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1 Introduction

For a large class of models beyond the SM, physics at energies below the mass scale Λ of the
new particles can be parametrized by an effective field theory (EFT) where the SM Lagrangian
is supplemented by new operators with canonical dimensions D larger than 4. The theory has
the same field content and the same linearly realized SU(3) × SU(2) × U(1) local symmetry as
the SM.1 The higher-dimensional operators are organized in a systematic expansion in D, where
each consecutive term is suppressed by a larger power of Λ. For a general introduction to the
EFT formalism see e.g. [2, 3, 4, 5, 6]; for recent review articles about EFT in connection with
Higgs physics see e.g. [7, 8, 9, 10, 11, 12].

Quite generally, the EFT Lagrangian takes the form:
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∑
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where eachO(D)
i is an SU(3)×SU(2)×U(1) invariant operator of dimension D and the parameters

c
(D)
i multiplying the operators in the Lagrangian are called the Wilson coefficients. This EFT is

intended to parametrize observable effects of a large class of BSM theories where new particles,
with mass of order Λ, are much heavier than the SM ones and much heavier than the energy
scale at which the experiment is performed. The main motivation to use this framework is that
the constraints on the EFT parameters can be later re-interpreted as constraints on masses and
couplings of new particles in many BSM theories. In other words, translation of experimental
data into a theoretical framework has to be done only once in the EFT context, rather than for
each BSM model separately.

The contribution of each O(D)
i to amplitudes of physical processes at the energy scale of order

v scales2 as (v/Λ)D−4. Since v/Λ < 1 by construction, the EFT in its validity regime typically
describes small deviations from the SM predictions, although, under certain conditions, it may
be consistent to use this framework to describe large deviations [14, 13].

A complete and non-redundant set of operators that can be constructed from the SM fields
is known for D=5 [15], D=6 [16], D=7 [17, 18], and D=8 [19, 18]. All D=5 operators violate
the lepton number [15], while all D=7 operators violate B − L (the latter is true for all odd-D
operators [20]). Then, experimental constraints dictate that their Wilson coefficients must be
suppressed at a level which makes them unobservable at the LHC [21], and for this reason D=5
and 7 operators will not be discussed here. Consequently, the leading new physics effects are
expected from operators with D=6 [22], whose contributions scale as (v/Λ)2. Contributions from
operators with D ≥ 8 are suppressed by at least (v/Λ)4, and in most of the following discussion
we will assume that they can be neglected.

In this note, we discuss in detail the D=6 operators that can be constructed from the SM
fields. We review various possible choices of these operators (the so-called basis) and their phe-
nomenological effects. Only the operators that conserve the baryon and lepton numbers are
considered. On the other hand, we do not impose a-priori any flavor symmetry. Also, we include
CP violating operators in our discussion. One purpose of this note is to propose a common

1The latter assumption can be relaxed, leading to an EFT with a non-linearly realized electroweak symmetry.
This framework is discussed in Section II.2.4 of [1].

2Apart from the scaling with Λ, the effects of higher-dimensional operators also scale with appropriate powers
of couplings in the UV theory. The latter is important to assess the validity range of the EFT description, as
discussed in Ref. [13] and Section II.2.2 of [1].



EFT language and conventions that could be universally used in LHC Higgs analyses and be
implemented in numerical tools.

In Section 2 we introduce the SM Lagrangian extended by dimension-6 operators. Two
popular bases of dimension-6 operators using the manifestly SU(2) × U(1) invariant formalism
are introduced. In Section 3 we discuss the interactions of the SM mass eigenstates that arise in the
presence of dimension-6 operators beyond the SM, with the emphasis on the Higgs interactions.
We also provide a map between the couplings in that effective Lagrangian and Wilson coefficients
of dimension-6 operators introduced in Section 2. In Section 4 we define a new basis of D=6
operators, the so-called Higgs basis, which is spanned by a subset of the independent couplings of
the mass eigenstate Lagrangian. This material is a slightly extended version of Section II.2.1 of
the Yellow Report 4 [1]; additional technical details not included in [1] are collected in Appendices
A, B, C, D.

2 SM EFT with dimension-6 operators

We consider an EFT Lagrangian where the SM is extended by dimension-6 operators:

LEFT = LSM +
∑
i

c̄
(6)
i O

(6)
i . (2.1)

In our conventions, the scale Λ has been absorbed in the definition of the Wilson coefficients,

c̄
(6)
i = c

(6)
i v2/Λ2, and we divided the dimension-6 operators by v2, O

(6)
i = O(6)

i /v2.
To fix our notation and conventions, we first write down the SM Lagrangian:

LSM = −1

4
GaµνG

a
µν −

1

4
W i
µνW

i
µν −

1

4
BµνBµν +DµH

†DµH + µ2
HH

†H − λ(H†H)2

+
∑
f∈q,`

if̄LγµDµfL +
∑

f∈u,d,e
if̄RγµDµfR

−
[
qLH̃yuuR + q̄LHyddR + ¯̀

LHye`R + h.c.
]
. (2.2)

Here, Gaµ, W i
µ, and Bµ denote the gauge fields of the SU(3) × SU(2) × U(1) local symmetry.

The corresponding gauge couplings are denoted by gs, g, g′; we also define the electromagnetic
coupling e = gg′/

√
g2 + g′2, and the Weinberg angle sθ = g′/

√
g2 + g′2. The field strength

tensors are defined as Gaµν = ∂µG
a
ν − ∂νGaµ + gsf

abcGbµG
c
ν , W i

µν = ∂µW
i
ν − ∂νW i

µ + gεijkW j
µW k

ν ,

Bµν = ∂µBν − ∂νBµ. The Higgs doublet is denoted as H, and we also define H̃i = εijH
∗
j . The

covariant derivative is defined as DµH = ∂µH − ig2σ
iW i

µH − i
g′

2 BµH. The field H acquires the

VEV 〈H†H〉 = v2/2. In the unitary gauge we have H = (0, (v + h)/
√

2), where h is the Higgs
boson field. After electroweak symmetry breaking, the electroweak gauge boson mass eigenstates

are defined as W± = (W 1 ∓ iW 2)/
√

2, Z = cθW
3 − sθB, A = sθW

3 + cθB, where cθ =
√

1− s2
θ.

The tree-level masses of W and Z bosons are given by mW = gv/2, mZ =
√
g2 + g′2v/2. The left-

handed Dirac fermions qL = (uL, dL) and `L = (νL, eL) are doublets of the SU(2) gauge group,
and the right-handed Dirac fermions uR, dR, eR are SU(2) singlets. All fermions are 3-component
vectors in the generation space, and yf are 3× 3 matrices. The 3 electroweak parameters g, g′, v
are customarily derived from the Fermi constant GF measured in muon decays, Z boson mass mZ ,
and the low-energy electromagnetic coupling α(0). The Higgs quartic couplings λ can then be
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fixed from the measured Higgs boson mass. The tree-level relations between the input observables
and the electroweak parameters are given by:

GF =
1√
2v2

, α =
g2g′2

4π(g2 + g′2)
, mZ =

√
g2 + g′2v

2
, m2

h = 2λv2. (2.3)

We demand that the dimension-6 operators O
(6)
i in Eq. (2.1) form a complete, non-redundant

set - a so-called basis. Complete means that any dimension-6 operator is either a part of the
basis or can be obtained from a combination of operators in the basis using equations of motion,
integration by parts, field redefinitions, and Fierz transformations. Non-redundant means it
is a minimal such set. Any complete basis leads to the same physical predictions concerning
possible new physics effects. Several bases have been proposed in the literature, and they may
be convenient for specific applications. Historically, a complete and non-redundant set of D=6
operators was first identified in Ref. [16], and is usually referred to as the Warsaw basis. Below,
we work with another basis choice commonly used in the literature: the so-called SILH basis [23].
Later, in Section. 4, we propose a new basis choice that is particularly convenient for leading-order
LHC Higgs analyses in the EFT framework.
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Õγ
g′2

m2
W
H†H B̃µνBµν
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Table 1: Bosonic D=6 operators in the SILH basis.

The full set of operators in the SILH basis is given in Tables 1, 2, and 3. We use the
normalization and conventions of Ref. [23].3

3In Ref. [23] it was assumed that the flavor indices of fermionic D=6 operators are proportional to the unit
matrix. Generalizing this to an arbitrary flavor structure, one needs to specify flavor indices of the operators [OH`],
[O′H`], [O``] and [O′uu] which are absent in the SILH basis to avoid redundancy. Here, for concreteness, we made a
particular though somewhat arbitrary choice of these indices.
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Vertex

[OH`]ij
i
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Yukawa and Dipole

[Oe]ij

√
2mei

mej

v3 H†H ¯̀
iHej

[Ou]ij

√
2mui

muj

v3 H†Hq̄iH̃uj

[Od]ij

√
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v
¯̀
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m2

W

√
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v q̄iH̃σµνT
aujG

a
µν

[OuW ]ij
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√
2mui

muj
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kH̃σµνujW

k
µν

[OuB ]ij
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m2
W

√
2mui

muj

v q̄iH̃σµνujBµν

[OdG]ij
gs
m2

W
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2mdi

mdj

v q̄iHσµνT
adjG
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[OdW ]ij
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√
2mdi

mdj

v q̄iHσµνdjBµν

Table 2: Two-fermion dimension-6 operators in the SILH basis. They are the same as in the
Warsaw basis, except that the operators [OH`]11, [O′H`]11 are absent by definition. We define
σµν = i[γµ, γν ]/2. In this table, e, u, d are always right-handed fermions, while ` and q are
left-handed. For complex operators the complex conjugate operator is implicit.

3 Effective Lagrangian of mass eigenstates

In Section. 2 we introduced an EFT with the SM supplemented by D=6 operators, using a mani-
festly SU(2)×U(1) invariant notation. At that point, the connection between the new operators
and phenomenology is not obvious. To relate to high-energy collider observables, it is more
transparent to express the EFT Lagrangian in terms of the mass eigenstates after electroweak
symmetry breaking (Higgs boson, W , Z, photon, etc.). Once this step is made, only the unbroken
SU(3)c×U(1)em local symmetry is manifest in the Lagrangian. Moreover, to simplify the interac-
tion vertices, we will make further field transformations that respect only SU(3)c×U(1)em. Since
field redefinitions do not affect physical predictions, the gauge invariance of the EFT we started
with ensures that observables calculated using this mass eigenstate Lagrangian are also gauge
invariant. This is possible because the full SU(2) × U(1) electroweak symmetry is still present,
albeit in a non-manifest way, in the form of non-trivial relations between different couplings of
mass eigenstates. Finally, for the sake of calculating observables beyond the tree-level one needs
to specify the gauge fixing terms. Again, the gauge invariance of the starting point ensures that
physical observables are independent of the gauge fixing procedure. Below we only present the
Lagrangian in the unitary gauge when the Goldstone bosons eaten by W and Z are set to zero,
which is completely sufficient to calculate LHC Higgs observables at tree level; see Appendix C
for a generalization to the Rξ gauge.

