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Preface

0.1 What is Ramsey Theory and why did we

write this book?

Ramsey Theory is a branch of combinatorics that can (very roughly) be
characterized by the statement

No matter how you color some combinatorial object there will be
an orderly monochromatic subset.

Alternatively, to quote Theodore S. Motzkin,

Complete disorder is impossible.

The following two theorems are fundamental to Ramsey Theory and also
make the points stated above:

1. Ramsey’s Theorem: For all c, k, there exists n, such that, for every
c-coloring of the edges of the complete graph Kn there is a subset of k
vertices such that all of the edges among them are the same color. (That
set of k vertices is often called a homogeneous set or a monochromatic
Kk.)

2. Van der Waerden’s Theorem: For all c, k, there exists W such that, for
every c-coloring of {1, . . . ,W} there exists a monochromatic arithmetic
progression of length k.

In both cases you are coloring a combinatorial object and get an orderly
monochromatic subset. Note that these are both for-all statements: no mat-
ter how you c-color . . .. Hence they are saying that complete disorder is
impossible. Both theorems have purely combinatorial proofs. We come back
to this point later.

There are already two elementary books on Ramsey Theory:
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1. Ramsey Theory by Graham, Spencer, and Rothschild [36].

2. Ramsey Theory over the Integers, Landman and Robertson [51]

Both books are elementary in that they mostly do not use advanced
techniques. They contain both Ramsey’s Theorem and van der Waerden’s
Theorem. So, why is our book needed?

We have a more focused goal. Our goal is to give a purely combinatorial
proof of the generalized polynomial van der Waerden Theorem, which we
describe in Section 1.5. This theorem is not covered in either of those books.
Indeed, this theorem was not known when those books were published.

We only cover van der Waerden’s Theorem and its variants. Given our
focus, we can cover more ground. Our goal is to cover virtually every ex-
tension, variant, and application of van der Waerden’s Theorem that can be
proven using purely combinatorial methods.

0.2 What is a purely combinatorial proof?

In this book we will only use purely combinatorial methods. We take this
to mean that no methods from Calculus or Topology are used. This does
not mean the proofs are easy; however, it does mean that no prior math
is required aside from some basic combinatorics. By contrast, we now give
two true statements from Ramsey Theory that currently have no purely
combinatorial proof.

1. For all k there exists a, d such that

a, a+ d, a+ 2d, . . . , a+ (k − 1)d

are all primes. This was proven by Green and Tao [38]. They used
Fourier Analysis and Topology.

2. Let W (k, c) be the least W such that van der Waerden’s Theorem holds
with this value of W . Then

W (k, c) ≤ 22c
22k+9

This was proven by Gowers [35]. He used techniques from analysis,
notably Fourier Analysis.
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0.3 Who could read this book?

Since we only use purely combinatorial techniques a bright high school or col-
lege student who knows basic combinatorics (permutations, combinations,
proofs by induction) could read this book. Many of the people in the ac-
knowledgments are high school students. However, some of the material
in this book is not well known. Hence even people far more advanced in
mathematics would benefit from this book.

0.4 Abbreviations used in this book

Throughout this monograph we use the following conventions.

1. VDW is van der Waerden’s Theorem.

2. POLYVDW is the Polynomial van der Waerden Theorem.

3. HJ is the Hales-Jewett Theorem.

4. POLYHJ is the Polynomial Hales-Jewett Theorem.

5. Any of these can be used as a prefix. For example “VDW numbers”
will mean “van der Waerden numbers”

0.5 Features of this book

How is this book different from other books?

1. We will use purely combinatorial methods.

2. We will give both intuition and complete proofs.

3. Our proofs will be unified by the color focusing method. This method
was first used explicitly in Walter’s proof of POLYVDW [90]; however,
we will use it to prove VDW, HJ, and POLYHJ. We are quick to note
that the proofs are the classical proofs; however, we express them in a
unified way.

4. We give a purely combinatorial proof of the Generalized Polynomial
van der Waerden Theorem.



10 CONTENTS

5. We will give applications to other branches of mathematics and to
theoretical computer science.

6. Consider the following theorem: The Square Theorem: For all 2-
colorings of N × N there exists a square that has all four corners the
same color. We will give several different proofs of this.

0.6 Acknowledgments

We would like to thank all past, present, and future members of the van der
Waerden gang who listened to us as we worked out the ideas and expositions
in this monograph. We list out all past and present members: Yosef Berman,
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Hogge, Justin Kruskal, Matt Jordan, Richard Matthew McCutchen, Nils
Molina, Anand Oza, Jefferson Pecht, James Pinkerton, Rohan Puttagunta,
Rafael Setra, Sandow Sinai, Louis Wasserman, Sam Zbarsky, and Thomas
Zhang.

We would also like to thank Hunter Monroe for an incredible job of proof-
reading.



Chapter 1

Introduction

In this chapter we state, without proof, some of the main theorems in this
book. In particular we state

1. VDW Theorem.

2. Multdimensional VDW’s Theorem (also called the Gallai-Witt Theo-
rem).

3. Rado’s Theorem (which could be called The Equations VDW Theorem).

4. POLYVDW Theorem.

5. The generalized POLYVDW over the reals.

We intentionally omit HJ and POLYHJ. They are great theorems; how-
ever, they require some care to state, so we defer their statements until the
chapters where they are proved.

1.1 What is van der Waerden’s Theorem?

Imagine that someone colors the the numbers {1, . . . 9} RED and BLUE.
Here is an example:

1 2 3 4 5 6 7 8 9
R R B B R R B B R

There is a sequence of three numbers that are the same color and are equally
spaced, namely 1, 5, 9 which are all R.

11
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Try 2-coloring {1, . . . , 9} a different way. Say

1 2 3 4 5 6 7 8 9
R B R B B R B B R

There is still a sequence of three numbers that are the same color and equally
spaced, namely 2, 5, 8 which are all B.
Is there a way to 2-color {1, . . . , 9} and not get such a sequence?

Exercise 1

1. Show that for all 2-colorings of {1, . . . , 9} there exists a set of three
numbers that are equally spaced and the same color.

2. Show that there is a 2-coloring of {1, . . . , 8} such that there is no set
of three numbers that are equally spaced and the same color.

We want to generalize this.

