[go: up one dir, main page]

Open Source R Software

R Software

R Clear Filters

Browse free open source R Software and projects below. Use the toggles on the left to filter open source R Software by OS, license, language, programming language, and project status.

  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • The All-in-One Commerce Platform for Businesses - Shopify Icon
    The All-in-One Commerce Platform for Businesses - Shopify

    Shopify offers plans for anyone that wants to sell products online and build an ecommerce store, small to mid-sized businesses as well as enterprise

    Shopify is a leading all-in-one commerce platform that enables businesses to start, build, and grow their online and physical stores. It offers tools to create customized websites, manage inventory, process payments, and sell across multiple channels including online, in-person, wholesale, and global markets. The platform includes integrated marketing tools, analytics, and customer engagement features to help merchants reach and retain customers. Shopify supports thousands of third-party apps and offers developer-friendly APIs for custom solutions. With world-class checkout technology, Shopify powers over 150 million high-intent shoppers worldwide. Its reliable, scalable infrastructure ensures fast performance and seamless operations at any business size.
    Learn More
  • 1
    ggplot2

    ggplot2

    An implementation of the Grammar of Graphics in R

    ggplot2 is a system written in R for declaratively creating graphics. It is based on The Grammar of Graphics, which focuses on following a layered approach to describe and construct visualizations or graphics in a structured manner. With ggplot2 you simply provide the data, tell ggplot2 how to map variables to aesthetics, what graphical primitives to use, and it will take care of the rest. ggplot2 is over 10 years old and is used by hundreds of thousands of people all over the world for plotting. In most cases using ggplot2 starts with supplying a dataset and aesthetic mapping (with aes()); adding on layers (like geom_point() or geom_histogram()), scales (like scale_colour_brewer()), and faceting specifications (like facet_wrap()); and finally, coordinating systems. ggplot2 has a rich ecosystem of community-maintained extensions for those looking for more innovation. ggplot2 is a part of the tidyverse, an ecosystem of R packages designed for data science.
    Downloads: 41 This Week
    Last Update:
    See Project
  • 2
    Introduction to Zig

    Introduction to Zig

    An open, technical and introductory book for the Zig programming lang

    This is the official repository for the book "Introduction to Zig: a project-based Book", written by Pedro Duarte Faria. To know more about the book, check out the About this book section below. You can read the current version of the book in your web browser. The book is built using the publishing system Quarto in conjunction with a little bit of R code (zig_engine.R), which is responsible for calling the Zig compiler to compile and run the Zig code examples.
    Downloads: 10 This Week
    Last Update:
    See Project
  • 3
    TOFSIMS

    TOFSIMS

    R/Bioconductor toolkit for mass spectrometry data

    The tofsims project is an R/Bioconductor toolkit designed for processing, analyzing, and visualizing imaging mass spectrometry data from Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) instruments. It supports importing raw and preprocessed data from popular instrument platforms (e.g. IONTOF, Ulvac-Phi) and provides methods for mass calibration, peak picking, and peak integration. The package allows transformation of spectra into 2D image structures (mass images), with operations such as binning, scaling, subsetting, and visual rendering. For data exploration and dimensionality reduction, it includes multivariate methods common in the ToF-SIMS community: PCA (Principal Component Analysis), MCR (Multivariate Curve Resolution), MAF (Maximum Autocorrelation Factors), and MNF (Minimum Noise Fraction). It also interoperates with Bioconductor’s imaging stack (e.g. EBImage) so users can apply segmentation and image analysis operations on mass images.
    Downloads: 9 This Week
    Last Update:
    See Project
  • 4
    LabPlot

    LabPlot

    Data Visualization and Analysis

    LabPlot is a FREE, open source and cross-platform Data Visualization and Analysis software accessible to everyone.
    Downloads: 54 This Week
    Last Update:
    See Project
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • 5
    purrr

    purrr

    A functional programming toolkit for R

    purrr enhances R’s functional programming capabilities by providing a consistent set of tools for working with lists and vectors, enabling safer and more expressive iteration compared to base R’s loop functions.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 6
    Data Science Specialization