In this section we relate the Wilson coefficients of dimension-6 operators in the SILH basis
to the parameters of the tree-level effective Lagrangian describing the interactions of the mass
eigenstates. The analogous relations can be derived for any other basis; see Appendix A for the
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(L̄L)(L̄L) and (L̄R)(L̄R)

O``
1
v2

(¯̀γµ`)(¯̀γµ`)

Oqq
1
v2

(q̄γµq)(q̄γµq)

O′qq
1
v2

(q̄γµσ
iq)(q̄γµσ

iq)

O`q
1
v2

(¯̀γµ`)(q̄γµq)

O′`q
1
v2

(¯̀γµσ
i`)(q̄γµσ

iq)

Oquqd
1
v2

(q̄ju)εjk(q̄
kd)

O′quqd
1
v2

(q̄jT au)εjk(q̄
kT ad)

O`equ
1
v2

(¯̀je)εjk(q̄
ku)

O′`equ
1
v2

(¯̀jσµνe)εjk(q̄
kσµνu)

O`edq
1
v2

(¯̀je)(d̄qj)

(R̄R)(R̄R)

Oee
1
v2

(ēγµe)(ēγµe)

Ouu
1
v2

(ūγµu)(ūγµu)

Odd
1
v2

(d̄γµd)(d̄γµd)

Oeu
1
v2

(ēγµe)(ūγµu)

Oed
1
v2

(ēγµe)(d̄γµd)

Oud
1
v2

(ūγµu)(d̄γµd)

O′ud
1
v2

(ūγµT
au)(d̄γµT

ad)

(L̄L)(R̄R)

O`e
1
v2

(¯̀γµ`)(ēγµe)

O`u
1
v2

(¯̀γµ`)(ūγµu)

O`d
1
v2

(¯̀γµ`)(d̄γµd)

Oqe
1
v2

(q̄γµq)(ēγµe)

Oqu
1
v2

(q̄γµq)(ūγµu)

O′qu
1
v2

(q̄γµT
aq)(ūγµT

au)

Oqd
1
v2

(q̄γµq)(d̄γµd)

O′qd
1
v2

(q̄γµT
aq)(d̄γµT

ad)

Table 3: Four-fermion operators in the SILH basis. They are the same as in the Warsaw basis
[16], except that the operators [O``]1221, [O``]1122, [Ouu]3333 are absent by definition. In this table,
e, u, d are always right-handed fermions, while ` and q are left-handed. A flavor index is implicit
for each fermion field. For complex operators the complex conjugate operator is implicit.

map from the Warsaw basis. The form of the mass eigenstate Lagrangian obtained directly by
inserting the Higgs VEV and eigenstates into Eq. (2.1) is not convenient for practical applications.
However, at this point one is free to make the following redefinitions of fields and couplings in
the Lagrangian:

Gaµ → (1 + δG)Gaµ, W±µ → (1 + δW )W±µ , Zµ → (1 + δZ)Zµ, Aµ → (1 + δA)Aµ + δAZZµ,

v → v(1 + δv), gs → gs(1 + δgs), g → g(1 + δg), g′ → g′(1 + δg′),

λ → λ(1 + δλ), h→ (1 + δ1)h+ δ2h
2/v + δ3h

3/v2, (3.1)

where the free parameters δi are O(Λ−2) in the EFT expansion. Note that the non-linear trans-
formation of the Higgs boson field does not generate any new interaction terms at O(Λ−2) in
the effective Lagrangian that cannot be generated by D=6 operators.4 In addition, one is free
to add to the Lagrangian a total derivative and/or interactions terms that vanish by equations
of motion. These redefinitions of course do not change the physical predictions or symmetries of
the theory. However, they allow one to bring the theory to a more convenient form to perform
practical calculations. We will use this freedom to demand that the mass eigenstate Lagrangian
has the following features:

#1 All kinetic and mass terms are diagonal and canonically normalized. In particular, higher-
derivative kinetic terms are absent.

#2 The non-derivative photon and gluon interactions with fermions are the same as in the SM.

4For example, applied to the h4 self-interaction term in the SM Lagrangian, it generates h5 and h6 self-
interactions at O(Λ−2), which are also generated by the O6 operator in the SILH basis. Rather than applying the
non-linear transformation, one can equivalently use the equations of motion for the Higgs boson field.
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#3 Tree-level relations between the electroweak parameters and input observables are the same
as the SM ones in Eq. (2.3).

#4 Two-derivative self-interactions of the Higgs boson (e.g. h∂µh∂µh) are absent.

#5 In the Higgs boson interactions with gauge bosons, the derivative does not act on the Higgs
(e.g., there is no ∂µhVνVµν terms).

#6 For each fermion pair, the coefficient of the vertex-like Higgs interaction terms
(

2hv + h2

v2

)
Vµf̄γµf

is equal to the vertex correction to the respective Vµf̄γµf interaction.

These conditions are a choice of conventions (one among many possible ones) how to represent
interactions in the mass eigenstate Lagrangian. It is always possible to implement this choice
starting from any D=6 basis: SILH, Warsaw, or any other. The condition #1 simplifies extracting
physical predictions of the EFT, and is essential to implement the theory in existing Monte Carlo
simulators. The conditions #2-#3 simplify the interpretation of the SM parameters g, g′ and v.
If the [GF , α, mZ ] input is used to determine them (as assumed here), their numerical values
should be the same as in the SM, and the input observables are not affected by D=6 operators
at the leading order.5 The conditions #4-#6 are conventions commonly used in the literature
that allow one to fix the remaining freedom of fields and couplings redefinitions. These particular
conventions match the ones used e.g. in the Higgs characterization framework of Ref. [24]. See
Appendix D for physical examples showing these redefinitions do not change the S-matrix. Other
convention choices can be made, leading to the same predictions for observables. For example,
the features #3, #4, and #6 are not enforced in the alternative approach proposed in Section
II.2.3 of [1].

In general, dimension-6 operators do induce interaction terms that do not respect the features
#1-#6. However, these features can always be achieved, without any loss of generality, by using
equations of motion, integrating by parts, and redefining the fields and couplings. Starting from

5If other input observables are used, for example [GF , mW , mZ ] or [α, mW mZ ], the shift of input observables
due to the presence of D=6 operators must be taken into account to correctly derive physical predictions of the
theory. Much as in the SM, the input observables [GF , α, mZ ] are affected by loop corrections, and this has to be
taken into account if the framework is used beyond tree level.
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the SILH basis, the conditions #1-#6 fix the free parameters in Eq. (3.1) as

δG =
4g2
s

g2
c̄g,

δW = c̄W ,

δZ = c̄W +
g′2

g2
c̄B +

4g′4

g2(g2 + g′2)
c̄γ ,

δAZ =
g′

g
(c̄W − c̄B)− 8g′3

g(g2 + g′2)
c̄γ ,

δA =
4g′2

g2 + g′2
c̄γ

δv =
[c̄′H`]22

2
,

δgs = −4g2
s

g2
c̄g,

δg = − g2

g2 − g′2

(
c̄W + c̄2W +

g′2

g2
c̄B +

g′2

g2
c̄2B −

1

2
c̄T +

1

2
[c̄′H`]22

)
,

δg′ =
g′2

g2 − g′2

(
c̄W + c̄2W +

g′2

g2
c̄B +

g′2

g2
c̄2B −

1

2
c̄T +

1

2
[c̄′H`]22 − 4

g2 − g′2

g2
c̄γ

)
,

δλ = c̄H −
3

2
c̄6 − [c̄′H`]22,

δ1 = − c̄H
2
, δ2 = − c̄H

2
, δ3 = − c̄H

6
. (3.2)

Finally, the Higgs mass term in the SM Lagrangian is related by vacuum equations to the other
parameters by µ2

H = λv2(1 + δλ + 2δv + 3/4c̄6). One can repeat this procedure starting from
any other basis than SILH, and find a unique solution to the conditions #1-#6 in terms of the
Wilson coefficients in that basis.

We move to discussing the interactions in the mass eigenstate Lagrangian once conditions
#1-#6 are satisfied. We will focus on interaction terms that are most relevant for LHC phe-
nomenology. To organize the presentation, we split the Lagrangian into the following parts,

LEFT = Lkinetic + Laff + Lvertex + Ldipole + Ltgc + Lqgc,0 + Lqgc,2

+ Lhff + Lhvv + Lhvff + Lhdvff + Lhvvv + Lh,self + Lh2 + Lother. (3.3)

Below we define each term in order of appearance. We also express the corrections to the SM
interactions in LEFT in terms of linear combinations of Wilson coefficients of D=6 operators in
the SILH basis (the analogous formulas for the Warsaw basis are given in Appendix A). These
corrections start at O(1/Λ2) in the EFT expansion, and we will ignore all O(1/Λ4) and higher
contributions.
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Kinetic Terms

By construction, the kinetic terms of the mass eigenstates are diagonal and canonically normal-
ized:

Lkinetic = −1

2
W+
µνW

−
µν −

1

4
ZµνZµν −

1

4
AµνAµν −

1

4
GaµνG

a
µν

+
g2v2

4
(1 + δm)2W+

µ W
−
µ +

(g2 + g′2)v2

8
ZµZµ

+
1

2
∂µh∂µh− λv2h2 +

∑
f∈q,`,u,d,e

f̄ (iγµ∂µ −mf ) f. (3.4)

Above, the parameter λ is defined by the tree-level relation m2
h = 2λv2. There is no correction

to the Z boson mass terms, in accordance with the condition #3. With this convention, the
corrections to the W boson mass cannot be in general redefined away, and are parametrized by
δm. The relation between δm and the Wilson coefficients in the SILH basis is given by

δm = − g′2

g2 − g′2

(
c̄W + c̄B + c̄2W + c̄2B −

g2

2g′2
c̄T +

1

2
[c̄′H`]22

)
. (3.5)

Gauge boson interactions with fermions

By construction (condition #2), the non-derivative photon and gluon interactions with fermions
are the same as in the SM:

Laff = eAµ
∑

f∈u,d,e
f̄γµQff + gsG

a
µ

∑
f∈u,d

f̄γµT
af. (3.6)

The analogous interactions of the W and Z boson may in general be affected by dimension-6
operators:

Lvertex =
g√
2

(
W+
µ ν̄Lγµ

(
I3 + δgW`

L

)
eL +W+

µ ūLγµ

(
I3 + δgWq

L

)
dL +W+

µ ūRγµδg
Wq
R dR + h.c.

)
+

√
g2 + g′2Zµ

 ∑
f∈u,d,e,ν

f̄Lγµ

(
T 3
f − s2

θQf + δgZfL

)
fL +

∑
f∈u,d,e

f̄Rγµ

(
−s2

θQf + δgZfR

)
fR

 .
(3.7)

Here, I3 is the 3× 3 identity matrix, and the vertex corrections δg are 3× 3 Hermitian matrices
in the generation space, except for δgWq

R which is a general 3 × 3 complex matrix. The vertex
corrections to W and Z boson couplings to fermions are expressed by the Wilson coefficients in
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the SILH basis as

δgZνL =
1

2
c̄′H` −

1

2
c̄H` + f̂(1/2, 0),

δgZeL = −1

2
c̄′H` −

1

2
c̄H` + f̂(−1/2,−1),

δgZeR = −1

2
c̄He + f̂(0,−1),

δgZuL =
1

2
c̄′Hq −

1

2
c̄Hq + f̂(1/2, 2/3),

δgZdL = −1

2
V †CKMc̄

′
HqVCKM −

1

2
V †CKMc̄HqVCKM + f̂(−1/2,−1/3),

δgZuR = −1

2
c̄Hu + f̂(0, 2/3),

δgZdR = −1

2
c̄Hd + f̂(0,−1/3),

δgW`
L = c̄′H` + f̂(1/2, 0)− f̂(−1/2,−1),

δgWq
L =

(
c̄′Hq + f̂(1/2, 2/3)− f̂(−1/2,−1/3)

)
VCKM,

δgWq
R = −1

2
c̄Hud, (3.8)

where

f̂(T 3
f , Qf ) ≡

[
c̄2W +

g′2

g2
c̄2B +

1

2
c̄T −

1

2
[c̄′H`]22

]
T 3
f

− g′2

(g2 − g′2)

[
(2g2 − g′2)

g2
c̄2B + c̄2W + c̄W + c̄B −

1

2
c̄T +

1

2
[c̄′H`]22

]
Qf ,

(3.9)

and it is implicit that [c̄′H`]11 = [c̄H`]11 = 0.
Another type of gauge boson interactions with fermions are the so-called dipole interactions.

These do not occur in the tree-level SM Lagrangian, but they in general may appear in the EFT
with D=6 operators. We parametrize them as follows:

Ldipole = − 1

4v

gs ∑
f∈u,d

√
mfimfj

v
f̄L,iσµνT

a[dGf ]ijfR,jG
a
µν + e

∑
f∈u,d,e

√
mfimfj

v
f̄L,iσµν [dAf ]ijfR,jAµν

+
√
g2 + g′2

∑
f∈u,d,e

√
mfimfj

v
f̄L,iσµν [dZf ]ijfR,jZµν

+
√

2g

√
muimuj

v
d̄L,iσµν [dWu]ijuR,jW

−
µν +

√
2g

√
mdimdj

v
ūL,iσµν [dWd]ijdR,jW

+
µν

+
√

2g

√
meimej

v
ν̄L,iσµν [dWe]ijeR,jW

+
µν

]
+ h.c.,

(3.10)

where σµν = i[γµ, γν ]/2, and gGf , dAf , dZf , and dWf are complex 3 × 3 matrices. The field
strength tensors are defined as Xµν = ∂µXν − ∂νXµ, and X̃µν = εµνρσ∂ρXσ. The coefficients dvf
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are related to the Wilson coefficients in the SILH basis as

dGf = −16

g2
c̄fG,

dAf = −16

g2
(ηf c̄fW + c̄fB) ,

dZf = −16

g2

(
ηfc

2
θ c̄fW − s2

θ c̄fB
)
,

dWf = −16

g2
c̄fW , (3.11)

where ηu = +1, ηd,e = −1.

