            } else {
101                // `z`'s magnitude is enough that `x * y` is irrelevant. It was nonzero, so set
102                // the sticky bit.
103                rlo = one;
104                rhi = zero;
105            }
106        }
107    } else {
108        // `z`'s magnitude once shifted fits entirely within `zlo`
109        zhi = zero;
110        d = -d;
111        if d == 0 {
112            // No shift needed
113            zlo = nz.m;
114        } else if d < sbits {
115            // Shift s.t. `nz.m` fits into `zlo`
116            let sticky = IntTy::<F>::from((nz.m << (sbits - d)) != zero);
117            zlo = (nz.m >> d) | sticky;
118        } else {
119            // Would be entirely shifted out, only set the sticky bit
120            zlo = one;
121        }
122    }
123
124    /* addition */
125
126    let mut neg = nx.neg ^ ny.neg;
127    let samesign: bool = !neg ^ nz.neg;
128    let mut rhi_nonzero = true;
129
130    if samesign {
131        // r += z
132        rlo = rlo.wrapping_add(zlo);
133        rhi += zhi + IntTy::<F>::from(rlo < zlo);
134    } else {
135        // r -= z
136        let (res, borrow) = rlo.overflowing_sub(zlo);
137        rlo = res;
138        rhi = rhi.wrapping_sub(zhi.wrapping_add(IntTy::<F>::from(borrow)));
139        if (rhi >> (F::BITS - 1)) != zero {
140            rlo = rlo.signed().wrapping_neg().unsigned();
141            rhi = rhi.signed().wrapping_neg().unsigned() - IntTy::<F>::from(rlo != zero);
142            neg = !neg;
143        }
144        rhi_nonzero = rhi != zero;
145    }
146
147    /* Construct result */
148
149    // Shift result into `rhi`, left-aligned. Last bit is sticky
150    if rhi_nonzero {
151        // `d` > 0, need to shift both `rhi` and `rlo` into result
152        e += sbits;
153        d = rhi.leading_zeros() as i32 - 1;
154        rhi = (rhi << d) | (rlo >> (sbits - d));
155        // Update sticky
156        rhi |= IntTy::<F>::from((rlo << d) != zero);
157    } else if rlo != zero {
158        // `rhi` is zero, `rlo` is the entire result and needs to be shifted
159        d = rlo.leading_zeros() as i32 - 1;
160        if d < 0 {
161            // Shift and set sticky
162            rhi = (rlo >> 1) | (rlo & one);
163        } else {
164            rhi = rlo << d;
165        }
166    } else {
167        // exact +/- 0.0
168        return FpResult::ok(x * y + z);
169    }
170
171    e -= d;
172
173    // Use int->float conversion to populate the significand.
174    // i is in [1 << (BITS - 2), (1 << (BITS - 1)) - 1]
175    let mut i: F::SignedInt = rhi.signed();
176
177    if neg {
178        i = -i;
179    }
180
181    // `|r|` is in `[0x1p62,0x1p63]` for `f64`
182    let mut r: F = F::cast_from_lossy(i);
183
184    /* Account for subnormal and rounding */
185
186    // Unbiased exponent for the maximum value of `r`
187    let max_pow = F::BITS - 1 + F::EXP_BIAS;
188
189    let mut status = Status::OK;
190
191    if e < -(max_pow as i32 - 2) {
192        // Result is subnormal before rounding
193        if e == -(max_pow as i32 - 1) {
194            let mut c = F::from_parts(false, max_pow, zero);
195            if neg {
196                c = -c;
197            }
198
199            if r == c {
200                // Min normal after rounding,
201                status.set_underflow(true);
202                r = F::MIN_POSITIVE_NORMAL.copysign(r);
203                return FpResult::new(r, status);
204            }
205
206            if (rhi << (F::SIG_BITS + 1)) != zero {
207                // Account for truncated bits. One bit will be lost in the `scalbn` call, add
208                // another top bit to avoid double rounding if inexact.
209                let iu: F::Int = (rhi >> 1) | (rhi & one) | (one << (F::BITS - 2));
210                i = iu.signed();
211
212                if neg {
213                    i = -i;
214                }
215
216                r = F::cast_from_lossy(i);
217
218                // Remove the top bit
219                r = F::cast_from(2i8) * r - c;
220                status.set_underflow(true);
221            }
222        } else {
223            // Only round once when scaled
224            d = F::EXP_BITS as i32 - 1;
225            let sticky = IntTy::<F>::from(rhi << (F::BITS as i32 - d) != zero);
226            i = (((rhi >> d) | sticky) << d).signed();
227
228            if neg {
229                i = -i;
230            }
231
232            r = F::cast_from_lossy(i);
233        }
234    }
235
236    // Use our exponent to scale the final value.
237    FpResult::new(super::generic::scalbn(r, e), status)
238}
239
240/// Representation of `F` that has handled subnormals.
241#[derive(Clone, Copy, Debug)]
242struct Norm<F: Float> {
243    /// Normalized significand with one guard bit, unsigned.
244    m: F::Int,
245    /// Exponent of the mantissa such that `m * 2^e = x`. Accounts for the shift in the mantissa
246    /// and the guard bit; that is, 1.0 will normalize as `m = 1 << 53` and `e = -53`.
247    e: i32,
248    neg: bool,
249}
250
251impl<F: Float> Norm<F> {
252    /// Unbias the exponent and account for the mantissa's precision, including the guard bit.