    Data Science Specialization

    Course materials for the Data Science Specialization on Coursera

    The Data Science Specialization Courses repository is a collection of materials that support the Johns Hopkins University Data Science Specialization on Coursera. It contains the source code and resources used throughout the specialization’s courses, covering a broad range of data science concepts and techniques. The repository is designed as a shared space for code examples, datasets, and instructional materials, helping learners follow along with lectures and assignments. It spans essential topics such as R programming, data cleaning, exploratory data analysis, statistical inference, regression models, machine learning, and practical data science projects. By providing centralized resources, the repo makes it easier for students to practice concepts and replicate examples from the curriculum. It also offers a structured view of how multiple disciplines—programming, statistics, and applied data analysis—come together in a professional workflow.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    Paper2GUI

    Paper2GUI

    Convert AI papers to GUI

    Convert AI papers to GUI,Make it easy and convenient for everyone to use artificial intelligence technology。让每个人都简单方便的使用前沿人工智能技术 Paper2GUI: An AI desktop APP toolbox for ordinary people. It can be used immediately without installation. It already supports 40+ AI models, covering AI painting, speech synthesis, video frame complementing, video super-resolution, object detection, and image stylization. , OCR recognition and other fields. Support Windows, Mac, Linux systems. Paper2GUI: 一款面向普通人的 AI 桌面 APP 工具箱,免安装即开即用,已支持 40+AI 模型,内容涵盖 AI 绘画、语音合成、视频补帧、视频超分、目标检测、图片风格化、OCR 识别等领域。支持 Windows、Mac、Linux 系统。
    Downloads: 3 This Week
    Last Update:
    See Project
  • 8
    gganimate

    gganimate

    A Grammar of Animated Graphics

    gganimate extends the grammar of graphics as implemented by ggplot2 to include the description of animation. It does this by providing a range of new grammar classes that can be added to the plot object in order to customize how it should change with time. Here we take a simple boxplot of fuel consumption as a function of cylinders and let it transition between the number of gears available in the cars. As this is a discrete split (gear being best described as an ordered factor) we use transition_states and provide a relative length to use for transition and state view. As not all combinations of data are present there are states missing a box. We define that when a box appears it should fade into view, whereas it should shrink away when it disappears. Lastly, we decide to use a sinusoidal easing for all our aesthetics (here, only y is changing) gganimate is available on CRAN and can be installed with install.packages('gganimate').
    Downloads: 3 This Week
    Last Update:
    See Project
  • 9
    rayshader

    rayshader

    R Package for 2D and 3D mapping and data visualization

    This is an R package designed for producing beautiful and interactive 2D and 3D visualizations — especially maps and terrain renderings — using elevation/gridded data and ray-tracing / hill-shading methods. At its core, rayshader takes a matrix of elevations and applies shading, texture, ambient occlusion, overlays, and light modeling (ray shade, lambertian shading, etc.) to produce realistic relief maps. Users can rotate, zoom, and animate the scenes or script camera trajectories programmatically. It supports outputting high-quality renders via path tracing (using a companion package) and also offers depth-of-field (“cinematic blur”) effects to bring visual focus into scenes. It allows layering relational data (roads, points, polygons) on top of the shaded terrain, so you can combine spatial data overlays with the 3D model. The package can export models to 3D formats like STL or OBJ for 3D printing or external rendering.
    Downloads: 3 This Week
    Last Update:
    See Project
  • Photo and Video Editing APIs and SDKs Icon
    Photo and Video Editing APIs and SDKs

    Trusted by 150 million+ creators and businesses globally

    Unlock Picsart's full editing suite by embedding our Editor SDK directly into your platform. Offer your users the power of a full design suite without leaving your site.
    Learn More
  • 10
    caret

    caret

    caret (Classification And Regression Training) R package

    The caret (Classification And Regression Training) R package streamlines the process of building predictive machine learning models. It provides uniform interfaces for model training, tuning, evaluation, preprocessing, and variable importance. With support for over 200 models, caret is foundational for R workflows in modeling and machine learning.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 11
    dplyr