Gauge boson self-interactions

Gauge boson self-interactions are not directly relevant for LHC Higgs searches, however we include
them in this presentation because of the important synergy between the triple gauge couplings
and Higgs couplings measurements [25, 26, 27, 8, 28, 29, 30]. The triple gauge interactions in the
effective Lagrangian are parameterized by

Ltgc = ie
(
W+
µνW

−
µ −W−µνW+

µ

)
Aν + ie

[
(1 + δκγ)AµνW

+
µ W

−
ν + κ̃γÃµνW

+
µ W

−
ν

]
+ igcθ

[
(1 + δg1,z)

(
W+
µνW

−
µ −W−µνW+

µ

)
Zν + (1 + δκz)ZµνW

+
µ W

−
ν + κ̃z Z̃µνW

+
µ W

−
ν

]
+ i

e

m2
W

[
λγW

+
µνW

−
νρAρµ + λ̃γW

+
µνW

−
νρÃρµ

]
+ i

gcθ
m2
W

[
λzW

+
µνW

−
νρZρµ + λ̃zW

+
µνW

−
νρZ̃ρµ

]
− gsf

abc∂µG
a
νG

b
µG

c
ν +

c3g

v2
g3
sf

abcGaµνG
b
νρG

c
ρµ +

c̃3g

v2
g3
sf

abcG̃aµνG
b
νρG

c
ρµ. (3.12)

The couplings of electroweak gauge bosons follow the customary parametrization of Ref. [31].
The anomalous triple gauge couplings of electroweak gauge bosons are related to the Wilson
coefficients in the SILH basis as

δg1z = −g
2 + g′2

g2 − g′2

[
g2 − g′2

g2
c̄HW + c̄W + c̄2W +

g′2

g2
c̄B +

g′2

g2
c̄2B −

1

2
c̄T +

1

2
[c̄′H`]22

]
,

δκγ = −c̄HW − c̄HB,

δκz = −c̄HW +
g′2

g2
c̄HB −

g2 + g′2

g2 − g′2

[
c̄W + c̄2W +

g′2

g2
c̄B +

g′2

g2
c̄2B −

1

2
c̄T +

1

2
[c̄′H`]22

]
,

λz = −6g2c̄3W , λγ = λz,

δκ̃γ = −c̃HW − c̃HB,

δκ̃z =
g′2

g2
[c̃HW + c̃HB] ,

λ̃z = −6g2c̃3W , λ̃γ = λ̃z,

c3g =
4

g2
c̄3G, c̃3g =

4

g2
c̃3G. (3.13)

The tilded Wilson coefficients refer to the tilded (CP-odd) operators in Table 1.
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Quartic gauge boson self-interactions may also receive corrections from D=6 operators. Those
with zero derivatives take the form

Lqgc,0 = e2
(
W+
µ AµW

−
ν Aν −W+

µ W
−
µ AνAν

)
+

g2

2

(
1 + 2c2

θδg1,z

) (
W+
µ W

+
µ W

−
ν W

−
ν −W+

µ W
−
µ W

+
ν W

−
ν

)
+ g2c2

θ (1 + 2δg1,z)
(
W+
µ ZµW

−
ν Zν −W+

µ W
−
µ ZνZν

)
+ egcθ (1 + δg1,z)

(
W+
µ ZµW

−
ν Aν +W+

µ AµW
−
ν Zν − 2W+

µ W
−
µ ZνAν

)
. (3.14)

In this case, the deformations from the SM are controlled by the anomalous triple gauge couplings
δg1,z. On top of that, two-derivative quartic gauge couplings appear with the coefficients related
to λz:

Lqgc,2 = −g
2

2

λz
m2
W

(
W+
µνW

−
νρ −W−µνW+

νρ

) (
W+
µ W

−
ρ −W−µ W+

ρ

)
+ g2c2

θ

λz
m2
W

[
W+
µ

(
W−µνZνρ − ZµνW−νρ

)
Zρ +W−µ

(
W+
µνZνρ − ZµνW+

νρ

)
Zρ
]

+ e2 λz
m2
W

[
W+
µ

(
W−µνAνρ −AµνW−νρ

)
Aρ +W−µ

(
W+
µνAνρ −AµνW+

νρ

)
Aρ
]

+ egcθ
λz
m2
W

[
W+
µ

(
W−µνAνρ −AµνW−νρ

)
Zρ +W−µ

(
W+
µνAνρ −AµνW+

νρ

)
Zρ
]

+ egcθ
λz
m2
W

[
W+
µ

(
W−µνZνρ − ZµνW−νρ

)
Aρ +W−µ

(
W+
µνZνρ − ZµνW+

νρ

)
Aρ
]
, (3.15)

where CP odd stands for analogous terms with λz → λ̃z, and one of the field strength tensor
replaced by the dual one.

Single Higgs couplings

In this subsection we discuss the terms in the effective Lagrangian that involve a single Higgs
boson field h. This part is the most relevant one from the point of view of the LHC Higgs
phenomenology.

We first define the Higgs boson couplings to a pair of fermions:

Lhff = −h
v

∑
f∈u,d,e

∑
ij

√
mfimfj

(
δij + [δyf ]ije

i[φf ]ij
)
f̄R,ifL,j + h.c., (3.16)

where [δyf ]ij and φij are general 3 × 3 matrices with real elements. The corrections to the SM
Yukawa interactions are related to the Wilson coefficients in the SILH basis by

[δyf ]ije
i[φf ]ij = −[c̄f ]ij − δij

1

2

[
c̄H + [c̄′H`]22

]
. (3.17)
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Next, we define the following single Higgs boson couplings to a pair of the SM gauge fields:

Lhvv =
h

v

[
(1 + δcw)

g2v2

2
W+
µ W

−
µ + (1 + δcz)

(g2 + g′2)v2

4
ZµZµ

+cww
g2

2
W+
µνW

−
µν + c̃ww

g2

2
W+
µνW̃

−
µν + cw2g

2
(
W−µ ∂νW

+
µν + h.c.

)
+cgg

g2
s

4
GaµνG

a
µν + cγγ

e2

4
AµνAµν + czγ

e
√
g2 + g′2

2
ZµνAµν + czz

g2 + g′2

4
ZµνZµν

+cz2g
2Zµ∂νZµν + cγ2gg

′Zµ∂νAµν

+c̃gg
g2
s

4
GaµνG̃

a
µν + c̃γγ

e2

4
AµνÃµν + c̃zγ

e
√
g2 + g′2

2
ZµνÃµν + c̃zz

g2 + g′2

4
ZµνZ̃µν

]
,

(3.18)

where all the couplings above are real. The terms in the first two lines describe corrections to the
SM Higgs couplings to W and Z, while the remaining terms introduce Higgs couplings to gauge
bosons with a tensor structure that is absent in the SM Lagrangian. Note that, using equations of
motion, we could get rid of certain 2-derivative interactions between the Higgs and gauge bosons:
hZµ∂νZνµ, hZµ∂νAνµ, and hW±µ ∂νW

∓
νµ. These interactions would then be traded for contact

interactions of the Higgs, gauge bosons and fermions in Eq. (3.7). However, one of the defining
features of our effective Lagrangian is that the coefficients of the latter couplings are equal to
the corresponding vertex correction in Eq. (3.7). This form can be always obtained, without any
loss of generality, starting from an arbitrary dimension-6 Lagrangian provided the 2-derivative
hVµ∂νVνµ are kept in the Lagrangian. Note that we work in the limit where the neutrinos are
massless and the Higgs boson does not couple to the neutrinos. In the EFT context, the couplings
to neutrinos induced by dimension-5 operators are proportional to neutrino masses, therefore they
are far too small to have any relevance for LHC phenomenology.

The shifts of the Higgs couplings to W and Z bosons are related to the Wilson coefficients in
the SILH basis by

δcw = −1

2
c̄H −

1

g2 − g′2

[
4g′2(c̄W + c̄B + c̄2B + c2W )− 2g2c̄T +

3g2 + g′2

2
[c̄′H`]22

]
,

δcz = −1

2
c̄H −

3

2
[c̄′H`]22. (3.19)

The two-derivative Higgs couplings to gauge bosons are related to the Wilson coefficients in the
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SILH basis by

cgg =
16

g2
c̄g,

cγγ =
16

g2
c̄γ ,

czz = − 4

g2 + g′2

[
c̄HW +

g′2

g2
c̄HB − 4

g′2

g2
s2
θ c̄γ

]
,

cz2 =
2

g2

[
c̄W + c̄HW + c̄2W +

g′2

g2
(c̄B + c̄HB + c̄2B)− 1

2
c̄T +

1

2
[c̄′H`]22

]
,

czγ =
2

g2

(
c̄HB − c̄HW − 8s2

θ c̄γ
)
,

cγ2 =
2

g2
(c̄HW − c̄HB) +

4

g2 − g′2

[
c̄W + c̄2W +

g′2

g2
(c̄B + c̄2B)− 1

2
c̄T +

1

2
[c̄′H`]22

]
,

cww = − 4

g2
c̄HW ,

cw2 =
2c̄HW
g2

+
2

g2 − g′2

[
c̄W + c̄2W +

g′2

g2
(c̄B + c̄2B)− 1

2
c̄T +

1

2
[c̄′H`]22

]
, (3.20)

c̃gg =
16

g2
c̃g,

c̃γγ =
16

g2
c̃γ ,

c̃zz = − 4

g2 + g′2

[
c̃HW +

g′2

g2
c̃HB − 4

g′2

g2
s2
θ c̃γ

]
,

c̃zγ =
2

g2

(
c̃HB − c̃HW − 8s2

θ c̃γ
)
,

c̃ww = − 4

g2
c̃HW . (3.21)

Next, couplings of the Higgs boson to a gauge field and two fermions (which are not present
in the SM Lagrangian) can be generated by dimension-6 operators. The vertex-like contact
interactions between the Higgs, electroweak gauge bosons, and fermions are parametrized as:

Lhvff =
√

2g
h

v
W+
µ

(
ūLγµδg

hWq
L dL + ūRγµδg

hWq
R dR + ν̄Lγµδg

hW`
L eL

)
+ h.c.

+ 2
h

v

√
g2 + g′2Zµ

 ∑
f=u,d,e,ν

f̄Lγµδg
hZf
L fL +

∑
f=u,d,e

f̄Rγµδg
hZf
R fR

 . (3.22)

By construction (condition #6), the coefficients of these interaction are equal to the corresponding
vertex correction in Eq. (3.7):

δghZf = δgZf , δghWf = δgWf . (3.23)
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The dipole-type contact interactions of the Higgs boson are parametrized as:

Lhdvff = − h

4v2

gs ∑
f∈u,d

√
mfimfj

v
f̄L,iσµνT

a[dhGf ]ijfR,jG
a
µν + e

∑
f∈u,d,e

√
mfimfj

v
f̄L,iσµν [dhAf ]ijfR,jAµν

+
√
g2 + g′2

∑
f∈u,d,e

√
mfimfj

v
f̄L,iσµν [dhZf ]ijfR,jZµν

+
√

2g

√
muimuj

v
d̄L,iσµν [dhWu]ijuR,jW

−
µν +

√
2g

√
mdimdj

v
ūL,iσµν [dhWd]ijdR,jW

+
µν

+
√

2g

√
meimej

v
ν̄L,iσµν [dhWe]ijeR,jW

+
µν

]
+ h.c.,

(3.24)

where dhGf , dhAf , dhZf , and dhWf are general complex 3×3 matrices. The coefficients are simply
related to the corresponding dipole interactions in Eq. (3.10):

dhV f = dV f . (3.25)

Finally, the CP-conserving single Higgs couplings to 3 gauge bosons take the form

Lhvvv = eg2h

v

{
icwwW

+
νµW

−
µ Aν + 2icw2∂νW

+
µ W

−
µ Aν − icw2∂µW+

ν W
−
µ Aν

−icw2∂µW+
µ W

−
ν Aν + h.c.

}
− ieg2h

v
AµνW

+
µ W

−
ν

(
3cw2 + czγ + s2

θcγγ
)

+
√
g2 + g′2g2h

v

{
icwwc

2
θW

+
νµW

−
µ Zν + icw2

(
1 + 2c2

θ

)
∂νW

+
µ W

−
µ Zν

−icw2
(
2 + c2

θ

)
∂µW

+
ν W

−
µ Zν + icw2s

2
θ∂µW

+
µ W

−
ν Zν + h.c.

}
− i

√
g2 + g′2g2h

v
ZµνW

+
µ W

−
ν

(
3cw2c

2
θ + cww − s2

θczγ − s4
θcγγ

)
. (3.26)

There are also analogous CP-violating couplings which can be obtained from Eq. (3.26) by setting
cw2 = 0 and, in the remaining terms, replacing ci → c̃i, Vµν → Ṽµν .

