[go: up one dir, main page]

Copyright 2013 by Hortonworks and Microsoft
ORC File & Vectorization
Improving Hive Data Storage and Query Performance
June 2013
Page 1
Owen O’Malley
owen@hortonworks.com
@owen_omalley
Jitendra Pandey
jitendra@hortonworks.com
Eric Hanson
ehans@microsoft.com
owen@hortonworks.c
om
ORC – Optimized RC File
Page 2
History
Page 3
Remaining Challenges
Page 4
Requirements
Page 5
File Structure
Page 6
Stripe Structure
Page 7
File Layout
Page 8
File Footer
Postscript
Index Data
Row Data
Stripe Footer
256MBStripe
Index Data
Row Data
Stripe Footer
256MBStripe
Index Data
Row Data
Stripe Footer
256MBStripe
Column 1
Column 2
Column 7
Column 8
Column 3
Column 6
Column 4
Column 5
Column 1
Column 2
Column 7
Column 8
Column 3
Column 6
Column 4
Column 5
Stream 2.1
Stream 2.2
Stream 2.3
Stream 2.4
Compression
Page 9
Integer Column Serialization
Page 10
String Column Serialization
Page 11
Hive Compound Types
Page 12
0
Struct
4
Struct
3
String
1
Int
2
Map
7
Time
5
String
6
Double
Compound Type Serialization
Page 13
Generic Compression
Page 14
Column Projection
Page 15
How Do You Use ORC
Page 16
Managing Memory
Page 17
TPC-DS File Sizes
Page 18
ORC Predicate Pushdown
Page 19
Additional Details
Page 20
Current work for Hive 0.12
Page 21
Future Work
Page 22
Comparison
Page 23
RC File Trevni Parquet ORC
Hive Integration Y N N Y
Active Development N N Y Y
Hive Type Model N N N Y
Shred complex columns N Y Y Y
Splits found quickly N Y Y Y
Files per a bucket 1 many 1 or many 1
Versioned metadata N Y Y Y
Run length data encoding N N Y Y
Store strings in dictionary N N Y Y
Store min, max, sum, count N N N Y
Store internal indexes N N N Y
No overhead for non-null N N N Y ≥ 0.12
Predicate Pushdown N N N Y ≥ 0.12
Vectorization
Page 24
Vectorization
Page 25
Why row-at-a-time execution is slow
Page 26
• Hive uses Object Inspectors to work on a row
• Enables level of abstraction
• Costs major performance
• Exacerbated by using lazy serdes
• Inner loop has many method, new(), and if-
then-else calls
• Lots of CPU instructions
• Pipeline stalls Poor instructions/cycle
• Poor cache locality
How the code works (simplified)
Page 27
class LongColumnAddLongScalarExpression {
int inputColumn;
int outputColumn;
long scalar;
void evaluate(VectorizedRowBatch batch) {
long [] inVector =
((LongColumnVector) batch.columns[inputColumn]).vector;
long [] outVector =
((LongColumnVector) batch.columns[outputColumn]).vector;
if (batch.selectedInUse) {
for (int j = 0; j < batch.size; j++) {
int i = batch.selected[j];
outVector[i] = inVector[i] + scalar;
}
} else {
for (int i = 0; i < batch.size; i++) {
outVector[i] = inVector[i] + scalar;
}
}
}
}
}
No method calls
Low instruction count
Cache locality to 1024 values
No pipeline stalls
SIMD in Java 8
Vectorization project
Page 28
Preliminary performance results
• NOT a benchmark
• 218 million row fact table of real data, 25 columns
• 18GB raw data
• 6 core, 12 thread workstation, 1 disk, 16GB RAM
• select a, b, count(*) from t
where c >= const group by a, b -- 53 row result
Page 29
warm start times RC non-
vectorized
(default, not
compressed)
ORC non-
vectorized
(default,
compressed)
ORC vectorized
(default,
compressed)
Runtime (sec) 261 58 43
Total CPU (sec) 381 159 42
Thanks to contributors!
Page 30
• Microsoft Big Data:
• Eric Hanson, Remus Rusanu, Sarvesh
Sakalanaga, Tony Murphy, Ashit Gosalia
• Hortonworks:
• Jitendra Pandey, Owen O’Malley, Gopal V
• Others:
• Teddy Choi, Tim Chen
Jitendra/Eric are joint leads