Def 1.1.1 An arithmetic progression of length k is a sequence of natural
numbers of the form

a, a+ d, a+ 2d, . . . , a+ (k − 1)d

where d 6= 0. In other words, it is a sequence of k numbers that are equally
spaced.

Notation 1.1.2 We often refer to an arithmetic progression of length k as
a k-AP where AP stands for Arithmetic Progression.

Def 1.1.3 Given a coloring of a subset of N a monochromatic k-AP is a
k-AP all of whose elements are the same color.

In the above example we looked at 2-colorings of {1, 2, . . . , 9}. It turned
out that for all 2-colorings of {1, . . . , 9} there is always a monochromatic
3-AP; however, there is a 2-coloring of {1, . . . , 8} with no monochromatic
3-AP. What if you increased the number of colors? What if you increased
the length k?

We now proceed more formally.
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Notation 1.1.4

1. N is the naturals which we take to be {1, 2, 3, . . . , }. (Some books take
it to include 0.)

2. If m ∈ N then [m] is {1, . . . ,m}.

The following was first proven by van der Waerden [88].
Van der Waerden’s Theorem (henceforth VDW):

Theorem 1.1.5 For every k ≥ 1 and c ≥ 1 there exists W such that for
every c-coloring χ:[W ] → [c] there exists a monochromatic k-AP. In other
words there exists a, d ∈ N such that

χ(a) = χ(a+ d) = · · · = χ(a+ (k − 1)d).

Def 1.1.6 Let k, c ∈ N. The value W (k, c) is the least W that satisfies
VDW. It is the van der Waerden number; henceforth VDW number.

We will prove van der Waerden’s Theorem in Section 2.2.4.

1.2 W

hat is the The Multidimensional van der Waerden Theorem?
Van der Waerden’s Theorem is about colorings of the naturals. What if

you want to color N×N? Or N×N×N? Do you still get some sort of order?
You do!

The Square Theorem:

Theorem 1.2.1 For all c there exists G = G(c) such that for all c-colorings
of G(c)×G(c) there exists a square that has all four corners the same color.

The multidimensional VDW is a generalization of this.

Def 1.2.2 Let k ≥ 1. Let (a0, a1) ∈ Z× Z. Let d ≥ 1. The k × k grid with
corner (a0, a1) and difference d is the set of points

{(a0, a1) + (id, jd) | 0 ≤ i, j ≤ k − 1}.

When the corner and difference of a k × k grid are unspecified we refer to it
as a k × k grid.
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The following result is the Gallai-Witt Theorem which we discuss in
Section 9.5. There is no publication by Gallai that contains it; however,
Rado [68],[69] proved it and credits Gallai. Witt [92] proved it indepen-
dently. We view it as the 2-dimentional VDW.

Theorem 1.2.3 For all k, for all c, there exists G = G(k, c) such that for
all c-colorings of G×G there is a regular k × k grid where all of the lattice
points in it are the same color.

We will prove Theorem 1.2.3 as a corollary of HJ.

Exercise 2 State the above theorem for any number of dimensions.

1.3 What is Rado’s Theorem?

VDW Theorem with k = 4 is can be rewritten as follows:
For all c, for all c-colorings, there exists W χ:[W ]→ [c], there exists a, d

such that

χ(a) = χ(a+ d) = χ(a+ 2d) = χ(a+ 3d).

We can rewrite this in terms of equations.
For all c, for all c-colorings, there exists W χ : [W ] → [c], there exists

e1, e2, e3, e4 such that

χ(e1) = χ(e2) = χ(e3) = χ(e4)

and

e2 − e1 = e3 − e2

e2 − e1 = e4 − e3

We rewrite these equations:

0e4 − e3 + 2e2 − e1 = 0
−e4 + e3 + e2 − e1 = 0

Let A be the matrix: (
0 −1 2 −1
−1 1 1 −1

)
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VDW for k = 4 can be rewritten as
For all c, for all c-colorings, there exists W χ : [W ] → [c] there exists

~e = e1, . . . , en such that

χ(e1) = · · · = χ(en),

A~e = ~0.

What other matrices have this property?

Def 1.3.1

1. A tuple (b1, . . . , bn) ∈ Zn is regular if the following holds: For all c, there
exists R = R(b1, . . . , bn; c) such that for all c-colorings χ:[R]→ [c] there
exists e1, . . . , en ∈ [R] such that

χ(e1) = · · · = χ(en),

n∑
i=1

biei = 0.

2. A tuple (b1, . . . , bn) ∈ Zn is distinct regular if the following holds: For
all c, there exists R = R(b1, . . . , bn; c) such that for all c-colorings χ:
[R]→ [c] there exists e1, . . . , en ∈ [R], all distinct, such that

χ(e1) = · · · = χ(en),

n∑
i=1

biei = 0.

3. A matrix A of integers is regular if the following holds: For all c, for
all c-colorings χ:N→ [c] there exists ~e = e1, . . . , en such that

χ(e1) = · · · = χ(en),

A~e = ~0.
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4. The definition of when a matrix is distinct regular is analogous to when
a vector is.

(Note that the definition of a regular matrix subsumes that of a regular
vector.)

The full Rado Theorem gives an exact characterization of which matrices
are regular. We state the conditions for a vector to be regular and distinct
regular. The full Rado Theorem will be stated in the chapter on Rado’s
Theorem.

Theorem 1.3.2 The tuple (b1, b2, . . . , bn) is regular iff some subset of {b1, . . . , bn}
sums to 0.

Theorem 1.3.3 If (b1, b2, . . . , bn) is regular and there exists (λ1, . . . , λn) 6= ~0
such that

∑n
i=1 λibi = 0 then (b1, . . . , bn) is distinct-regular.

1.4 What is the Polynomial van der Waerden

Theorem?

The standard VDW is about progressions of length k. The standard literature
on the Polynomial van der Waerden Theorem uses progressions of length k+1.
With this shifted notation the conclusion of VDW states that the progression

a, a+ p1(d), . . . , a+ pk(d)

is monochromatic where pi(x) = ix. Why restrict ourselves to these func-
tions? What happens if the pi are more general functions?

Notation 1.4.1 We denote the integers by Z. We denote the set of polyno-
mials with integer coefficients by Z[x].

Is the following true?