    dplyr

    dplyr: A grammar of data manipulation

    dplyr is an R package that provides a consistent and intuitive grammar for data manipulation, enabling users to filter, arrange, summarize, and transform data efficiently. Part of the tidyverse ecosystem, dplyr simplifies complex data operations through a clear and readable syntax, whether working with data frames, tibbles, or databases. It is widely used in data science and statistical analysis workflows.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 12
    psychmeta

    psychmeta

    Psychometric meta-analysis toolkit

    The psychmeta package provides tools for computing bare-bones and psychometric meta-analyses and for generating psychometric data for use in meta-analysis simulations. Currently, the package supports bare-bones, individual-correction, and artifact-distribution methods for meta-analyzing correlations and d values. Please refer to the overview tutorial vignette for an introduction to psychmeta’s functions and workflows. psychmeta is hosted on both CRAN and GitHub. Documentation for psychmeta’s functions is available in the package’s PDF manual. Includes tools for converting effect sizes, computing sporadic artifact corrections, reshaping meta-analytic databases, computing multivariate corrections for range variation, and more.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 13
    rmarkdown

    rmarkdown

    Dynamic Documents for R

    R Markdown is an R package for creating dynamic, reproducible documents that combine code (R, Python, SQL, etc.), results (figures, tables), and narrative text. Built on Knitr and Pandoc, it supports generating HTML, PDF, Word, slideshows, dashboards, and more. It’s widely used in data science and reproducible reporting workflows.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 14
    rvest

    rvest

    Simple web scraping for R

    rvest helps you scrape (or harvest) data from web pages. It is designed to work with magrittr to make it easy to express common web scraping tasks, inspired by libraries like beautiful soup and RoboBrowser. If you’re scraping multiple pages, I highly recommend using rvest in concert with polite. The polite package ensures that you’re respecting the robots.txt and not hammering the site with too many requests.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 15
    MitoSAlt

    MitoSAlt

    Identification of mitochondrial structural alterations

    MitoSAlt is a pipeline to identify large deletions and duplications in human and mouse mitochondrial genomes from next generation whole genome/exome sequencing data. The pipeline is capable of analyzing any circular genome in principle, as long as a proper configuration file is provided.
    Downloads: 17 This Week
    Last Update:
    See Project
  • 16
    DiagrammeR

    DiagrammeR

    Graph and network visualization using tabular data in R

    DiagrammeR is an R package to create, manipulate, and visualize network graphs, flowcharts, diagrams, and more using Graphviz and Mermaid syntax. Integrates with RMarkdown and Shiny apps, supports node/edge traversal, and graph analysis algorithms, making it ideal for documenting processes, causal relationships, or data pipelines.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    JuliaConnectoR

    JuliaConnectoR

    A functionally oriented interface for calling Julia from R

    This R-package provides a functionally oriented interface between R and Julia. The goal is to call functions from Julia packages directly as R functions. Julia functions imported via the JuliaConnectoR can accept and return R variables. It is also possible to pass R functions as arguments in place of Julia functions, which allows callbacks from Julia to R. From a technical perspective, R data structures are serialized with an optimized custom streaming format, sent to a (local) Julia TCP server, and translated to Julia data structures by Julia. The results of function calls are likewise translated back to R. Complex Julia structures can either be used by reference via proxy objects in R or fully translated to R data structures.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    Mastering Shiny

    Mastering Shiny

    Mastering Shiny: a book

    Mastering Shiny is a book (and its accompanying source repository) by Hadley Wickham that teaches people how to build interactive web applications using Shiny in R. It starts from basics (your first app, UI components, reactivity) and progresses to more advanced topics (dynamic UIs, modules, testing, security, performance). It is intended to help data scientists, analysts, or R users who may not have deep experience in web technologies become expert Shiny developers. The source code is open, and the book is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    R Color Palettes

    R Color Palettes

    Comprehensive list of color palettes available in R

    This repository is a curated collection of color palettes crafted or curated for data visualization in R. The goal is to provide designers, data scientists, and R users with aesthetically pleasing, perceptually consistent color schemes that work well for plots, maps, and graphics. The repo contains static files listing palette definitions (e.g. hex codes, named hues), sample visualizations showing how each palette performs under different contexts (categorical, sequential, diverging), and helper functions/scripts to import or use the palettes in R. The author also documents palette provenance and usage guidance (contrast, readability, colorblind friendliness). While not a full package in itself, it’s often used as a reference or source of palette definitions for other R plotting or theming packages.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    R Markdown Cookbook