Higgs boson self-couplings and double Higgs couplings

The cubic Higgs boson self-coupling and couplings of two Higgs boson fields to matter play a role
in the EFT description of double Higgs production [32, 33]. Self-interactions of the Higgs boson
are parametrized as

Lh,self = − (λ+ δλ3) vh3 − 1

4
(λ+ δλ4)h4 − δλ5

v
h5 − δλ6

v2
h6. (3.27)
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The relation between the Higgs self-coupling corrections and the Wilson coefficients in the SILH
basis is given by

δλ3 = λ

(
c̄6 −

3

2
c̄H −

1

2
[c̄′H`]22

)
,

δλ4 = λ

(
6c̄6 −

25

3
c̄H − [c̄′H`]22

)
,

δλ5 = λ

(
3

4
c̄6 − c̄H

)
,

δλ6 = λ

(
1

8
c̄6 −

1

6
c̄H

)
. (3.28)

In accordance with the condition #4, the 2-derivative Higgs boson self-couplings have been traded
for other equivalent interactions and do not occur in the mass eigenstate Lagrangian.

The interactions between two Higgs bosons and two other SM fields are parametrized as
follows:

Lh2 = h2
(

1 + 2δc(2)
z

) g2 + g′2

4
ZµZµ + h2

(
1 + 2δc(2)

w

) g2

2
W+
µ W

−
µ −

h2

2v2

∑
f ;ij

√
mfimfj

[
f̄i,R[y

(2)
f ]ijfj,L + h.c.

]
+

h2

8v2

(
c(2)
gg g

2
sG

a
µνG

a
µν + 2c(2)

wwg
2W+

µνW
−
µν + c(2)

zz (g2 + g′2)ZµνZµν + 2c(2)
zγ gg

′ZµνAµν + c(2)
γγ e

2AµνAµν

)
+

h2

8v2

(
c̃(2)
gg g

2
sG

a
µνG̃

a
µν + 2c̃(2)

wwg
2W+

µνW̃
−
µν + c̃(2)

zz (g2 + g′2)ZµνZ̃µν + 2c̃(2)
zγ gg

′ZµνÃµν + c̃(2)
γγ e

2AµνÃµν

)
− h2

2v2

(
g2c

(2)
w2(W+

µ ∂νW
−
νµ +W−µ ∂νW

+
νµ) + g2c

(2)
z2Zµ∂νZνµ + gg′c

(2)
γ2Zµ∂νAνµ

)
. (3.29)

All double Higgs couplings arising from D=6 operators can be expressed by the single Higgs
couplings:

δc(2)
z = δcz, δc(2)

w = δcz + 3δm,

[y
(2)
f ]ij = 3[δyf ]ije

iφij − δcz δij ,

c(2)
vv = cvv, c̃(2)

vv = c̃vv, v ∈ {g, w, z, γ},
c

(2)
v2 = cv2, v ∈ {w, z, γ}. (3.30)

Other interaction terms with two Higgs bosons involve at least 5 fields: e.g the h2V 3 or h2ffV
contact interactions, and are not displayed here.

Other terms

In this section we have written down the interaction terms of mass eigenstates in the dimension-6
EFT Lagrangian which are most relevant for LHC Higgs phenomenology. They either enter the
single and double Higgs production at tree level, or they affect electroweak precision observables
that are complementary to Higgs couplings measurements. The remaining terms in the mass
eigenstate Lagrangian, which are not explicitly displayed in this chapter, are contained in Lother

in Eq. (3.3). They include 4-fermion terms, dipole-like interactions of two gauge bosons and two
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fermions, and interaction terms with 5 or more fields. For a future reference, we only comment on
two 4-lepton terms involving left-handed electrons and muons and the corresponding neutrinos:

L4` ⊃
1

v2

[
[c``]1122(¯̀

1γµ`1)(¯̀
2γµ`2) + [c``]1221(¯̀

1γµ`2)(¯̀
2γµ`1)

]
. (3.31)

The coefficients of these 4-lepton terms are related to the Wilson coefficients in the SILH basis
by

[c``]1122 =
2g′2

g2
c̄2B − 2c̄2W ,

[c``]1221 = 4c̄2W . (3.32)

Note that the corresponding 4-fermion operators are absent in the SILH basis. However, in the
mass eigenstate Lagrangian, these operators do appear, once the SILH operators O2W and O2B

are traded for other interactions terms by using equations of motion. By the same token, the 4-top
term [Ouu]3333 does appear in the mass eigenstate Lagrangian, with the coefficient proportional
to c̄2G.

4 Higgs basis

In the previous section we related the Wilson coefficients in the SILH bases of D=6 operators
to the couplings of mass eigenstates in the Lagrangian. With this information at hand, one can
proceed to calculating observables at a given order in the EFT as a function of the Wilson coeffi-
cients. The information provided above is enough to calculate the leading order EFT corrections
to SM predictions for single and double Higgs production and decays in all phenomenologically
relevant channels.

There is no theoretical obstacle to present the results of LHC Higgs analyses as constraints
on the Wilson coefficients in the SILH, Warsaw, or any other basis. However, this procedure may
not be the most efficient one from the experimental point of view. The reason is that the relation
between the Wilson coefficients in the SILH basis and the relevant couplings of the Higgs boson
in the mass eigenstate Lagrangian is somewhat complicated, c.f. Eqs (3.8), (3.17), (3.19), (3.20).
The situation is similar for the Warsaw basis, see Appendix A. In this section we propose another,
equivalent parametrization of the EFT with D=6 operators. The idea, put forward in Ref. [34],
is to parametrize the space of D=6 operators using a subset of couplings in a mass eigenstate
Lagrangian, such as the one defined in Eq. (3.3) of Section. 3. The parametrization described in
this section, which differs slightly from that in Ref. [34], is referred to as the Higgs basis.6

The salient features of the Higgs basis are the following. The goal is to parametrize the
space of D=6 operators in a way that can be more directly connected to observable quantities
in Higgs physics. The variables spanning the Higgs basis correspond to a subset of the couplings
parametrizing interaction terms in the mass eigenstate Lagrangian in Eq. (3.3). Since these
couplings have been expressed as linear combinations of the SILH basis Wilson coefficients, tech-
nically the Higgs basis is defined as a linear transformation from the SILH basis. All couplings

6 Here, the Higgs basis is introduced in a different manner than how the SILH or Warsaw basis were defined in
the literature. Rather than by choosing a set SU(3) × SU(2) × U(1) invariant D=6 operators, we introduce the
Higgs basis as a parametrization of the space of all possible deformations of the SM mass eigenstate Lagrangian
that can arise in the presence of D=6 operators. However, both ways can be shown to be equivalent, which justifies
using the term basis for our construction. In particular, it is possible to define the Higgs basis as a complete
non-redundant set of SU(3)× SU(2)× U(1) invariant D=6 operators, see Section 4.3.

16



in the subset have to be independent, in the sense that none can be expressed by the remaining
ones at the level of a general D = 6 EFT Lagrangian. It is also a maximal such subset, which
implies that their number is the same as the number of independent operators in the Warsaw or
SILH basis. We will refer to this set as the independent couplings. They parametrize all possible
deformations of the SM Lagrangian in the presence of D=6 operators. Therefore, they can be
used on par with any other basis to describe the effects of dimension-6 operators on any physical
observables (also those unrelated to Higgs physics). By definition of the Higgs basis, the indepen-
dent couplings will include single Higgs boson couplings to gauge bosons and fermions. Thanks
to that, the parameters of the Higgs basis can be connected in a more intuitive way to LHC Higgs
observables calculated at leading order in the EFT. Furthermore, the vertex corrections to the Z
boson interactions with fermions are chosen to be among the independent couplings. As a con-
sequence, combining experimental information from Higgs and electroweak precision observables
is more transparent in the Higgs basis.

4.1 Independent couplings

We now describe the choice of independent couplings which defines the Higgs basis.
The first group of independent couplings parametrizes the interactions of the Higgs boson

with itself and with the SM gauge bosons and fermions:

cgg, δcz, cγγ , czγ , czz, cz2, c̃gg, c̃γγ , c̃zγ , c̃zz, δλ3,

[δyu]ij , [δyd]ij , [δye]ij , [φu]ij , [φd]ij , [φe]ij . (4.1)

The parameters in the first line are defined by Eq. (3.18) and Eq. (3.29), and in the second line
by Eq. (3.16). Overall, there is 65 independent parameters in Eq. (4.1), and they all affect Higgs
boson production and/or decay at the leading order in the EFT expansion. Therefore they are
of crucial importance for LHC Higgs phenomenology. Moreover, at the leading order, they are
not constrained at all by LEP-1 electroweak precision tests or low-energy precision observables.

The second group of independent couplings parametrizes the W boson mass and the Z and
W boson couplings to fermions:

δm, [δgZeL ]ij , [δgZeR ]ij , [δgW`
L ]ij , [δgZuL ]ij , [δgZuR ]ij , [δgZdL ]ij , [δgZdR ]ij , [δgWq

R ]ij ,

[dGu]ij , [dGd]ij , [dAe]ij , [dAu]ij , [dAd]ij , [dZe]ij , [dZu]ij , [dZd]ij .

(4.2)

Here the mass correction δm is defined in Eq. (3.4), the vertex corrections δgi are defined in
Eq. (3.7), and the dipole moments di are defined in Eq. (3.10). All these parameters also affect
the Higgs boson production and/or decay at the leading order in the EFT. However, as opposed
to the ones in Eq. (4.1), they affect at the same order electroweak and/or low-energy precision
observables.

The third group of independent couplings parametrizes the self-couplings of gauge bosons:

λz, λ̃z, c3G, c̃3G. (4.3)

They are defined in Eq. (3.12). These couplings do not affect Higgs production and decay at the
leading order in EFT.

To complete the definition of the Higgs basis, one has to select the independent couplings
corresponding to 4-fermion operators. We choose to parametrize them by the same set of Wilson
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coefficients as in the SILH basis, c.f. Table 3:

c``, cqq, c
′
qq, c`q, c

′
`q, cquqd, c

′
quqd, c`equ, c

′
`equ, c`edq,

c`e, c`u, c`d, cqe, cqu, c
′
qu, cqd, c

′
qd, cee, cuu, cdd, ceu, ced, cud, c

′
ud. (4.4)

Each parameter cff has 4 flavor indices, which are not displayed here. The non-trivial question of
which combination of flavor indices constitutes an independent set was worked out in Ref. [35]. In
the Higgs basis we take the same choice of independent 4-fermion couplings as in that reference,
with one exception. As explained in the next subsection, in a dimension-6 EFT Lagrangian, the
coupling [c``]1221 multiplying a particular 4-lepton operator can be expressed by δm and δgi.
Therefore [c``]1221 is not among the independent couplings defining the Higgs basis.

4.2 Dependent couplings

In the mass eigenstate Lagrangian in Eq. (3.3), all deviations from the SM Lagrangian originate
from D=6 operators. However, the number of interaction terms characterizing these deviations
is larger than the number of Wilson coefficients multiplying the D=6 operators in Eq. (2.1).
Therefore, there must be relations among the couplings in the mass eigenstate Lagrangians.
Working in the Higgs basis, some of these couplings can be expressed by the independent couplings
defining the Higgs basis; we call them the dependent couplings. The relations between dependent
and independent couplings can be inferred from the matching between the effective Lagrangian
and the SILH basis in Section. 3. These relations hold at the level of the dimension-6 Lagrangian,
and they are in general not respected in the presence of dimension-8 and higher operators.