Potential Theorem 1.4.2 For any polynomials p1(x), . . . , pk(x) ∈ Z[x] for
any natural number c, there existsW such that, for any c-coloring χ:[W ]→ [c]
there exists a, d ∈ N such that

χ(a) = χ(a+ p1(d)) = χ(a+ p2(d)) = · · · = χ(a+ pk(d)).
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No it is not; there is an easy counterexample:

Exercise 3

1. Show that the above potential theorem is false if k = 1, p1(x) = 1,
c = 2.

2. Find counterexamples to the potential theorem where the polynomial
is not constant.

Is there a theorem of interest that avoids these counterexamples? Re-
markably, the theorem holds if the polynomials all have constant term 0.
This was first proven by Bergelson and Leibman [7].

Polynomial van der Waerden Theorem (Henceforth POLYVDW)

Theorem 1.4.3 For any polynomials p1(x), . . . , pk(x) ∈ Z[x] such that (∀i)[pi(0) =
0], for any natural number c, there exists W such that, for any c-coloring
χ:[W ]→ [c] there exists a, d ∈ N such that

χ(a) = χ(a+ p1(d)) = χ(a+ p2(d)) = · · · = χ(a+ pk(d)).

Def 1.4.4 Let p1, . . . , pk ∈ Z[x] and c ∈ N. W (p1, . . . , pk; c) is the least W
that satisfies POLYVDW . W (p1, . . . , pk; c) is called a polynomial van der
Waerden number, henceforth POLYVDW number.

POLYVDW was proved for k = 1 by Fürstenberg [26] and (indepen-
dently) Sarkozy [73]. The original proof of the full theorem by Bergelson and
Leibman [7] used ergodic methods. A later proof by Walters [90] uses purely
combinatorial techniques. We will present an expanded version of Walters’
proof in Section 2.2.4.

1.5 What is the Generalized POLYVDW?

Upon seeing the Polynomial van der Waerden Theorem one may wonder,
is it true over the reals? How do you even state this? This requires some
discussion. The following is true and is equivalent to POLYVDW.
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Polynomial van der Waerden Theorem over Z: For any natural number
c and any polynomials p1(x), . . . , pk(x) ∈ Z[x] such that (∀i)[pi(0) = 0], there
exists W such that for any c-coloring χ:[−W,W ]→ [c] there exists a, d ∈ Z,
d 6= 0, such that

χ(a) = χ(a+ p1(d)) = χ(a+ p2(d)) = · · · = χ(a+ pk(d)).

Note that the domain Z appears three times: the polynomials have coef-
ficients in Z, the c-coloring is of a finite subset of Z, and a, d ∈ Z. What if
we replaced Z by R? We would obtain the following:

Polynomial van der Waerden Theorem over R: For any natural number
c and any polynomials p1(x), . . . , pk(x) ∈ R[x] such that (∀i)[pi(0) = 0], there
exists a finite subset R′ ⊆ R such that for any c-coloring χ:R′ → [c] there
exists a, d ∈ R, d 6= 0, such that

χ(a) = χ(a+ p1(d)) = χ(a+ p2(d)) = · · · = χ(a+ pk(d)).

Why R? Can we generalize this to other of sets of numbers?

Def 1.5.1 An integral domain D = (D,+,×) consists of a set D and two
operations +,× such that

1. + and × are commutative and associative.

2. For all a, b, c ∈ D a× (b+ c) = a× b+ a× c.

3. There exists 0 ∈ D such that, for all a ∈ D, a+ 0 = a.

4. There exists 1 ∈ D such that, for all a ∈ D, a× 1 = a.

5. For all a ∈ D there exists b ∈ D such that a+ b = 0.

6. For all a, b ∈ D if a× b = 0 then either a = 0 or b = 0.

Convention 1.5.2 Formally the integral domain is the set together with the
operations. However, we will use the same symbol for the integral domain
as we do for the underlying set. Note that this is already common as we use
R for the reals and for the reals together with +,×.
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Notation 1.5.3 If D is an integral domain then D[x] is the set of polynomials
with coefficients in D.

Example 1.5.4

1. Z is an integral domain.

2. R and Q are integral domain; however, more can be said. Every non-
zero element has a multiplicative inverse. Integral domains with this
property are called fields.

Exercise 4

1. Show that, for all e ∈ N, the set

{a+ b
√
e | a, b ∈ Z}

is an integral domain.

2. Show that if D is an integral domain then D[x] is an integral domain.

3. Let Zn be the numbers {0, 1, . . . , n−1} with addition and multiplication
mod n. Fill in the XXX, YYY, ZZZ in the statements below and prove
them.

• For all n ≥ 2, Zn satisfies conditions XXX for being an integral
domain.

• There exists n ≥ 2 such that Zn does not satisfy condition YYY
for being an integral domain.

• For all n ≥ 2, Zn is an integral domain iff n is ZZZ.

Generalized Polynomial van der Waerden Theorem: Let D be an
infinite integral domain. For any natural number c and any polynomials
p1(x), . . . , pk(x) ∈ D[x] such that (∀i)[pi(0) = 0], there exists a finite subset
D′ ⊆ D such that for any c-coloring χ:D′ → [c] there exists a, d ∈ D, d 6= 0,
such that

χ(a) = χ(a+ p1(d)) = χ(a+ p2(d)) = · · · = χ(a+ pk(d)).
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This was first proven by Bergelson and Leibman [8]. In that paper they
proved the Polynomial Hales-Jewett Theorem (which we will state and prove
later) using ergodic techniques, and then derived the Generalized POLYVDW
Theorem as an easy corollary. Later Walters [90] obtained a purely combi-
natorial proof of POLYHJ.

Putting all of this together one obtains a purely combinatorial proof of
Generalized POLYVDW. This is the motivation for this book: To present
the Generalized POLYVDW in purely combinatorial terms. However, having
done that, there was so much more of interest that we just had to include.



Chapter 2

Van der Waerden’s Theorem

2.1 Introduction

Traditionally, Baudet is credited with the following conjecture:

For any partition of the natural numbers into two sets, one of the sets will
have arbitrarily long arithmetic progressions.

Van der Waerden’s paper [88] is titled Beweis einer Baudetschen Vermutung,
which translates as Proof of a Conjecture of Baudet; hence, van der Waer-
den thought he was solving a conjecture of Baudet. However, Soifer [78]
gives compelling evidence that Baudet and Schur deserve joint credit for this
conjecture.

