Libagf is a machine learning library that includes adaptive kernel density estimators using Gaussian kernels and k-nearest neighbours. Operations include statistical classification, interpolation/non-linear regression and pdf estimation. For statistical classification there is a borders training feature for creating fast and general pre-trained models that nonetheless return the conditional probabilities. Libagf also includes clustering algorithms as well as comparison and validation routines. It is written in C++.
License
GNU General Public License version 2.0 (GPLv2)
You Might Also Like
Gen AI apps are built with MongoDB Atlas
MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
Rate This Project
Login To Rate This Project
User Reviews
Be the first to post a review of Adaptive Gaussian Filtering!