We start with the dependent couplings in Eq. (3.18) parametrizing the single Higgs boson
interactions with gauge bosons. They can be expressed in terms of the independent couplings as7

δcw = δcz + 4δm,

cww = czz + 2s2
θczγ + s4

θcγγ ,

c̃ww = c̃zz + 2s2
θ c̃zγ + s4

θ c̃γγ ,

cw2 =
1

g2 − g′2
[
g2cz2 + g′2czz − e2s2

θcγγ − (g2 − g′2)s2
θczγ

]
,

cγ2 =
1

g2 − g′2
[
2g2cz2 + (g2 + g′2)czz − e2cγγ − (g2 − g′2)czγ

]
. (4.5)

The coefficients of W-boson dipole interactions in Eq. (3.10) are related to those of the Z and
the photon as

ηfdWf = dZf + s2
θdAf , (4.6)

where ηu = 1 and ηd,e = −1. The coefficients of the dipole-like Higgs couplings in Eq. (3.24) are
simply related to the corresponding dipole moments:

dhV f = dV f , d̃hV f = d̃V f , V ∈ {G,W,Z,A}. (4.7)

The coefficients of quartic and higher self-interaction terms of the Higgs bosons in Eq. (3.27)

7The relation between cww, c̃ww and other parameters can also be viewed as a consequence of the accidental
custodial symmetry at the level of the dimension-6 operators [23].
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are dependent couplings. They can be expressed by the Higgs basis parameters as

δλ4 = 6δλ3 −
4λ

3
δcz,

δλ5 =
3

4
δλ3 −

λ

4
δcz,

δλ6 =
1

8
δλ3 −

λ

24
δcz. (4.8)

The coefficients of all interaction terms with two Higgs bosons in Eq. (3.29) are dependent
couplings. They can be expressed in terms of other Lagrangian parameters as:

δc(2)
z = δcz, δc(2)

w = δcz + 3δm,

[y
(2)
f ]ij = 3[δyf ]ije

iφij − δcz δij ,

c(2)
vv = cvv, c̃(2)

vv = c̃vv, v ∈ {g, w, z, γ},
c

(2)
v2 = cv2, v ∈ {w, z, γ}. (4.9)

The dependent vertex corrections are expressed in terms of the independent couplings as

δgZνL = δgZeL + δgW`
L , δgWq

L = δgZuL VCKM − VCKMδg
Zd
L . (4.10)

All but four triple gauge couplings in Eq. (3.12) are dependent couplings expressed in terms of
the Higgs basis parameters as

δg1,z =
1

2(g2 − g′2)

[
cγγe

2g′2 + czγ(g2 − g′2)g′2 − czz(g2 + g′2)g′2 − cz2(g2 + g′2)g2
]
,

δκγ = −g
2

2

(
cγγ

e2

g2 + g′2
+ czγ

g2 − g′2

g2 + g′2
− czz

)
,

κ̃γ = −g
2

2

(
c̃γγ

e2

g2 + g′2
+ c̃zγ

g2 − g′2

g2 + g′2
− c̃zz

)
,

δκz = δg1,z − t2θδκγ , κ̃z = −t2θκ̃γ ,
λγ = λz, λ̃γ = λ̃z. (4.11)

Finally, we discuss how the Wilson coefficient [c``]1221 is expressed by the independent cou-
plings. One defining feature of the mass eigenstate Lagrangian Eq. (3.3) is that the tree-level
relations between the SM electroweak parameters and input observables are not affected by D=6
operators (condition # 3). On the other hand, one of the four-fermion couplings in the La-
grangian,

LD=6
4f ⊃ [c``]1221(¯̀

1,Lγρ`2,L)(¯̀
2,Lγρ`1,L), (4.12)

does affect the relation between the parameter v and the muon decay width from which v =
(
√

2GF )−2 is determined:

Γ(µ→ eνν)

Γ(µ→ eνν)SM
≈ 1 + 2[δgWe

L ]11 + 2[δgWe
L ]22 − 4δm− [c``]1221. (4.13)

Therefore, the muon decay width is unchanged with respect to the SM when [c``]1221 is related
to δm and δg as

[c``]1221 = 2δ[gWe
L ]11 + 2[δgWe

L ]22 − 4δm. (4.14)
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This relation can be verified using the expressions of these parameters in terms of the SILH Wilson
coefficients in Eqs. (3.5), (3.8), and (3.32). In other words, due to the fact that we selected δm
and δg as independent couplings in the Higgs basis, [c``]1221 has to be a dependent coupling. Of
course, one could equivalently choose [c``]1221 to define a basis, and remove e.g. δm from the
list of independent couplings. The remaining 4-fermion parameters in Eq. (4.4) are independent
couplings.

4.3 Gauge invariant definition

In summary, in the Higgs basis the parameters spanning the space of D=6 EFT operators are
the independent couplings in Eqs. (4.1), (4.2), (4.3), and (4.4). In the EFT expansion, the
independent couplings are formally of order O(Λ−2). These parameters are directly linked to
deviations from the SM interactions in the mass eigenstate Lagrangian in Eq. (3.3). All other
deviations in the mass eigenstate Lagrangian can be expressed by the independent couplings.

In this note, the Higgs basis was introduced by choosing a subset of independent couplings in
the mass eigenstate Lagrangian defined in Section 3. The latter is not manifestly invariant under
the full gauge symmetry of the SM, as the electroweak symmetry SU(2)×U(1) is broken to U(1)em

at the mass eigenstate level. Nevertheless, one can provide an equivalent and manifestly gauge
invariant definition of the Higgs basis. To this end, one can introduce the SU(3)×SU(2)×U(1)
invariant D=6 operators as follows:

Oδλ3 = − 1

v2
(H†H)3,

Ocgg =
g2
s

4v2
H†H GaµνG

a
µν

Oδcz = − 1

v2

[
∂µ(H†H)

]2
+

3λ

v2
(H†H)3 +

∑
f

√
2mfi

v3
H†Hf̄L,iHfR,i + h.c.

 ,

Ocz2 =
ig3

v2(g2 − g′2)

(
H†σi

←→
DµH

)
DνW

i
µν −

ig2g′

v2(g2 − g′2)

(
H†
←→
DµH

)
∂νBµν ,

Oczz =
ig(g2 + g′2)

2v2(g2 − g′2)

(
H†σi

←→
DµH

)
DνW

i
µν −

ig′(g2 + g′2)

2v2(g2 − g′2)

(
H†
←→
DµH

)
∂νBµν

− ig

v2

(
DµH

†σiDνH
)
W i
µν −

ig′

v2

(
DµH

†DνH
)
Bµν ,

Oczγ = − 2igg′2

v2(g2 + g′2)

(
DµH

†σiDνH
)
W i
µν +

2ig′g2

v2(g2 + g′2)

(
DµH

†DνH
)
Bµν ,

Ocγγ = − igg′4

2v2(g4 − g′4)

(
H†σi

←→
DµH

)
DνW

i
µν +

ig′5

2v2(g4 − g′4)

(
H†
←→
DµH

)
∂νBµν

− igg′4

v2(g2 + g′2)2

(
DµH

†σiDνH
)
W i
µν +

ig′3(2g2 + g′2)

(g2 + g′2)2v2

(
DµH

†DνH
)
Bµν +

g′2

4v2
H†H BµνBµν ,

[Oδyf ]ij = −
√

2mfimfj

v3
H†Hf̄L,iHfR,j + h.c.,

. . . (4.15)

The coefficients of the operators on the right-hand side in Eq. (4.15) are determined by the linear
map relating the SILH Wilson coefficients to those in the Higgs basis, which can be obtained by
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inverting the relations between the Higgs and SILH coefficients derived earlier in this note. By
following this algorithm, a complete and non-redundant set of D=6 operators Oci defining the
Higgs basis can be constructed. Then the Higgs basis Lagrangian can be defined in a manifestly
gauge invariant way as LEFT = LSM +

∑
i ciOci .

4.4 Simplified scenarios

In total, the Higgs basis, as any complete basis at the dimension-6 level, is parametrized by 2499
independent real couplings [35]. One should not, however, be intimidated by this number. The
point is that a much smaller subset of the independent couplings is relevant for analyses of Higgs
data at leading order in EFT. First of all, the coefficients of 4-fermion interactions in Eq. (4.4) and
triple gauge interactions in Eq. (4.3) do not enter Higgs observables at the leading order. At that
order, the parameters relevant for LHC Higgs analyses are those in Eqs. (4.1) and (4.2), which
already reduces the number of variables significantly. Furthermore, there are several motivated
assumptions about the UV theory underlying the EFT which could be used to further reduce the
number of parameters:

• Minimal flavor violation, in which case the matrices δyf , φf , dV f , and δgV f , reduce to a
single number for each f .

• CP conservation, in which case all CP-odd couplings vanish: c̃i = φf = Imdf = 0.

• Custodial symmetry, in which case δm = 0.8

We stress that independent couplings should not be arbitrarily set to zero without an underlying
symmetry assumption. Furthermore, the relations between the dependent and independent cou-
plings in the mass eigenstate Lagrangian should be consistently imposed, so as to preserve the
structure of the dimension-6 EFT Lagrangian.

Finally, to reduce the number of free parameters in an analysis, one may take advantage of
the fact that, in addition to Higgs observables, other measurements are sensitive to the param-
eters in Eq. (4.2). In particular, the parameters in the first line of Eq. (4.2) are constrained by
electroweak precision tests in LEP-1. These are among the most stringent constraints on EFT
parameters, and they have an important impact on possible signals in Higgs searches. Assuming
minimal flavor violation, all the vertex corrections in Eq. (4.2) are constrained to be smaller than
O(10−3) (for the leptonic vertex corrections and δm), or O(10−2) (for the quark vertex correc-
tions) [26, 28, 36].9 Even when the assumption of minimal flavor violation is not imposed, all the
leptonic, bottom and charm quark vertex corrections are still constrained at the level of O(10−2)
or better [38]. Similarly, many parameters in the second line of Eq. (4.2) are strongly constrained
by measurements of the magnetic and electric dipole moments. In the LHC environment, exper-
imental sensitivity is often not sufficient to probe these parameters with a comparable accuracy.
If that is indeed the case, it is well-motivated to neglect the parameters in Eq. (4.2) in LHC Higgs
analyses.

8Custodial symmetry implies several relations between Higgs couplings to gauge bosons: δcw = δcz, cw2 =
c2θcz2 + s2θcγ2, cww = czz + 2s2θczγ + s4θcγ , and c̃ww = c̃zz + 2s2θ c̃zγ + s4θ c̃γ . The last three are satisfied automatically
at the level of dimension-6 Lagrangian, while the first one is true for δm = 0, see Eq. (4.5).

9These constraints may be relaxed if the leading-order dimension-6 EFT does not provide an adequate description
of electroweak precision observables [37]. If that is the case, the vertex-like and dipole-like Higgs boson couplings
in Eqs. (3.22) and (3.24) could in principle be sizable enough to be relevant for the LHC searches without conflict
with electroweak precision constraints. However, it is not clear whether there exist explicit BSM models where this
concern is relevant.
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Once the parameters in Eq. (4.2) are neglected, this leaves the parameters collected in Eq. (4.1)
to describe leading order deformations of Higgs observables. This set consists of 11 bosonic and
2× 3× 3× 3 = 54 fermionic couplings. While that number is still large, it represents a significant
simplification compared to the 2499 Wilson coefficients parametrizing a complete D=6 basis.
Further simplifications can be introduced by making more specific assumptions about the high-
energy theory that generates D=6 operators in the EFT. For example, if the high-energy theory
respects the minimal flavor violation paradigm, the flavor structure of the fermionic parameters
in Eq. (4.1) is proportional to the unit matrix: [δyf ]ij = δijδyf and [φf ]ij = δijφf . This reduces
down to 17 (11 bosonic and 6 fermionic) the number of parameters relevant for LHC Higgs
observables. In the Higgs basis, these parameters are:

CP-even : cgg, δcz, cγγ , czγ , czz, cz2, δyu, δyd, δye, δλ3;

CP-odd : c̃gg, c̃γγ , c̃zγ , c̃zz, φu, φd, φe. (4.16)

Assuming in addition CP conservation10 in the Higgs sector leaves only 10 CP-even parameters
to describe leading order EFT corrections to single and double Higgs production and decay.

Providing model-independent constraints on the 17 parameters in Eq. (4.16, or at least the
10 CP-even ones, is a realistic target for run-2 LHC Higgs searches. The CP-even parameters are
weakly constrained by prior precision experiments, with O(0.1)- O(1) values allowed by current
global fits to Higgs and electroweak data [29]. The CP-odd parameters are even less constrained
by Higgs and electroweak data, though they are indirectly constrained by low-energy probes of
CP violation [39, 40, 41, 42]. Better constraints on this reduced sets of EFT parameters from the
ensemble of LHC Higgs measurements would already be a valuable input for constraining a large
class of theories beyond the SM.

4.5 Relation to other frameworks

The Higgs basis can be used in par with any other basis to describe the effects of dimension-6
operators on physical observables. Other popular SM EFT approaches in the literature use the so-
called SILH [23], Warsaw [16], or HISZ [31] bases of D=6 operators. At the leading order in EFT
all these approaches are completely equivalent, as there exists a 1-to-1 correspondence between
the parameter of the Higgs basis and Wilson coefficients of any other D=6 basis. Therefore,
the results of leading order EFT analyses can be always translated from and to the Higgs basis
without any loss of generality (see e.g. [29] for the translation of the LHC Higgs and TGC
constraints). Formulas necessary for translations between various bases are provided in this note:
see Section 3 for the Higgs-SILH basis translation, and Appendix A for the Higgs-Warsaw basis
translation. A map between the Higgs basis parameters in Eq. (4.16 and the HISZ basis can
be found in Appendix B.2. These maps are used by the Rosetta package [43], which provides
automated translation between different bases and an interface to Monte Carlo simulations in the
MadGraph 5 framework [44].