As for who proved the conjecture there is no controversy: van der Waerden
proved it [88]. The proof we give is essentially his. He has written an account
of how he came up with the proof [89] which is reprinted in Soifer’s book.

VDW is more general than Baudet’s conjecture. VDW guarantees long
APs within finite rather than infinite sets of natural numbers, and allows
for the natural numbers to be divided up into any finite number of sets (by
color) instead of just two.

In this chapter, we will prove VDW the same way van der Waerden did.
We will express the proof in the color-focusing language of Walters [90].

Van der Waerden’s Theorem: For all k, c ∈ N there exists W such that,
for all c-colorings χ:[W ]→ [c], there exists a, d ∈ N such that

χ(a) = χ(a+ d) = χ(a+ 2d) = · · · = χ(a+ (k − 1)d).

21
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Def 2.1.1 Let k, c ∈ N. The van der Waerden number W (k, c) is the least
number W that satisfies van der Waerden’s Theorem with parameters k, c.

Before proving the theorem, let’s look at a few simple base cases.

• c = 1: W (k, 1) = k, because the sequence 1, 2, . . . , k forms a k-AP.

• k = 1: W (1, c) = 1, because a 1-AP is any single term.

• k = 2: W (2, c) = c+ 1, because any two numbers form a 2-AP.

Not bad— we have proven the theorem for an infinite number of cases.
How many more could there be?

Notation 2.1.2 We use VDW(k, c) to mean the statement of VDW with
the parameters k and c. Note that the two statements VDW(k, c) holds and
W (k, c) exists are equivalent.

The proof has three key ideas. We prove subcases that illustrate these
ideas before proving the full theorem itself.

2.2 Proof of van der Waerden’s Theorem

2.2.1 VDW(3, 2) and the first key idea

We show that there exists a W such that any 2-coloring of [W ] has a
monochromatic 3-AP. By enumeration one can show W (3, 2) = 9; how-
ever, we prefer to use a technique that generalizes to other values of k and
c. The proof will show W (3, 2) ≤ 325.

For this section let W ∈ N and let χ:[W ] → {R,B} (where W will be
determined later). Imagine breaking up the numbers {1, 2, 3, . . . ,W} into
blocks of five. We can assume W is divisible by 5.

{1, 2, 3, 4, 5}, {6, 7, 8, 9, 10}, . . . , {W − 4,W − 3,W − 2,W − 1,W}

Let Bi be the ith block. Consider what happens within a block. Clearly
for any block of five there must be three equally spaced elements for which
the first two are the same color. We state this formally so we can refer to it.
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Fact 2.2.1 Let B be a block of five elements. If χ is restricted to B. then
there exists a, d, d 6= 0, such that

a, a+ d, a+ 2d ∈ B

and

χ(a) = χ(a+ d).

We need to view χ : [W ] → {R,B} differently. The mapping χ can be
viewed as assigning to each block one of the 25 possible colorings of five
numbers: RRRRR, RRRRB, . . ., BBBBB. This is. . .

The First Key Idea: We view χ as a 32-coloring of the blocks. The
following viewpoint will be used over and over again in this book: View a
c-coloring of [W ] as a cB coloring of (W/B) blocks of size B.

The following is clear from the pigeonhole principle.

Lemma 2.2.2 Assume W ≥ 5 · 33 = 165. There exists two blocks Bi and
Bj (1 ≤ i < j ≤ 33) with the same coloring.

Theorem 2.2.3 Let W ≥ 325. Let χ : [W ] → [2] be a 2-coloring of [W ].
Then there exists a, d ∈ N such that

χ(a) = χ(a+ d) = χ(a+ 2d).

Proof: Let the colors be RED and BLUE. Assume, by way of contra-
diction, that there is no monochromatic 3-AP. View [W ] as being 65 blocks
of five. By Lemma 2.2.2 there exists two blocks Bi, Bj (1 ≤ i < j ≤ 33)
with the same coloring. By Fact 2.2.1, within Bi, there exists a, d such that
χ(a) = χ(a + d). Since Bi and Bj are the same color and are D apart we
have that there exists a, d,D such that, up to recoloring, the following holds.

• χ(a) = χ(a+ d) = χ(a+D) = χ(a+D + d) = RED.

• χ(a+ 2d) = χ(a+D + 2d) = BLUE.

• a+ 2D + 2d ∈ [W ].
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Figure 2.1 represents the situation.

R R B

d d

R R B

d d
DD

d d

?

Figure 2.1: Three 5-Blocks

If χ(a+ 2D + 2d) = BLUE then

χ(a+ 2d) = χ(a+D + 2d) = χ(a+ 2D + 2d) = BLUE.

If χ(a+ 2D + 2d) = RED then

χ(a) = χ(a+ (D + d)) = χ(a+ 2(D + d)) = RED.

In either case we get a monochromatic 3-AP, a contradiction.

Exercise 5

1. How many 2-colorings of a 5-block are there that do not have a monochro-
matic 3-AP? Use the answer to obtain a smaller upper bound on
W (3, 2) in the proof of Theorem 2.2.3.

2. Use 3-blocks instead of 5-blocks in a proof similar to that of Theo-
rem 2.2.3 to obtain a smaller upper bound on W (3, 2) in the proof of
Theorem 2.2.3.

3. Show thatW (3, 2) = 9. (Hint: Do not use anything like Theorem 2.2.3.)

4. Find all 3-colorings of [8] that do not have a monochromatic 3-AP.

5. For n = 10, 11, . . . try to find a 3-coloring of [n] that has no monochro-
matic 3-AP’s by doing the following which is called the Greedy method.
(By VDW there will be an n such that this is impossible.)

• Color the numbers in order.
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• If you can color a number RED without forming a monochromatic
3-AP, do so.

• If not, then if you can color that number BLUE without forming
a monochromatic 3-AP, do so.

• If not, then if you can color that number GREEN without forming
a monochromatic 3-AP, do so.

• If every color would form a monochromatic 3-AP, then stop.

6. (Open-ended) For n = 10, 11, . . . , try to find a 3-coloring of [n] that
has no monochromatic 3-AP’s. (By VDW there will be an n such that
this is impossible.) Do this by whatever means necessary. Get as large
an n as you can. Be all you can be!