    R Markdown Cookbook

    R Markdown Cookbook

    R Markdown Cookbook. A range of tips and tricks to make better use of R Markdown. R Markdown is a powerful tool for combining analysis and reporting into the same document. Since the birth of the rmarkdown package (Allaire, Xie, Dervieux, McPherson, et al. 2023) in early 2014, R Markdown has grown substantially from a package that supports a few output formats, to an extensive and diverse ecosystem that supports the creation of books, blogs, scientific articles, websites, and even resumes.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    R4DS (R for Data Science)

    R4DS (R for Data Science)

    R for data science: a book

    “R for Data Science” (r4ds) is the source material (book + examples) by Hadley Wickham et al., intended to teach data science using R and the tidyverse. It covers the workflow from importing data, tidying, transforming, visualizing, modelling, communicating results, and programming in R. The repository contains the source files (Quarto / RMarkdown), example datasets, visualizations, exercises, and all content needed to build the book. Includes many example datasets, diagrams, code samples, and “hands-on” exercises. Comprehensive coverage of data-science workflow: data import, cleaning, transformation, exploration, modelling etc. Includes topics beyond basics: relational data (joins), date/time, strings, working with missing values, visualizing data, etc.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22
    Statistics for Data Scientists

    Statistics for Data Scientists

    "Statistics for Data Scientists: 50 Essential Concepts"

    The “statistics-for-data-scientists” repository is a pedagogical resource designed to bridge rigorous statistics theory and practical data science workflows. The code and materials are intended to help data scientists and analysts grasp statistical principles (e.g. inference, regressions, hypothesis testing, probability, confidence intervals) in contexts relevant to real data analysis tasks. The repository includes Jupyter notebooks, R scripts, worked examples, and possibly problem sets that illustrate how statistical methods are applied to real datasets. It aims to demystify the bridge between textbook statistics and empirical modeling by walking through assumption checking, visualization, interpreting outputs, and pitfalls of misuse. Throughout, the content emphasizes clarity and accessibility, showing not just how to run statistical tests or build models, but what they mean and when one method is preferred over another.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23
    TinyTeX

    TinyTeX

    Cross-platform, portable, and easy-to-maintain LaTeX distribution

    A lightweight, cross-platform, portable, and easy-to-maintain LaTeX distribution based on TeX Live. TinyTeX, is a custom LaTeX distribution based on TeX Live that is small in size but still functions well in most cases. Even if you run into the problem of missing LaTeX packages, it should be super clear to you what you need to do. In fact, if you are an R Markdown user, there is nothing you need to do, because missing packages will just be installed automatically. You may not even know the existence of LaTeX at all since it should rarely bother you. Currently, TinyTeX works best for R users. Other users can use it, too—it is just that missing LaTeX packages won’t be automatically installed, and you need to install them manually. Or you can go to the extreme to install all packages, but remember there are thousands of them.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    box

    box

    Write reusable, composable and modular R code

    box is an R package providing a modular system / module loader for organizing reusable R code outside of full packages. It allows users to treat R scripts (files/folders) as modules — possibly nested — with explicit exports, imports, and scoping. The idea is to let users structure code in a more modular, composable way, without needing every reusable component to be a full CRAN-style package. It also provides a cleaner syntax for importing functions or modules (via box::use) that allows scoping control and avoids global pollution. Such modules can be stored in a central module search path (configured via options('box.path')) analogous to the R package library, or locally in individual projects. Let’s assume the module we just defined is stored in a file hello_world.r inside a directory mod, which is inside the module search path.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    broom

    broom

    Convert statistical analysis objects from R into tidy format

    broom is part of the tidymodels ecosystem that converts statistical model outputs (e.g. from lm, glm, t.test, lme4, etc.) into tidy tibbles — standardized data frames — using functions tidy(), glance(), and augment(). These are easier to manipulate, visualize, and report programmatically.
    Downloads: 1 This Week
    Last Update:
    See Project