Using the Higgs basis for leading order Higgs EFT analysis is then simply a matter of conve-
nience. Its usefulness is in the fact that description of Higgs observables and electroweak precision
observables at the leading EFT order (tree-level O(Λ−2)) is more transparent than in other bases.

10The CP-odd parameters affect inclusive Higgs observables only at the quadratic level, (O(Λ−4) in the EFT
expansion). Therefore they can be neglected in the leading order approximation, even without assuming CP
conservation, if one restricts the analysis to inclusive measurements, such as the Higgs signal strength measurements
at the LHC.
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This also implies simplification of Monte Carlo simulation of collider signals, as relevant Higgs
observables typically depend on a smaller number of parameters than in other bases. The ad-
vantages of the Higgs basis are especially pronounced when simplified approaches to LHC Higgs
data are employed. The main point of the Higgs basis is to separate parameters affecting only
Higgs observables at leading order from those that also affect electroweak precision observables.
If the latter are neglected in an analysis, a small subset of Higgs basis parameters in Eq. (4.16)
is adequate to describe all leading order effects of D=6 operators on Higgs observables.

Beyond tree level, advantages of using the Higgs basis are yet to be demonstrated. Indeed,
one-loop corrections will introduce a dependence of the Higgs observables on a larger number of
parameters, and the neat separation of parameters affecting precision observables is not main-
tained. As of this time, no one-loop EFT calculations using the Higgs basis formalism exists in
the literature; the existing ones are typically performed in the SILH [45, 46, 47, 48, 49, 50] or
Warsaw [51, 52, 53, 35, 54, 55, 56] basis.

We will now comment on the relationship between the Higgs basis and other frameworks
that also do not introduce new particles beyond the SM but are not equivalent to an EFT. The
Higgs basis (and dimension-6 EFT in general) is an extension of the κ-formalism [57]. That
formalism, widely used in LHC Run1 analyses, assumes that only the Higgs couplings already
present in the SM receive corrections from new physics. This way, the kinematics of the Higgs
production and decay in various channels is unchanged with respect to the SM, and only the signal
strength is affected. Moreover, the standard approach allows for new effective Higgs coupling to
gluons and photons, as they lead to subleading modifications of the Higgs kinematics when one
restrict experimental analyses to inclusive signal strength observables. Recent applications of
the κ-formalism include global fits to the Higgs data with 7 independent coupling modifiers [58].
This is still less general than the dimension-6 EFT, even in its restricted form with the free
parameters Eq. (4.16). In particular, the D=6 operators may induce Higgs couplings with a
different Lorentz structure than that present in the SM (see e.g. Eq. (3.18)) and thus they my
violate the assumptions of the κ-formalism by modifying the Higgs kinematics. Therefore, the
results obtained within the κ-formalism cannot be in general translated into the EFT language,
whereas the translation is always possible in the opposite direction.11

Pseudo-observables, introduced in Refs. [59, 60] and Section III.1 of [1], offer a more general
approach than the SM EFT with D=6 operators discussed. Pseudo-observables are defined as
form factors parametrizing amplitudes of physical processes subject to constraints from Lorentz
invariance. These form factors are expanded in powers of kinematical invariants of the process
around the known poles of SM particles, assuming poles from BSM particles are absent in the
relevant energy regime. Such a framework involves a larger number of parameters, as it does not
impose relations between different form factors or between amplitudes of different processes that
are predicted by dimension-6 EFT. Constraints on pseudo-observables can always be projected
into constraints on the Higgs basis parameters, provided the complete likelihood function (with
correlations) is given; see Ref. [59] for a map between observables relevant for h→ 4f decays and
EFT parameters. The converse is in general not true: constraints on the Higgs basis parameters
cannot always be translated into constraints on pseudo-observables.

In Section 3 we introduced the effective Lagrangian that arise when dimension-6 EFT is

11Note however that, in the dimension-6 EFT, modifications of the relative Higgs coupling strength to WµWµ

and ZµZµ are always correlated with corrections to the W-boson mass, see Eq. (4.5), which is not taken into
account in the κ-formalism. Strictly speaking, one can thus project general dim-6 EFT results onto a subset of 6
κ parameters of Ref. [58]: κgZ , λZg, λtg, λγZ , λτZ , λbZ , with λWZ set to zero. In the LO EFT, these 6 κ’s are in
the 1-to-1 correspondence with a subset of 6 parameters in Eq. (4.16): cgg, δcz, cγγ , δyu, δyd, δye.
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rewritten in terms of mass eigenstates after electroweak symmetry breaking. The crucial feature
of this Lagrangian is that various interaction terms are not independent but are instead related
by the formulas summarized in Section 4.2. These relations are required by the SM gauge sym-
metry realized linearly at the level of operators with D ≤ 6. However, one could consider the
same Lagrangian without imposing the correlations listed in Section 4.2, and treating instead all
parameters as independent. Such a construction is referred to as the Beyond-the-Standard
Model Characterization (BSMC). The BSMC Lagrangian is more general than dimension-6
EFT, and involves more parameters. At leading order, it can be used to parametrize new physics
effects on Higgs and other observables in a manner akin to pseudo-observables. Once the likeli-
hood function for the parameters of the BSMC Lagrangian is provided by experiment, it can be
projected into constraints on the Higgs basis parameters by imposing the relations of Section 4.2.
At the same time, the BSMC likelihood can be used to constrain some more general theories that
do not reduce to a SM EFT at low energies. The BSMC Lagrangian is a part of the Rosetta
package [43].

Another well-known framework to describe Higgs observables is the so-called Higgs Charac-
terization (HC) [24]. In the HC Lagrangian, one describes the effective Higgs couplings to the
SM gauge bosons and fermions using 20 new parameters. The HC framework is distinct from the
SM EFT. On the one hand, the relations between various 2-derivative Higgs couplings to gauge
bosons required by dimension-6 EFT are not imposed. In this aspect HC is more general than the
Higgs or other D=6 basis, where these relations follow automatically from the structure of the
EFT Lagrangian. On the other hand, the HC Lagrangian does not include all possible deforma-
tions of the SM Lagrangian predicted in the presence of D=6 operators. For example, corrections
to SM gauge boson couplings to fermions, dipole interactions, or contact Higgs interactions with
one gauge boson and 2 fermions are not implemented. In this aspect, the HC framework is less
general than the SM EFT.

Thus, it is in general not possible to translate the constraints from the HC framework to
the Higgs basis or the other way around. However, it is possible to do so in certain situations
when a simplified EFT description is employed. In particular, one can project constraints on
the HC parameters onto the subset of the Higgs basis parameters in Eq. (4.16, assuming other
parameters in the Higgs basis are not relevant for these constraints. For such a special case, the
relation between the HC parameters and the Higgs basis parameters is given in Appendix B.3.
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A Map from the Warsaw basis

In this appendix we summarize the relations between the independent couplings defining the
Higgs basis and the Wilson coefficients wi in the Warsaw basis. For the latter we use the original
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notation of Ref. [16]. The procedure of relating the Wilson coefficients wi to the couplings in the
mass eigenstate Lagrangian is exactly the same as the one described in Section 3 for the SILH
basis. This way we can obtain the map between wi and the subset of independent couplings
defining the Higgs basis. We find

δm =
v2

Λ2

1

g2 − g′2

[
−gg′wφWB +

g′2

4

(
[w``]1221 − 2[w

(3)
φ` ]11 − 2[w

(3)
φ` ]22

)
− g2

4
wφD

]
, (A.1)

δgW`
L =

v2

Λ2

(
w

(3)
φ` + f(1/2, 0)− f(−1/2,−1)

)
,

δgZeL =
v2

Λ2
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−1

2
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(3)
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1

2
w

(1)
φ` + f(−1/2,−1)

)
,

δgZeR =
v2

Λ2

(
−1

2
wφe + f(0,−1)

)
, (A.2)

δgWq
R =

v2

Λ2

(
−1

2
wφud

)
,
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1

2
w

(3)
φq −

1

2
w
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φq + f(1/2, 2/3)

)
,

δgZdL =
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(
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φq VCKM −

1
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V †CKMw
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,
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(
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)
,
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(
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wφd + f(0,−1/3)

)
, (A.3)

where

f(T 3, Q) = −I3Q
gg′

g2 − g′2
wφWB

+ I3

(
1

4
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1
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(3)
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4
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)(
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g′2

g2 − g′2

)
,

(A.4)

and I3 is the 3× 3 identity matrix.

dGf = − v
2

Λ2
2
√

2
v

√
mfimfj

wfG,

dAf = − v
2

Λ2
2
√

2
v
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mfimfj
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dZf = − v
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2
√

2

g2 + g′2
v

√
mfimfj

(
g2ηfwfW − g′2wfB

)
, (A.5)

where ηu = +1, ηd,e = −1.
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2
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3

2
g wW ,
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2

Λ2

3
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g w̃W , (A.6)
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,
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, (A.7)
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(A.8)
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, (A.11)
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and the relation is trivial, ci = wiv
2/Λ2, for the remaining 4-fermion coefficients (except for

[c``]1221 which does not enter into the definition of the Higgs basis).
This map can be used to translate to the Higgs basis formalism results of any tree level cal-

culations using the Warsaw basis. Translating NLO EFT results between different bases requires
specifying the renormalization scale for the SM couplings appearing in the dictionary. One simple
choice is to use the running couplings; another natural choice is to use couplings defined at the
scale µ = mh.

At this point we have a 1-to-1 map between the Higgs basis and the Warsaw basis, as well as
one between the Higgs basis and the SILH basis derived in Section 3. Using these two, we can
eliminate the Higgs basis coefficients, and derive the map between the Warsaw and SILH basis.
We find the following relations between the Wilson coefficients wi in the Warsaw basis and the
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Wilson coefficients c̄i in the SILH basis:

v2

Λ2
wφ = λ (−c̄6 + 8c̄2W + 8c̄W + 8c̄HW ) ,
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s
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wW = 4gc̄3W , (A.15)
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2mfimfj
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([c̄f ]ij + 2δij (c̄2W + c̄W + c̄HW )) ,

v2

Λ2
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φf ]ij = [c̄′Hf ]ij + δij (2c̄2W + c̄W + c̄HW ) ,
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φf ]ij = [c̄Hf ]ij + 2Yf
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δij (2c̄2B + c̄B + c̄HB) ,
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δij (2c̄2B + c̄B + c̄HB) , (A.16)

v2

Λ2
[w``]iiii = [c̄``]iiii +

g′2

g2
c̄2B + c̄2W ,

v2

Λ2
[w``]iijj = [c̄``]iijj + 2

g′2

g2
c̄2B − 2c̄2W , i < j,

v2

Λ2
[w``]ijji = [c̄``]ijji + 4c̄2W , i < j, (A.17)

where it is implicit that [c̄′Hf ]11 = [c̄Hf ]11 = 0, and [c̄``]1221 = [c̄``]1122 = 0. The same relations
can be obtained by directly transforming the SILH operators to the Warsaw basis using equations
of motion and integration by parts.

B More dictionaries

In this section we quote the linear transformation between the parameters defining the Higgs basis
and the Wilson coefficients in two other bases of dimension-6 operators utilized in the literature.12

12On request, translation to other bases may be added in the future.
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For simplicity, we assume here (unlike in the rest of this note) that the parameters are flavor blind.
Moreover, we give the dictionary only for the subset of the Higgs basis parameters that can give
observable contributions to single Higgs and electroweak diboson processes, given the constraints
from electroweak precision tests. That set consists of 10 CP-even and 8 CP-odd parameters:

cgg, δcz, cγγ , czγ , czz, cz2, δyu, δyd, δye, λz, (B.1)

c̃gg, c̃γγ , c̃zγ , c̃zz, φu, φd, φe, λ̃z. (B.2)

The dictionaries below allow one to translate results of any complete EFT Higgs analyses into
constraints on the Higgs basis parameters (and, by consequence, between any pair of bases), as
long as the full likelihood function in the space of Wilson coefficients is given.

B.1 SILH’ basis

The original SILH basis discussed in the main text includes the operators O2W , O2B and O2G,
which lead to 4-derivative corrections to the kinetic terms of the gauge fields. This may be
inconvenient for some applications. A simple fix is to remove these operators in favor of the
4-fermion operators [O``]1221, [O``]1122, and [O′u]3333. This construction was used in Ref. [26]
and we refer to it as the SILH’ basis. One advantage of this choice is that electroweak precision
constraints take a particularly simple form. Namely, the vanishing of the vertex correction δg and
the W mass correction δm corresponds to setting c̄T = [c̄``]1221 = c̄Hf = c̄′Hf = 0, and c̄B = −c̄W .