2.2.2 VDW(3, 3) and the second key idea

We show that there exists a W such that any 3-coloring of [W ] has a
monochromatic 3-AP. It is known, using a computer program, thatW (3, 3) =
27 [13]. We use a technique that generalizes to other values of k and c, but
does not attain the exact bound.

For this section let W ∈ N and let χ:[W ] → {R,B,G} (where W is to
be determined later). Imagine breaking up the numbers {1, 2, 3, . . . ,W} into
blocks of seven. We can assume W is divisible by 7.

{1, 2, 3, 4, 5, 6, 7}, {8, 9, 10, 11, 12, 13, 14}, · · · , {W−6,W−5,W−4,W−3,W−2,W−1,W}

By techniques similar to those used in Section 2.2.1 we obtain that there
is some number U such that, for all 3-colorings of [U ], up to recoloring, there
exists a, d,D such that

• χ(a) = χ(a+ d) = χ(a+D) = χ(a+D + d) = RED.

• χ(a+ 2d) = χ(a+D + 2d) = BLUE.

• a+ 2D + 2d ∈ [W ].

Figure 2.2 represents the situation.
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Figure 2.2: Three 7-Blocks

If χ(a+ 2D + 2d) = BLUE then

χ(a+ 2d) = χ(a+D + 2d) = χ(a+ 2D + 2d) = BLUE.

If χ(a+ 2D + 2d) = RED then

χ(a) = χ(a+ (D + d)) = χ(a+ 2(D + d)) = RED.

Unfortunately all we can conclude is that χ(a+ 2D + 2d) = GREEN.
We have sketched a proof of the following:

Lemma 2.2.4 There exists U such that, up to recoloring, for all 3-colorings
of [U ] one of the following must occur.

1. There exists a monochromatic 3-AP.

2. There exists two 3-AP’s such that

• One is colored RED− RED−GREEN.

• One is colored BLUE− BLUE−GREEN.

• They have the same third point.

Let U be as in Lemma 2.2.4. Imagine breaking up the numbers {1, 2, 3, . . . ,W}
into blocks of U (we can assume W is divisible by U).

The Second Key Idea: We now take [U ] to be our block. We view [W ]
as a sequence of blocks, each of length U . This viewpoint will be used over
and over again in this book. First divide [W ] into blocks, then later take a
block of blocks, and then a block of blocks of blocks, etc.

We resume our discussion. View the 3-coloring of [W ] as a 3U coloring of
the blocks. Take W large enough so that there are two blocks Bi, Bj that are
the same color and a third block Bk such that Bi, Bj, Bk form an arithmetic
progression of blocks.
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Figure 2.3 represents the situation.
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Figure 2.3: Three U-Blocks

We leave the formal proof of Lemma 2.2.4 and the proof of VDW(3, 3) to
the reader.

Exercise 6

1. Use the ideas in this section to produce a rigorous proof of VDW(3, 3).
Obtain an actual number that bounds W (3, 3).

2. Use the ideas in this section to produce a rigorous proof of VDW(3, 4).

3. Use the ideas in this section to produce a rigorous proof that, for all c,
vdw(3, c) holds.

2.2.3 VDW (4,2): and the third key idea

We show that there exists a W such that any 2-coloring of [W ] has a
monochromatic 4-AP. It is known, using a computer program, thatW (4, 2) =
35 [13]. We use a technique that generalizes to other values of k and c, but
does not attain the exact bound.

For this section let W ∈ N and let χ:[W ]→ {R,B} (W to be determined
later). Imagine breaking up the numbers {1, 2, 3, . . . ,W} into blocks of length
2W (3, 2) (we can assume W is divisible by 2W (3, 2)).

{1, 2, 3, 4, 5, . . . , 2W (3, 2)}, {2W (3, 2)+1, . . . , 4W (3, 2)}, {4W (3, 2)+1, . . . , 6W (3, 2)}, · · ·

We will use VDW(3, c) for rather large values of c to prove VDW(4, 2).
This is. . .
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The Third Key Idea: To prove VDW(k, 2) we will use VDW(k − 1, c) for
an enormous value of c. Formally, this is an ω2 induction. We will discuss
and use inductions on complicated orderings later in this book.

We leave the following easy lemma to the reader.

Lemma 2.2.5 Let c ∈ N. Let χ:[2W (3, c)]→ [c]. There exists a, d ∈ N such
that

• χ(a) = χ(a+ d) = χ(a+ 2d), and

• a+ 3d ∈ [2W (3, c)] so χ(a+ 3d) is defined, though we make no claims
of its value.

Theorem 2.2.6 Let W ≥ 4W (3, 2) ×W (3, 22W (3,2)). Let χ:[W ] → [2] be a
2-coloring of [W ]. Then there exists a, d ∈ N such that

χ(a) = χ(a+ d) = χ(a+ 2d) = χ(a+ 3d).

Proof: Let the colors be RED and BLUE. Assume, by way of contradic-
tion, that there is no monochromatic 4-AP. View [W ] as being 2W (3, 22W (3,2))
blocks of size 2W (3, 2). We view the 2-coloring of [W ] as a 22W (3,2)-coloring of
the blocks. We will use VDW(3, 22W (3,2)) on the block-coloring and VDW(3, 2)
on the coloring of each block. By Lemma 2.2.5 applied to both the coloring
of the blocks and the coloring within a block, and symmetry, we have the
following: There exists a, d,D ∈ N such that

• χ(a) = χ(a+ d) = χ(a+ 2d) = RED,
χ(a+D) = χ(a+D + d) = χ(a+D + 2d) = RED,
χ(a+ 2D) = χ(a+ 2D + d) = χ(a+ 2D + 2d) = RED.

• χ(a+ 3d) = χ(a+D + 3d) = χ(a+ 2D + 3d) = BLUE.

• a+ 3D + 3d ∈ [W ].

Figure 2.4 represents the situation.



2.2. PROOF OF VAN DER WAERDEN’S THEOREM 29

R R R B

d d d

R R R B

d d d

R R R B

d d d

?

d d d

D D D

Figure 2.4: Four 2W (3, 2)-Blocks

If χ(a+ 3D + 3d) = BLUE then

χ(a+ 3d) = χ(a+ 3d+D) = χ(a+ 2D + 3d) = χ(a+ 3D + 3d) = BLUE.