253    const EXP_UNBIAS: u32 = F::EXP_BIAS + F::SIG_BITS + 1;
254
255    /// Values greater than this had a saturated exponent (infinity or NaN), OR were zero and we
256    /// adjusted the exponent such that it exceeds this threashold.
257    const ZERO_INF_NAN: u32 = F::EXP_SAT - Self::EXP_UNBIAS;
258
259    fn from_float(x: F) -> Self {
260        let mut ix = x.to_bits();
261        let mut e = x.ex() as i32;
262        let neg = x.is_sign_negative();
263        if e == 0 {
264            // Normalize subnormals by multiplication
265            let scale_i = F::BITS - 1;
266            let scale_f = F::from_parts(false, scale_i + F::EXP_BIAS, F::Int::ZERO);
267            let scaled = x * scale_f;
268            ix = scaled.to_bits();
269            e = scaled.ex() as i32;
270            e = if e == 0 {
271                // If the exponent is still zero, the input was zero. Artifically set this value
272                // such that the final `e` will exceed `ZERO_INF_NAN`.
273                1 << F::EXP_BITS
274            } else {
275                // Otherwise, account for the scaling we just did.
276                e - scale_i as i32
277            };
278        }
279
280        e -= Self::EXP_UNBIAS as i32;
281
282        // Absolute  value, set the implicit bit, and shift to create a guard bit
283        ix &= F::SIG_MASK;
284        ix |= F::IMPLICIT_BIT;
285        ix <<= 1;
286
287        Self { m: ix, e, neg }
288    }
289
290    /// True if the value was zero, infinity, or NaN.
291    fn is_zero_nan_inf(self) -> bool {
292        self.e >= Self::ZERO_INF_NAN as i32
293    }
294
295    /// The only value we have
296    fn is_zero(self) -> bool {
297        // The only exponent that strictly exceeds this value is our sentinel value for zero.
298        self.e > Self::ZERO_INF_NAN as i32
299    }
300}
301
302#[cfg(test)]
303mod tests {
304    use super::*;
305
306    /// Test the generic `fma_round` algorithm for a given float.
307    fn spec_test<F>()
308    where
309        F: Float,
310        F: CastFrom<F::SignedInt>,
311        F: CastFrom<i8>,
312        F::Int: HInt,
313        u32: CastInto<F::Int>,
314    {
315        let x = F::from_bits(F::Int::ONE);
316        let y = F::from_bits(F::Int::ONE);
317        let z = F::ZERO;
318
319        let fma = |x, y, z| fma_round(x, y, z, Round::Nearest).val;
320
321        // 754-2020 says "When the exact result of (a × b) + c is non-zero yet the result of
322        // fusedMultiplyAdd is zero because of rounding, the zero result takes the sign of the
323        // exact result"
324        assert_biteq!(fma(x, y, z), F::ZERO);
325        assert_biteq!(fma(x, -y, z), F::NEG_ZERO);
326        assert_biteq!(fma(-x, y, z), F::NEG_ZERO);
327        assert_biteq!(fma(-x, -y, z), F::ZERO);
328    }
329
330    #[test]
331    fn spec_test_f32() {
332        spec_test::<f32>();
333    }
334
335    #[test]
336    fn spec_test_f64() {
337        spec_test::<f64>();
338
339        let expect_underflow = [
340            (
341                hf64!("0x1.0p-1070"),
342                hf64!("0x1.0p-1070"),
343                hf64!("0x1.ffffffffffffp-1023"),
344                hf64!("0x0.ffffffffffff8p-1022"),
345            ),
346            (
347                // FIXME: we raise underflow but this should only be inexact (based on C and
348                // `rustc_apfloat`).
349                hf64!("0x1.0p-1070"),
350                hf64!("0x1.0p-1070"),
351                hf64!("-0x1.0p-1022"),
352                hf64!("-0x1.0p-1022"),
353            ),
354        ];
355
356        for (x, y, z, res) in expect_underflow {
357            let FpResult { val, status } = fma_round(x, y, z, Round::Nearest);
358            assert_biteq!(val, res);
359            assert_eq!(status, Status::UNDERFLOW);
360        }
361    }
362
363    #[test]
364    #[cfg(f128_enabled)]
365    fn spec_test_f128() {
366        spec_test::<f128>();
367    }
368
369    #[test]
370    fn fma_segfault() {
371        // These two inputs cause fma to segfault on release due to overflow:
372        assert_eq!(
373            fma(
374                -0.0000000000000002220446049250313,
375                -0.0000000000000002220446049250313,
376                -0.0000000000000002220446049250313
377            ),
378            -0.00000000000000022204460492503126,
379        );
380
381        let result = fma(-0.992, -0.992, -0.992);
382        //force rounding to storage format on x87 to prevent superious errors.
383        #[cfg(all(target_arch = "x86", not(target_feature = "sse2")))]
384        let result = force_eval!(result);
385        assert_eq!(result, -0.007936000000000007,);
386    }
387
388    #[test]
389    fn fma_sbb() {
390        assert_eq!(
391            fma(-(1.0 - f64::EPSILON), f64::MIN, f64::MIN),
392            -3991680619069439e277
393        );
394    }
395
396    #[test]
397    fn fma_underflow() {
398        assert_eq!(
399            fma(1.1102230246251565e-16, -9.812526705433188e-305, 1.0894e-320),
400            0.0,
401        );
402    }
403}