The CP even Higgs basis parameters in Eq. (B.1) are related to the Wilson coefficients in the
SILH’ basis by
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16
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4
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]
,

λz = −6g2c̄3W . (B.3)

The CP odd Higgs basis parameters in Eq. (B.2) are related to the Wilson coefficients in the
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SILH’ basis by
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,
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Finally, the corrections to the Yukawa couplings are given by

δyfe
iφf = −[c̄f ]ij − δij

1

2

[
c̄H + [c̄′H`]22 −

1

2
[c̄``]1221

]
, f ∈ {u, d, e}. (B.5)

B.2 HISZ basis

We consider a subset of bosonic operators introduced by Hagiwara et al. (HISZ) in Ref. [31]:

ÔH,2 =
1

2

(
∂µ(H†H)

)2
,

ÔGG = − g2
s

32π2
H†HGaµνG

a
µν ,

ÔWW = H†WµνWµνH,

ÔBB = H†BµνBµνH,

ÔW = DµH
†WµνDνH,

ÔB = DµH
†BµνDνH,

ÔWWW = Tr [WµνWνρWρµ] , (B.6)

O
G̃G

= − g2
s

32π2
H†HGaµνG̃

a
µν ,

Ô
W̃W

= H†WµνW̃µνH,

Ô
B̃B

= H†BµνB̃µνH,

Ô
W̃

= DµH
†W̃µνDνH,

Ô
W̃WW

= Tr
[
WµνWνρW̃ρµ

]
, (B.7)

where the electroweak field strength tensors are related to the one used in this note via:13

Bµν = − i
2
g′Bµν , Ŵµν = − i

2
gσiW i

µν . (B.8)

13The additional minus sign in Eq. (B.8) is due to the fact that the covariant derivatives in Refs. [31] are defined
with the opposite sign to that used here. This amounts to rescaling the gauge fields as Wµ → −Wµ, Bµ → −Bµ
in the translation.
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We also consider the Yukawa operators

Ôu = H†Hq̄LH̃
mu

v
uR, Ôd = H†Hq̄LH

md

v
dR, Ôe = H†H ¯̀

LH
me

v
eR, (B.9)

where mf are 3× 3 diagonal fermion mass matrices. The dimension-6 Lagrangian is given by

LD=6
HISZ =

1

Λ2

∑
i

fiÔi +
∑
j

(
fjÔj + h.c.

)
+ . . .

 , (B.10)

where the first sum goes over the bosonic operators in Eqs. (B.6) and (B.7), the second sum
goes over the fermionic operators in Eq. (B.9), and the dots stands for remaining operators that
complete the dimension-6 basis. The CP-even operators from this set (except ÔWWW ) are used
by SFitter [61] to describe constraints on dimension-6 operators from LHC Higgs data. Ref. [62]
proposes to use the HISZ operators ÔW , ÔB, ÔWWW , Ô

W̃
, and Ô

W̃WW
to describe constraints

on dimension-6 operators from the pair production of electroweak gauge bosons.
The CP even Higgs basis parameters in Eq. (B.1) are related to the Wilson coefficients in the

HISZ basis by
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fWWW , (B.11)

The CP odd Higgs basis parameters in Eq. (B.2) are related to the Wilson coefficients in the
HISZ basis by

c̃gg = − 1
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,

c̃γγ =
(
−f̃WW − f̃BB

) v2

Λ2
,

c̃zγ =

(
1

4
f̃W − c2

θf̃WW + s2
θf̃BB

)
v2

Λ2
,

c̃zz =

(
c2
θ

2
f̃W − c4

θf̃WW − s4
θf̃BB

)
v2

Λ2
. (B.12)

Finally, the corrections to the Yukawa couplings are given by

δyje
iφj =

(
−1

2
fH,2 −

fj√
2

)
v2

Λ2
, j ∈ {u, d, e}. (B.13)
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For completeness, we also give the relation between the anomalous TGCs and the HISZ basis
Wilson coefficients:

δg1z =
g2 + g′2

8
fW

v2
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. (B.14)

Inverting the transformations, the relation between the Wilson coefficients in the HISZ basis
and the Higgs basis parameters reads

fGG
v2

Λ2
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=
√
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√

2δyje
−iφj , j ∈ {u, d, e}, (B.16)
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=

8

3g4
λ̃z. (B.17)

B.3 Higgs Characterization framework

The Higgs Characterization (HC) framework [24] in general cannot be mapped to the Higgs basis
or any other dimension-6 EFT basis. However, it is possible to to related the HC and EFT
parameters in certain situations when a simplified EFT description is employed. In particular,
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the HC parameters can be related to the subset of the Higgs basis parameters in Eq. (4.16),
assuming other parameters in the Higgs basis are set to zero. In such a case, the relation between
the HC parameters (as defined in Section II.3.1 of [1]) and the Higgs basis parameters reads:14

cακHff − 1 = δyf cosφf ,

−sακAff = δyf sinφf ,

cακSM − 1 = δcz,

− 47

72π2
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− 1

3π2
sακAγγ = c̃γγ ,

1
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− v
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g2Λ
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v
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]
,

v
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[
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]
,

−
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θ − 13)

144π2
cακHZγ = czγ ,

−
(8c2
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24π2
sακAZγ = c̃zγ . (B.18)

C Goldstone bosons and gauge fixing

In the main body of this note we worked in the unitary gauge where the Goldstone boson degrees
of freedom in the Higgs doublet are set to zero. This is enough for the sake of tree-level EFT
calculations. However, in order to extend the calculations to a loop level, retrieving the Goldstone
degrees of freedom may be convenient, as it allows one to perform the standard gauge fixing
procedure. The procedure is sketched in this appendix.

We parametrize the Higgs doublet as

H =

(
iG+

1√
2

(v + h− iG3)

)
(C.1)

14Thanks to Rostislav Konoplich for pointing out several mistakes in an earlier version of this equation.
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where G± and G3 are three Goldstone fields, that will be eaten by the W and Z bosons. In the
presence of dimension-6 operators, in general one may need to rescale

G± → G±(1 + δG+), G3 → G3(1 + δG3), (C.2)

in order to bring the Goldstone kinetic terms into a canonically normalized form. Other fields and
couplings are also rescaled to match the conventions specified earlier in this note, see Eq. (3.1).
Once this has been done, the quadratic terms containing Goldstone fields are given by

Lkinetic
G = ∂µG+∂µG−+

1

2
(∂µG3)2− gv

2
(1 + δm)

(
∂µG+W

−
µ + h.c.

)
−
√
g2 + g′2v

2
∂µG3Zµ. (C.3)

As usual, the Goldstones kinetically mix with the electroweak gauge bosons with the mixing
strength proportional to the gauge boson mass.

All Goldstone boson couplings are dependent ones, that is they can be expressed by the
independent couplings defining the Higgs basis. As an illustration, below we display Goldstone
a subset of CP-even interaction terms with up to 4-fields and with one or two electroweak gauge
fields. The relevant part of the Lagrangian can be written as

L ⊃ LS2V
G + LSV2

G + LSdV2

G + LS2V2

G + LS2dV2

G . (C.4)

where

LS2V
G = βhcw

g

2
∂µh

(
G+W

−
µ + h.c.

)
+ βh3z

√
g2 + g′2

2
∂µhG3Zµ

+ iβ3cw
g

2
∂µG3

(
G+W

−
µ − h.c.

)
− β3hz

√
g2 + g′2

2
∂µG3hZµ

+ ie (∂µG+G− − h.c.)Aµ + iβccz
g2 − g′2

2
√
g2 + g′2

(∂µG+G− − h.c.)Zµ

− βchw
g

2

(
∂µG+W

−
µ + h.c.

)
h− iβc3w

g

2

(
∂µG+W

−
µ − h.c.

)
G3, (C.5)

LSV2

G = iβcwγ
egv

2

(
G+W

−
µ − h.c.

)
Aµ − iβcwz

eg′v

2

(
G+W

−
µ − h.c.

)
Zµ, (C.6)

LSdV2

G = i
ηcwγ
2v

(
G+W

−
µν − h.c.

)
Aµν − i

ηcwz
2v

(
G+W

−
µν − h.c.

)
Zµν , (C.7)

LS2V2

G = G+G−

(
e2AµAµ + βcczγ

e(g2 − g′2)√
g2 + g′2

AµZµ + βcczz
(g2 − g′2)2

4(g2 + g′2)
ZµZµ + βccww

g2

2
W+
µ W

−
µ

)

+ G3G3

(
β33zz

g2 + g′2

8
ZµZµ + β33ww

g2

4
W+
µ W

−
µ

)
+ iβchwγ

eg

2

(
G+W

−
µ − h.c.

)
hAµ − iβchwz

eg′

2

(
G+W

−
µ − h.c.

)
hZµ

− βc3wγ
eg

2

(
G+W

−
µ + h.c.

)
G3Aµ + βc3wz

eg′

2

(
G+W

−
µ + h.c.

)
G3Zµ

+ η′ccww
g2

2

(
G+G+W

−
µ W

−
µ + h.c.

)
, (C.8)
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v2LS2dV2

G = G+G−
(
ηccγγe

2AµνAµν + ηcczγgg
′AµνZµν + ηcczz(g

2 + g′2)ZµνZµν + ηccwwg
2W+

µνW
−
µν

)
+ G3G3

(
η33γγe

2AµνAµν + η33zγgg
′AµνZµν + η33zz(g

2 + g′2)ZµνZµν + η33wwg
2W+

µνW
−
µν

)
+ ηc3wγeg

(
G+W

−
µν + h.c.

)
G3Aµν + ηc3wzeg

′ (G+W
−
µ + h.c.

)
G3Zµν .

(C.9)

The coefficients of the Goldstone interaction terms are related as follows to those of the Higgs
and gauge boson interaction terms in Eq. (3.3):

βhcw = 1 + g2cw2 + δcz + 3δm,

βh3z = 1 + g2cw2 + δcz + 2δm,

β3cw = 1− 2g2cw2 +
3

2
g2cz2 − 3δm,

β3hz = 1− g2cw2 + g2cz2 + δcz − 2δm,

βccz = 1 +
g2 + g′2

2(g2 − g′2)

(
−g2cz2 + 4δm

)
,

βchw = 1 + δcz + 3δm,

βc3w = 1− g2

2
cz2 + δm, (C.10)

βcwγ = 1 + δm,

βcwz = 1 +
g2(g2 + g′2)

2g′2
(cz2 − cw2)− 2g2 + g′2

g′2
δm, (C.11)

ηcwγ =
g2

g′
√
g2 + g′2

(
(g2 − g′2)cw2 − g2cz2

)
,

ηcwz =
g√

g2 + g′2

(
(g2 − g′2)cw2 − g2cz2

)
, (C.12)

βcczγ = 1 +
g2 + g′2

2(g2 − g′2)

(
−g2cz2 + 4δm

)
,

βcczz = 1 +
g2 + g′2

g2 − g′2
(
−g2cz2 + 4δm

)
,

βccww = 1 + 2g2cz2 − 3g2cw2 − 4δm,

β33zz = 1− g2cw2 − 2δm,

β33ww = 1− g2cz2 + 2δm,

βchwγ = 1 + δcz + 3δm,

βchwz = 1 +
3

2

g2(g2 + g′2

g′2
(cz2 − cw2) + δcz − 3

2g2 + g′2

g′2
δm,

βc3wγ = 1− g2

2
cz2 + δm,

βc3wz = 1 +
g4

2g′2
cz2 −

g2(g2 + g′2)

2g′2
cw2 −

2g2 + g′2

g′2
δm,

η′ccww = g2 (cw2 − cz2) + 2δm, (C.13)
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ηccγγ = czz −
g2 − g′2

g2 + g′2
czγ +

(g2 − g′2)2

4(g2 + g′2)
cγγ ,

ηcczγ =
g2 − g′2

g2 + g′2
czz −

g4 − 6g2g′2 + g′4

2(g2 + g′2)2
czγ −

e2(g2 − g′2)

(g2 + g′2)2
cγγ ,

ηcczz =
(g2 − g′2)2

4(g2 + g′2)2
czz −

e2(g2 − g′2)