If χ(a+ 3D + 3d) = RED then

χ(a) = χ(a+ (D + d)) = χ(a+ 2(D + d)) = χ(a+ 3(D + d)) = RED.

In either case we get a monochromatic 4-AP, a contradiction.

Exercise 7

1. Use the proof of Theorem 2.2.6 to obtain an actual bound on W (4, 2).

2. Fix k. Assume that, for all c, VDW(k−1, c) is true. Prove VDW(k, 2).

3. Fix k. Assume that, for all c, VDW(k−1, c) is true. Prove VDW(k, 3).

4. Prove the full VDW.

2.2.4 The full proof

Now that you know the Key Ideas you have all of the intuitions for the proof.
We formalize them here. The method we use here, color focusing, will occur
again and again in this book.

We will prove a lemma from which van der Waerden’s Theorem will follow
easily. Informally, the lemma states the following: if you c-color a large
enough [U ], then either there will be a monochromatic k-AP or there will be
an arbitrarily large number of monochromatic (k − 1)-AP’s, all of different
colors. Once there are c + 1 such (k − 1)-AP’s the latter cannot happen, so
the former must.
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Lemma 2.2.7 Fix k, c ∈ N with k ≥ 3. Assume (∀c′)[VDW(k−1, c′)]holds].
Then, for all r, there exists U = U(r)1 such that for all c-colorings χ:[U ]→
[c], one of the following statements holds.

Statement I: There are a, d ∈ N such that

χ(a) = χ(a+ d) = χ(a+ 2d) = · · · = χ(a+ (k − 1)d).

Statement II: There exists an anchor a ∈ N and numbers d1, d2, . . . , dr ∈ N,
such that

χ(a+ d1) = χ(a+ 2d1) = · · · = χ(a+ (k − 1)d1)

χ(a+ d2) = χ(a+ 2d2) = · · · = χ(a+ (k − 1)d2)

...

χ(a+ dr) = χ(a+ 2dr) = · · · = χ(a+ (k − 1)dr)

and, for all i 6= j, χ(a+ di) 6= χ(a+ dj).

Proof:

We define U(r) to be the least number such that this lemma holds. We
will prove U(r) exists by giving an upper bound on it.

Base Case: r = 1. We show that U(1) ≤ 2W (k − 1, c). Let χ:[2W (k −
1, c)]→ [c]. Apply VDW(k−1, c) to the last half of [U(1)] to obtain a′, d ∈ N
such that

χ(a′) = χ(a′ + d) = · · · = χ(a′ + (k − 2)d)

and

a′ − d ∈ [U(1)].

Figure 2.5 represents the situation.

1Formally U depends on k, c, r; however, we suppress the dependence on k and c for
ease of notation.
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Figure 2.5: Base Case

Let a = a′ − d. If χ(a) = χ(a′) then a′ − d, a′, a′ + d, . . . , a′ + (k − 2)d is
a monochromatic k-AP that satisfies Statement I. If χ(a) 6= χ(a′) then a, d
satisfy Statement II.

Induction Step: By induction, assume U(r) exists. We will show that
U(r + 1) ≤ 2U(r)W (k − 1, cU(r)). Let

U = 2U(r)W (k − 1, cU(r)).

Let χ:[U ]→ [c] be an arbitrary c-coloring of [U ].
We view [U ] as being U(r)W (k − 1, cU(r)) numbers followed by

W (k − 1, cU(r)) blocks of size U(r). We denote these blocks by

B1, B2, . . . , BW (k−1,cU(r)).

Just one of these block looks like Figure 2.6. Figure 2.7 represents the
situation we have with W (k − 1, cU(r)) blocks.

c1 c1 c1

d1 d1 d1 d1

cr cr cr

dr dr dr dr

c
0

Figure 2.6: One Block of Size U(r)
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Figure 2.7: Many Blocks of U(r)
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We view a c-coloring of the second half of [U ] as a cU(r)-coloring of
these blocks.

Let χ∗ be this coloring. By the definition of W (k − 1, cU(r)), we get a
monochromatic (k − 1)-AP of blocks. Hence we have A,D′ such that

χ∗(BA) = χ∗(BA+D′) = · · · = χ∗(BA+(k−2)D′)

Figure 2.7 represents the situation.

Now, consider block BA. It is colored by χ. It has length U(r), which
tells us that either Statement I or II from the lemma holds. If Statement I
holds — we have a monochromatic k-AP — then we are done. If not, then
we have the following: a′, d1, d2, . . . , dr with a′ ∈ BA, and

{a′ + d1, a
′ + 2d1, . . . , a

′ + (k − 1)d1} ⊆ BA

{a′ + d2, a
′ + 2d2, . . . , a

′ + (k − 1)d2} ⊆ BA

...

{a′ + dr, a
′ + 2dr, . . . , a

′ + (k − 1)dr} ⊆ BA

χ(a′ + d1) = χ(a′ + 2d1) = · · · = χ(a′ + (k − 1)d1)

χ(a′ + d2) = χ(a′ + 2d2) = · · · = χ(a′ + (k − 1)d2)

...

χ(a′ + dr) = χ(a′ + 2dr) = · · · = χ(a′ + (k − 1)dr)

where χ(a′ + di) are all different colors, and different from a′ (or else there
would already be a monochromatic k-AP). How far apart are corresponding
elements in adjacent blocks? Since the blocks viewed as points are D′ apart,
and each block has U(r) elements in it, corresponding elements in adjacent
blocks are D = D′ × U(r) apart. Hence

χ(a′ + d1) = χ(a′ +D + d1) = · · · = χ(a′ + (k − 2)D + d1)

χ(a′ + d2) = χ(a′ +D + d2) = · · · = χ(a′ + (k − 2)D + d2)
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...

χ(a′ + dr) = χ(a′ +D + dr) = · · · = χ(a′ + (k − 2)D + dr)

We now note that we have only worked with the second half of [U ]. Since
we know that

a >
1

2
U = U(r)W (k − 1, cU(r))

and

D ≤ 1

k − 1
U(r)W (k − 1, cU(r)) ≤ U(r)W (k − 1, cU(r))

so we find that a = a′ −D > 0 and thus a ∈ [U ]. The number a is going to
be our new anchor.

