use super::{scalar_sin_cos, Vec2, Vec4};
use crate::swizzles::*;
#[cfg(all(vec4_sse2, target_arch = "x86",))]
use core::arch::x86::*;
#[cfg(all(vec4_sse2, target_arch = "x86_64",))]
use core::arch::x86_64::*;
#[cfg(not(target_arch = "spirv"))]
use core::fmt;
use core::ops::{Add, Deref, DerefMut, Mul, Sub};
#[cfg(feature = "std")]
use std::iter::{Product, Sum};
const ZERO: Mat2 = const_mat2!([0.0; 4]);
const IDENTITY: Mat2 = const_mat2!([1.0, 0.0], [0.0, 1.0]);
#[inline]
pub fn mat2(x_axis: Vec2, y_axis: Vec2) -> Mat2 {
Mat2::from_cols(x_axis, y_axis)
}
#[cfg(doc)]
#[derive(Clone, Copy, PartialEq, PartialOrd)]
#[cfg_attr(not(target_arch = "spirv"), derive(Debug))]
#[repr(C)]
pub struct Mat2 {
pub x_axis: Vec2,
pub y_axis: Vec2,
}
#[cfg(not(doc))]
#[derive(Clone, Copy, PartialEq, PartialOrd)]
#[cfg_attr(not(target_arch = "spirv"), derive(Debug))]
#[repr(C)]
pub struct Mat2(pub(crate) Vec4);
impl Default for Mat2 {
#[inline]
fn default() -> Self {
IDENTITY
}
}
#[cfg(not(target_arch = "spirv"))]
impl fmt::Display for Mat2 {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "[{}, {}]", self.x_axis, self.y_axis)
}
}
impl Mat2 {
#[inline]
pub const fn zero() -> Self {
ZERO
}
#[inline]
pub const fn identity() -> Self {
IDENTITY
}
#[inline]
pub fn from_cols(x_axis: Vec2, y_axis: Vec2) -> Self {
Self(Vec4::new(x_axis.x, x_axis.y, y_axis.x, y_axis.y))
}
#[inline]
pub fn from_cols_array(m: &[f32; 4]) -> Self {
Mat2(Vec4::new(m[0], m[1], m[2], m[3]))
}
#[inline]
pub fn to_cols_array(&self) -> [f32; 4] {
self.0.into()
}
#[inline]
pub fn from_cols_array_2d(m: &[[f32; 2]; 2]) -> Self {
Mat2(Vec4::new(m[0][0], m[0][1], m[1][0], m[1][1]))
}
#[inline]
pub fn to_cols_array_2d(&self) -> [[f32; 2]; 2] {
let (x0, y0, x1, y1) = self.0.into();
[[x0, y0], [x1, y1]]
}
#[inline]
pub fn from_scale_angle(scale: Vec2, angle: f32) -> Self {
let (sin, cos) = scalar_sin_cos(angle);
let (scale_x, scale_y) = scale.into();
Self(Vec4::new(
cos * scale_x,
sin * scale_x,
-sin * scale_y,
cos * scale_y,
))
}
#[inline]
pub fn from_angle(angle: f32) -> Self {
let (sin, cos) = scalar_sin_cos(angle);
Self(Vec4::new(cos, sin, -sin, cos))
}
#[inline]
pub fn from_scale(scale: Vec2) -> Self {
let (x, y) = scale.into();
Self(Vec4::new(x, 0.0, 0.0, y))
}
#[inline]
pub fn is_finite(&self) -> bool {
self.x_axis.is_finite() && self.y_axis.is_finite()
}
#[inline]
pub fn is_nan(&self) -> bool {
self.x_axis.is_nan() || self.y_axis.is_nan()
}
#[inline]
pub fn transpose(&self) -> Self {
#[cfg(vec4_sse2)]
unsafe {
let abcd = self.0.into();
let acbd = _mm_shuffle_ps(abcd, abcd, 0b11_01_10_00);
Self(acbd.into())
}
#[cfg(vec4_f32)]
{
let (m00, m01, m10, m11) = self.0.into();
Self(Vec4::new(m00, m10, m01, m11))
}
}
#[inline]
pub fn determinant(&self) -> f32 {
#[cfg(vec4_sse2)]
unsafe {
let abcd = self.0.into();
let dcba = _mm_shuffle_ps(abcd, abcd, 0b00_01_10_11);
let prod = _mm_mul_ps(abcd, dcba);
let det = _mm_sub_ps(prod, _mm_shuffle_ps(prod, prod, 0b01_01_01_01));
_mm_cvtss_f32(det)
}
#[cfg(vec4_f32)]
{
let (a, b, c, d) = self.0.into();
a * d - b * c
}
}
#[inline]