(g2 + g′2)2
czγ +

e4

(g2 + g′2)2
cγγ ,

ηccww =
1

2
czz + s2

θczγ +
s4
θ

2
cγγ ,

ηccγγ =
cγγ
8
,

ηcczγ =
czγ
4
,

η33zz =
czz
8
,

η33ww =
1

4
czz +

s2
θ

2
czγ +

s4
θ

4
cγγ ,

ηc3wγ = −1

2
czz +

g2 − g′2

2(g2 + g′2)
czγ +

e2

2(g2 + g′2)
cγγ ,

ηc3wz =
1

2
czz −

g2 − g′2

2(g2 + g′2)
czγ −

e2

2(g2 + g′2)
cγγ . (C.14)

With the Goldstone bosons degrees of freedom present in the Lagrangian, gauge fixing can be
implemented as in any gauge theory. Below we show how to implement the linear Rξ gauge. For
the electroweak sector, we introduce the following gauge fixing Lagrangian

Lgf = − 1

2ξ

[
F 2
A + F 2

Z + 2F+F−
]
, (C.15)

where

FA = (1 + αAA)∂µAµ + αAZ∂µZµ ,

FZ = (1 + αZZ)∂µZµ + ξ

√
g2 + g′2v

2
(1 + αZ3)G3

F± = (1 + αWW )∂µW
±
µ + ξ

gv

2
(1 + αWc)G±. (C.16)

Above the fields and couplings are the ones before the rescaling in Eqs. (3.1) and (C.2) that
bring the Lagrangian to the canonical form. To derive the ghost action later, we will need the
SU(2)× U(1) gauge transformations acting on these fields

δAµ = ∂µαγ + ie
(
W−µ α+ −W+

µ α−
)
,

δZµ = ∂µαZ + igcθ
(
W−µ α+ −W+

µ α−
)
,

δW+
µ = ∂µα+ − igα+ (cθZµ + sθAµ) + ig (cθαZ + sθαγ)W+

µ , (C.17)

δh = −
√
g2 + g′2

2
G3αZ −

g

2
(G+α− +G−α+) ,

δG3 =

√
g2 + g′2

2
(v + h)αZ −

ig

2
(G+α− −G−α+) ,

δG+ =
g

2
(v + h− iG3)α+ + ieG+αγ + i

g2 − g′2

2
√
g2 + g′2

G+αZ . (C.18)
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The coefficients αXY in Eq. (C.16) are O(1/Λ2) in the EFT expansion. One can choose them
such that, after the rescaling in Eqs. (3.1) and (C.2), the gauge fixing Lagrangian becomes

Lgf = − 1

2ξ

(∂µAµ)2 +

(
∂µZµ + ξ

√
g2 + g′2v

2
G3

)2

+ 2
∣∣∣∂µW+

µ + ξ
gv

2
(1 + δm)G+

∣∣∣2
 . (C.19)

This choice of the gauge fixing terms ensures that the kinetic mixing between the Goldstone
bosons and massive vector bosons in Eq. (C.3) is canceled after gauge fixing. At the same time,
the Goldstone bosons acquire the gauge dependent masses:

mG± =
√
ξ
gv

2
(1 + δm) ≡

√
ξmW , mG3 =

√
ξ

√
g2 + g′2v

2
≡
√
ξmZ . (C.20)

Finally, the ghost Lagrangian can be obtained by the usual Fadeev-Popov procedure. In the
Rξ gauge introduced above

Lghost = −
∑

n∈(+,−,Z,γ)

[
c̄−
∂δF+

∂αn
+ c̄+

∂δF−
∂αn

+ c̄Z
∂δFZ
∂αn

+ c̄γ
∂δFA
∂αn

]
cn, (C.21)

where δF is the variation of the gauge fixing terms F in Eq. (C.16) under the infinitesimal
SU(2)×U(1) gauge symmetry transformations in Eq. (C.17). At this point the ghost kinetic terms
are not canonically normalized and diagonal. To this end one needs to perform the transformation

cγ → (1− αAA) cγ − αAZcZ ,
cZ → (1− αZZ) cZ ,

c± → (1− αWW ) c±. (C.22)

After this transformation (and the rescaling Eq. (3.1)) the ghost kinetic and mass terms are
diagonal and the kinetic terms are canonically normalized. The gauge dependent masses of the
ghosts are given by

mc± =
√
ξ
gv

2
(1 + δm) ≡

√
ξmW , mcZ =

√
ξ

√
g2 + g′2v

2
≡
√
ξmZ , mcγ = 0. (C.23)

The ghost interactions with electroweak vector bosons take the form

LccV = i (eAµ + ωcczgcθZµ) (∂µc̄+c− − ∂µc̄−c+)

+ i (ωγcwe∂µc̄γ + ωzcwgcθ∂µc̄Z)
(
W−µ c+ −W+

µ c−
)

+ i
(
W+
µ ∂µc̄− −W−µ ∂µc̄+

)
(ecγ + ωczwgcθcZ) , (C.24)

where

ωccz = 1− g2 + g′2

2
cw2,

ωγcw = 1 +
g2(g2 − g′2)

2g′2
cw2 −

g4

2g′2
cz2,

ωzcw = 1− g2cw2 +
g2

2
cz2,

ωczw = 1− g2 + g′2

2
cw2. (C.25)
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D Examples

D.1 On eliminating h∂h2 interactions

We consider an effective Lagrangian for a Dirac fermion f and a scalar h with the following terms:

L = if̄γµ∂µf +
1

2
(∂µh)2 −

m2
h

2
h2 − y√

2
hf̄f − α

Λ
h∂µh∂µh. (D.1)

The interactions terms are the Yukawa coupling between the scalar and fermions, and a 2-
derivative self-interaction term of the scalar. In this effective theory, we consider the scattering
process ff̄ → hh at tree level. The amplitude for this process can be written as

M(ff̄ → hh) = − y√
2

(v̄(p2)u(p1))
2α

Λ

(k1 + k2)2 − k1k2

(k1 + k2)2 −m2
h

= − y√
2

(v̄(p2)u(p1))
α

Λ

[
1 +

3m2
h

s−m2
h

]
, (D.2)

where p1, p2, k1, k2 are the momenta of the incoming fermions and the outgoing scalars, s =
(k1 + k2)2, and u, v are spinor wave functions for the fermions. Since v̄(p2)u(p1) ∼

√
s, the

h(∂µh)2 interaction leads to amplitudes growing with energy as α
√
s/Λ which eventually violates

perturbative unitarity for large enough
√
s.

We can equivalently work with an effective Lagrangian where the 2-derivative h(∂µh)2 inter-
action is eliminated via field redefinitions. To this end we redefine the scalar field as

h→ h+
α

2Λ
h2. (D.3)

After this redefinition the effective Lagrangian of Eq. (D.1) takes the form

L = if̄γµ∂µf +
1

2
(∂µh)2 −

m2
h

2
h2 − y√

2

(
h+

β

Λ
h2

)
f̄f − λ3

m2
h

Λ
h3 + . . . , (D.4)

where
β = λ3 =

α

2
, (D.5)

and the dots stand for h4 interactions that are not important for the present discussion. Seemingly,
the effective Lagrangians in Eqs. (D.1) and (D.4) are different, as they contain different interaction
terms. However, we know that field redefinitions cannot change the physical content of the theory.
Thus, the two Lagrangians must give exactly the same predictions for physical observables. We
will verify this explicitly for the ff̄ → hh process. Indeed, calculating the amplitude using the
Lagrangian in Eq. (D.4) we find

M(ff̄ → hh) = − y√
2

(v̄(p2)u(p1))
1

Λ

[
2β + 6λ3

m2
h

s−m2
h

]
. (D.6)

This is exactly the same as the amplitude in Eq. (D.2) upon using Eq. (D.5). In particular, the
amplitude is growing as

√
s even though the 2-derivative interaction h(∂µh)2 have been redefined

away. In Eq. (D.6), this behavior is due the contact term h2f̄f in Eq. (D.4) which appeared as
a consequence of the redefinition.
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An analogous method to eliminate the h(∂µh)2 interaction of the Higgs boson was applied in
the mass eigenstate Lagrangian for dimension-6 EFT in Section 3, see Eq. (3.1). In that case, the
motivation for doing so is stronger than in the current example. The point is that dimension-6
operators in popular bases generate corrections to all the 3 types of interaction terms relevant
for double Higgs production: h3, h2f̄f and h(∂µh)2. By eliminating the h(∂µh)2 interaction
we reduce the number of interaction vertices in the theory, without changing at all the EFT
predictions for double Higgs production amplitudes. Similarly, the purpose of other redefinitions
in Eq. (3.1) is to fix the redundancies in the mass eigenstate Lagrangian, so as to reduce the
number of interaction terms. This way one arrives at a simpler and more convenient form of the
mass eigenstate Lagrangian without changing the physical predictions of the dimension-6 EFT.

D.2 On eliminating hV f̄f interactions

We consider an effective Lagrangian for a massless Dirac fermion f , a massive scalar h, and a
massive U(1) vector Vµ with the following terms:

L = −1

4
VµνVµν +

1

2
m2
V VµVµ + if̄γµ∂µf +

1

2
(∂µh)2 −

m2
h

2
h2

+ gVµf̄γµf + chV f
h

Λ
gVµf̄γµf. (D.7)

The interaction terms are the renormalizable interaction between the vector and fermion fields
with the coupling strength g, and the non-renormalizable contact interaction between the scalar,
vector and fermions with the dimensionful coupling strength gchV f/Λ. In this effective theory, we
consider the decay process h→ ff̄V at tree level. The amplitude for this process can be written
as

M(h→ ff̄V ) =
gchV f

Λ
(ū(k1)γµv(k1)) ε∗(k3), (D.8)

where k1, k2, k3 are the momenta of the outgoing fermion, anti-fermion, and vector, respectively.
Furthermore, u, v are spinor wave functions for the fermions, and ε is the polarization vector for
V .

We can equivalently work with an effective Lagrangian where the Higgs contact interaction is
eliminated in favor of other Higgs couplings. To this end, we can use the equation of motion for
the vector field:

∂νVµν = m2
V Vµ + gf̄γµf +O(1/Λ). (D.9)

Solving this equation for f̄γµf and plugging back the solution into the last term of Eq. (D.7) one
obtains the effective Lagrangian

L = −1

4
VµνVµν +

1

2
m2
V VµVµ + if̄γµ∂µf +

1

2
(∂µh)2 −

m2
h

2
h2

+ gVµf̄γµf + cV
h

Λ
m2
V VµVµ + cV 2

h

Λ
Vµ∂νVµν +O(1/Λ2). (D.10)

where
cV = −chV f , cV 2 = chV f . (D.11)

Seemingly, the effective Lagrangians in Eqs. (D.7) and (D.10) are different, as they contain
different interaction terms. However, much like field redefinitions, replacing interactions terms by
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others related via equations of motion does not change physics. Therefore, observables calculated
with the effective Lagrangian (D.10) must be the same We can verify it explicitly for the decay
process h → ff̄V at tree level. Unlike with Eq. (D.7), there is no direct vertex connecting h to
the final state ff̄V . Instead, with the vertices in Eq. (D.10), the process occurs via a decay of h
to one on-shell and one off-shell V, with the latter decaying to a fermion pair. One finds

M(h→ ff̄V ) =
g

Λ
(ū(k1)γµv(k1)) ε∗(k3)

(
2cVm

2
V + cV 2(m2

V + q2)

q2 −m2
V

)
, (D.12)

where q = k1 + k2, and the denominator comes from the propagator of the off-shell V . This
exactly matches the amplitude in Eq. (D.8) upon using Eq. (D.11).

This example demonstrates that contact hV f̄f interactions can be equivalently represented
by hV V interactions with zero and two derivatives. This is taken advantage of in this note
to simplify the mass eigenstate Lagrangian for the SM EFT with D=6 operators in Section 3.
Namely, it turns out that D=6 operators generate two kinds of hV f̄f terms, with V = W,Z
bosons, and f the SM fermions. One is universal, in the sense that it depends only on the
quantum numbers of f , and the corresponding direction in the EFT parameter space is relatively
unconstrained by experiment so far. For the other kind, the coefficients of hV f̄f terms are in
general non-universal and equal to vertex corrections to SM V f̄f interactions. The latter are
strongly constrained by electroweak precision measurements. The condition #6 below Eq. (3.1)
amounts trading the universal hV f̄f terms for zero- and two-derivative hWW , hZZ and two-
derivative hZ2A interactions. The motivation is that, in this way, a small number of bosonic
hV V terms in the Lagrangian represents universal hV f̄f terms for all flavors of the SM fermions.
One could of course, equivalently, eliminate hV2V interactions in favor of the fermionic contact
terms, without changing the observable predictions of the EFT.
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