So now we have

χ(a+ (D + d1)) = χ(a+ 2(D + d1)) = · · · = χ(a+ (k − 1)(D + d1))
χ(a+ (D + d2)) = χ(a+ 2(D + d2)) = · · · = χ(a+ (k − 1)(D + d2))

...
χ(a+ (D + dr)) = χ(a+ 2(D + dr)) = · · · = χ(a+ (k − 1)(D + dr))

Where each progression uses different color.
We need an (r + 1)st monochromatic set of points. Consider

{a+D, a+ 2D, . . . , a+ (k − 1)D}.

These are corresponding points in blocks which have the same color under
χ∗, hence

χ(a+D) = χ(a+ 2D) = · · · = χ(a+ (k − 1)D)).

In addition, since

(∀i)[χ(a′) 6= χ(a′ + di)]

the color of this new progression is different from the r progression above.
Hence we have r + 1 monochromatic (k − 1)-AP’s, all of different colors,

and all with projected first term a. Formally the new parameters are a,D+
d1, . . . , D + dr, and D.
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Theorem 2.2.8 (Van der Waerden’s Theorem) ∀k, c ∈ N,∃W = W (k, c)
such that, for all c-colorings χ:[W ]→ [c], ∃a, d ∈ N, d 6= 0 such that

χ(a) = χ(a+ d) = χ(a+ 2d) = · · · = χ(a+ (k − 1)d)

Proof:
We prove this by induction on k. That is, we show that

• (∀c)[W (1, c) exists]

• (∀c)[W (k, c) exists] =⇒ (∀c)[W (k + 1, c) exists]

Base Case: k = 1 As noted above W (1, c) = 1 suffices. In fact, we also
know that W (2, c) = c+ 1 suffices.

Recall that VDW(k, c) means that Van der Waerden’s Theorem holds
with parameters k, c.
Induction Step: Assume (∀c)[VDW(k− 1, c) holds]. Fix c. Consider what
Lemma 2.2.7 says when r = c. In any c-coloring of U = U(c), either there
is a monochromatic k-AP or there are c monochromatic (k − 1)-AP’s which
are all colored differently, and a number a whose color differs from all of
them. Since there are only c colors, this cannot happen, so we must have a
monochromatic k-AP. Hence W (k, c) ≤ U(c) and hence exists.

Note that the proof of VDW(k, c) depends on VDW(k − 1, c′) where c′

is quite large. Formally the proof is an induction on the following order on
N× N.

(1, 1) ≺ (1, 2) ≺ · · · ≺ (2, 1) ≺ (2, 2) ≺ · · · ≺ (3, 1) ≺ (3, 2) · · ·

This is an ω2 ordering. It is well founded, so induction works.

Exercise 8 We describe several games related to VDW. For all of them
there are two parameters n and k, and two players: I and II. Initially [n]
is uncolored. Players alternate coloring a previously uncolored element with
Player I going first (duh). Player I uses RED, Player II uses BLUE.

1. AP game: the first player to get a k-AP in his color wins. (Variant:
Play to the end and whoever has the most k-AP’s wins. It can be a
tie.)
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2. AVOID-AP game: The first player to get a k-AP in his color loses.
(Variant: Play to the end and whoever has the fewest k-AP’s wins. It
can be a tie.)

3. Maker-Breaker Game: The first player wins if he gets a k-AP in his
color, the second player wins if the first player does not.

4. A variant of all of them: Have two more parameters a and b. Player
I colors a numbers in his turn, and Player II colors b numbers in his
turn.

Here are questions about these games.

1. Fix k. Show that there exists n such that, no matter how the players
play, the game cannot be a draw.

2. (Open-ended) For various choices of the parameters, determine which
player wins, assuming they both play perfectly. (Hint: only use small
values of the parameters.)

3. (With a computer program) For various choices of the parameters de-
termine which player is more likely to win if they both play randomly.

4. (With a computer program) For various choices of the parameters, de-
termine the probability that a perfect player wins while playing against
a random opponent.

5. (Fun) Play the game with your younger relatives to get them interested
in math.

Note 2.2.9 József Beck [3, 4, 5, 6] has studied many games of the type in
Exercise 8, as well as other types of combinatorial games.

Exercise 9 Consider the following games played between EMPTIER and
FILLER. We denote EMPTIER by E and FILLER by F. There is one pa-
rameter: an ordered set (X,�).

• FILLER fills a box with a finite number of balls. Each ball has an
element of X on it. (Many balls may have the same element of X on
them.)
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• In every round E makes the first move. E’s move consists of taking a
ball from the box. F then counters by replacing the ball with a finite
number of balls that have a smaller element of X on it (with respect
to the order �). (For example, if X = N a ball labeled 1000 could be
replaced with 999,999,999 balls of rank 999 and 888,876,234,012 balls
of rank 8.)

• If the box is ever empty then E wins. If the box is always nonempty
(i.e., the game goes on forever) then F wins.

For each of the following (X,�) determine which player wins. Prove your
result. Note what kind of induction you need to use.

1. (X,�) is N with its usual ordering.

2. (X,�) is Q with its usual ordering.

3. (X,�) is Z with its usual ordering.

4. X = {0, 1} × N with the ordering

(0, 0) � (0, 1) � (0, 2) � · · · � (1, 0) � (1, 1) � (1, 2) � (1, 3) � · · ·

5. X = N×N×N with the ordering (a, b, c) � (d, e, f) if either (1) a < c
or (2) a = c and b < d, or (3) a = d and b = e but c < f .

Find a property P so that this statement is true:
“E can win the (X,�)-game if and only if (X,�) has property P.”

Note 2.2.10 Raymond Smullyan [77] came up with the game in Exercise 9
Similar games are discussed in an article by Martin Gardner [29].

Exercise 10 The notation (x)b means n is a base b number. If we use this
notation then n is written as a sequence of elements from {0, 1, 2, . . . , b− 1}.
Consider the following method to generate a sequence. We are initially given
b and a base b number n. We set G(0) = (n)b. Intuitively we will increase
the base by 1 and decrease the number by 1. Formally, for all n ≥ 1,

[G(n) = (G(n− 1))b+n − 1.