ORC File and Vectorization - Hadoop Summit 2013

  • 1.
    Copyright 2013 byHortonworks and Microsoft ORC File & Vectorization Improving Hive Data Storage and Query Performance June 2013 Page 1 Owen O’Malley owen@hortonworks.com @owen_omalley Jitendra Pandey jitendra@hortonworks.com Eric Hanson ehans@microsoft.com owen@hortonworks.c om
  • 2.
    ORC – OptimizedRC File Page 2
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
    File Layout Page 8 FileFooter Postscript Index Data Row Data Stripe Footer 256MBStripe Index Data Row Data Stripe Footer 256MBStripe Index Data Row Data Stripe Footer 256MBStripe Column 1 Column 2 Column 7 Column 8 Column 3 Column 6 Column 4 Column 5 Column 1 Column 2 Column 7 Column 8 Column 3 Column 6 Column 4 Column 5 Stream 2.1 Stream 2.2 Stream 2.3 Stream 2.4
  • 9.
  • 10.
  • 11.
  • 12.
    Hive Compound Types Page12 0 Struct 4 Struct 3 String 1 Int 2 Map 7 Time 5 String 6 Double
  • 13.
  • 14.
  • 15.
  • 16.
    How Do YouUse ORC Page 16
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
    Current work forHive 0.12 Page 21
  • 22.
  • 23.
    Comparison Page 23 RC FileTrevni Parquet ORC Hive Integration Y N N Y Active Development N N Y Y Hive Type Model N N N Y Shred complex columns N Y Y Y Splits found quickly N Y Y Y Files per a bucket 1 many 1 or many 1 Versioned metadata N Y Y Y Run length data encoding N N Y Y Store strings in dictionary N N Y Y Store min, max, sum, count N N N Y Store internal indexes N N N Y No overhead for non-null N N N Y ≥ 0.12 Predicate Pushdown N N N Y ≥ 0.12
  • 24.
  • 25.
  • 26.
    Why row-at-a-time executionis slow Page 26 • Hive uses Object Inspectors to work on a row • Enables level of abstraction • Costs major performance • Exacerbated by using lazy serdes • Inner loop has many method, new(), and if- then-else calls • Lots of CPU instructions • Pipeline stalls Poor instructions/cycle • Poor cache locality
  • 27.
    How the codeworks (simplified) Page 27 class LongColumnAddLongScalarExpression { int inputColumn; int outputColumn; long scalar; void evaluate(VectorizedRowBatch batch) { long [] inVector = ((LongColumnVector) batch.columns[inputColumn]).vector; long [] outVector = ((LongColumnVector) batch.columns[outputColumn]).vector; if (batch.selectedInUse) { for (int j = 0; j < batch.size; j++) { int i = batch.selected[j]; outVector[i] = inVector[i] + scalar; } } else { for (int i = 0; i < batch.size; i++) { outVector[i] = inVector[i] + scalar; } } } } } No method calls Low instruction count Cache locality to 1024 values No pipeline stalls SIMD in Java 8
  • 28.
  • 29.
    Preliminary performance results •NOT a benchmark • 218 million row fact table of real data, 25 columns • 18GB raw data • 6 core, 12 thread workstation, 1 disk, 16GB RAM • select a, b, count(*) from t where c >= const group by a, b -- 53 row result Page 29 warm start times RC non- vectorized (default, not compressed) ORC non- vectorized (default, compressed) ORC vectorized (default, compressed) Runtime (sec) 261 58 43 Total CPU (sec) 381 159 42
  • 30.
    Thanks to contributors! Page30 • Microsoft Big Data: • Eric Hanson, Remus Rusanu, Sarvesh Sakalanaga, Tony Murphy, Ashit Gosalia • Hortonworks: • Jitendra Pandey, Owen O’Malley, Gopal V • Others: • Teddy Choi, Tim Chen Jitendra/Eric are joint leads