pub fn inverse(&self) -> Self {
#[cfg(vec4_sse2)]
unsafe {
const SIGN: __m128 = const_m128!([1.0, -1.0, -1.0, 1.0]);
let abcd = self.0.into();
let dcba = _mm_shuffle_ps(abcd, abcd, 0b00_01_10_11);
let prod = _mm_mul_ps(abcd, dcba);
let sub = _mm_sub_ps(prod, _mm_shuffle_ps(prod, prod, 0b01_01_01_01));
let det = _mm_shuffle_ps(sub, sub, 0b00_00_00_00);
let tmp = _mm_div_ps(SIGN, det);
let dbca = _mm_shuffle_ps(abcd, abcd, 0b00_10_01_11);
Self(_mm_mul_ps(dbca, tmp).into())
}
#[cfg(vec4_f32)]
{
let (a, b, c, d) = self.0.into();
let det = a * d - b * c;
glam_assert!(det != 0.0);
let tmp = Vec4::new(1.0, -1.0, -1.0, 1.0) / det;
Self(Vec4::new(d, b, c, a) * tmp)
}
}
#[inline]
pub fn mul_vec2(&self, other: Vec2) -> Vec2 {
let other = other.xxyy();
let tmp = self.0 * other;
let (x0, y0, x1, y1) = tmp.into();
Vec2::new(x0 + x1, y0 + y1)
}
#[inline]
pub fn mul_mat2(&self, other: &Self) -> Self {
let (x0, y0, x1, y1) = other.0.into();
Mat2::from_cols(
self.mul_vec2(Vec2::new(x0, y0)),
self.mul_vec2(Vec2::new(x1, y1)),
)
}
#[inline]
pub fn add_mat2(&self, other: &Self) -> Self {
Mat2(self.0 + other.0)
}
#[inline]
pub fn sub_mat2(&self, other: &Self) -> Self {
Mat2(self.0 - other.0)
}
#[inline]
pub fn mul_scalar(&self, other: f32) -> Self {
let s = Vec4::splat(other);
Mat2(self.0 * s)
}
#[inline]
pub fn abs_diff_eq(&self, other: Self, max_abs_diff: f32) -> bool {
self.0.abs_diff_eq(other.0, max_abs_diff)
}
}
impl AsRef<[f32; 4]> for Mat2 {
#[inline]
fn as_ref(&self) -> &[f32; 4] {
unsafe { &*(self as *const Self as *const [f32; 4]) }
}
}
impl AsMut<[f32; 4]> for Mat2 {
#[inline]
fn as_mut(&mut self) -> &mut [f32; 4] {
unsafe { &mut *(self as *mut Self as *mut [f32; 4]) }
}
}
impl Add<Mat2> for Mat2 {
type Output = Self;
#[inline]
fn add(self, other: Self) -> Self {
self.add_mat2(&other)
}
}
impl Sub<Mat2> for Mat2 {
type Output = Self;
#[inline]
fn sub(self, other: Self) -> Self {
self.sub_mat2(&other)
}
}
impl Mul<Mat2> for Mat2 {
type Output = Self;
#[inline]
fn mul(self, other: Self) -> Self {
self.mul_mat2(&other)
}
}
impl Mul<Vec2> for Mat2 {
type Output = Vec2;
#[inline]
fn mul(self, other: Vec2) -> Vec2 {
self.mul_vec2(other)
}
}
impl Mul<Mat2> for f32 {
type Output = Mat2;
#[inline]
fn mul(self, other: Mat2) -> Mat2 {
other.mul_scalar(self)
}
}
impl Mul<f32> for Mat2 {
type Output = Self;
#[inline]
fn mul(self, other: f32) -> Self {
self.mul_scalar(other)
}
}
impl Deref for Mat2 {
type Target = super::XYAxes;
#[inline(always)]
fn deref(&self) -> &Self::Target {
unsafe { &*(self as *const Self as *const Self::Target) }
}
}
impl DerefMut for Mat2 {
#[inline(always)]
fn deref_mut(&mut self) -> &mut Self::Target {
unsafe { &mut *(self as *mut Self as *mut Self::Target) }
}
}
#[cfg(feature = "std")]
impl<'a> Sum<&'a Self> for Mat2 {
fn sum<I>(iter: I) -> Self
where
I: Iterator<Item = &'a Self>,
{
iter.fold(ZERO, |a, &b| Self::add(a, b))
}
}
#[cfg(feature = "std")]
impl<'a> Product<&'a Self> for Mat2 {
fn product<I>(iter: I) -> Self
where
I: Iterator<Item = &'a Self>,
{
iter.fold(IDENTITY, |a, &b| Self::mul(a, b))
}
}