For example, if b = 10 and G(0) = (1928)10 then we obtain the following
sequence. (We write the base 10 numbers in parenthesis on each line so we
can see how the numbers grow.) (we write
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• G(0) = (1928)10. (This is 1928 in base 10.)

• G(1) = (1928)11 − 1 = (1927)11. (This is 2449 in base 10.)

• G(2) = (1927)12 − 1 = (1926)12. (This is 3054 in base 10.)

• G(3) = (1926)13 − 1 = (1925)13. (This is 3749 in base 10.)

1. (Use a computer program.) For 1 ≤ i ≤ 10 determine the first 10
elements of the sequence that begins with G(i) in base 5.

2. Prove that, for all i, the G-sequence that begins with G(0) = i is
eventually 0.

3. (Informal) What kind of induction did you use in that proof?

4. (Informal) Let T (n) be the least t such that the G-sequence beginning
with G(0) = t terminates. How fast does T (n) grow?

Exercise 11 (This exercise is an extension of the last one.) Let b ∈ N.
A numbers is in hereditary base b form if it is written as a weighted sum of
powers of b (the weights are ≤ b − 1). and the exponents are written as a
weight sum of powers of b (the weights are ≤ b − 1), and the exponents of
that, etc. For example, 649782 in base 3 hereditary notation we do in steps:

649782 = 312 + 2× 310 + 35 = 332+31

+ 2× 332+30

+ 331+2×30

.

The notation [x]b means n is written in hereditary base b. If we use this
notation then n is written in hereditary base b form. Consider the following
method to generate a sequence. We are initially given b and a number n
written in hereditary base b form. We set H(0) = [n]b. Intuitively we will
increase the hereditary base by 1 and decrease the number by 1. Formally,
for all n ≥ 1,

[H(n) = [H(n− 1)]b+n − 1.

For example, if b = 3 and H(0) = 649782 then

• H(0) = 332+31
+ 2× 332+30

+ 331+2×30
(This is 64972 in base 10.)
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• H(1) = 442+41
+ 2× 442+40

+ 441+2×40
)− 1 =

442+41
+2×442+40

++3×441+40
+3×441

+3×43×40
+3×42×40

+3×440
.

(This is 1133871370239 in base 10.)

1. (Use a computer program.) For 1 ≤ i ≤ 5 determine the first 5 elements
of the sequence that begins with H(i) in base 2.

2. Prove that, for all i, the H-sequence that begins with H(0) = i is
eventually 0.

3. (Informal) What kind of induction did you use in that proof?

4. (Informal) Let S(n) be the least t such that the H-sequence beginning
with H(0) = t terminates. How fast does S(n) grow?

Note 2.2.11 Goodstein [33] first proved for all i, the H-sequence that be-
gins with H(0) = i is eventually 0. Kirby and Paris [44], Cichon [14], and
Caicedo [12] have studied the growth rate of S(n).

Definition: Let e, d1, . . . , dk ∈ N. The cube on (e, d1, . . . , dk), denoted
C(e, d1, . . . , dk), is the set {e + b1d1 + · · · + bkdk | b1, . . . , bk ∈ {0, 1}}. To
emphasize the number of di’s, this is also called a k-cube.

Exercise 12
Consider the following statement which we call Hilbert’s Cube Lemma (HCL):

For all k, c there exists H = H(k, c) such that, for all c-colorings of [H],
there exists a monochromatic cube.

1. Prove HCL from VDW. Express a bound for H(k, c) in terms of VDW
numbers.

2. Prove HCL without using VDW.

3. Compare the bounds you get in each proof.

Note 2.2.12 Hilbert [41] first proved HCL. This seems to be the first Ram-
seyian theorem ever proven. This theorem could have launched Ramsey
Theory; however, Hilbert saw it as a minor lemma en route to a theorem.
Nobody else picked up on it as being a new type of mathematics.
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Exercise 13 Prove the following: For all e, k there exists U such that for
any sequence of naturals

A = {a1 < a2 < . . . < aU}

with (∀i)[ai+1−ai ≤ e], there exists an arithmetic sequence of length k within
A.

2.3 The van der Waerden numbers

2.3.1 Upper bounds on W (k, c)

Our bounds are not primitive recursive!

We discuss the upper bounds on W (k, c) provided by the proof of Theo-
rem 2.2.8. We actually discuss a rather large set of functions that encompass
most of mathematics, the primitive recursive functions.

Def 2.3.1 A function f(x1, . . . , xn) is primitive recursive if either:

1. f is the Zero function, i.e. f(x1, . . . , xn) = 0;

2. f is the Successor function, i.e. f(x1, . . . , xn) = xi + 1;

3. f is the Projection function, i.e. f(x1, . . . , xn) = xi;

4. f is defined by the Composition of (previously defined) primitive recur-
sive functions, i.e. if g1(x1, . . . , xn), g2(x1, . . . , xn), . . ., gk(x1, . . . , xn)
are primitive recursive and h(x1, . . . , xk) is primitive recursive, then

f(x1, . . . , xn) = h(g1(x1, . . . , xn), . . . , gk(x1, . . . , xn))

is primitive recursive. This rule for deriving a primitive recursive func-
tion is called the Composition rule.

5. f is defined by Recursion of two primitive recursive functions, i.e. if
g(x1, . . . , xn−1) and h(x1, . . . , xn+1) are primitive recursive then the fol-
lowing function is also primitive recursive

f(x1, . . . , xn−1, 0) = g(x1, . . . , xn−1)

f(x1, . . . , xn−1,m+ 1) = h(x1, . . . , xn−1,m, f(x1, . . . , xn−1,m))
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This rule for deriving a primitive recursive function is called the Recur-
sion rule.

Virtually every N-valued function you can think of is primitive recursive.
Essentially every computer program computes a primitive recursive function.

Example 2.3.2

1. f(x) = x + 5. This is primitive recursive by composing Successor 5
times.

2. f(x, y) = x+ y. This is primitive recursive by defining addition recur-
sively.

f(x, 0) = x

f(x, y + 1) = f(x, y) + 1

3. f(x, y) = xy. This is primitive recursive by defining multiplication
recursively.

f(x, 0) = x

f(x, y + 1) = f(x, y) + y

4.

f(x) =

{
0 if x is prime

1 if x is not prime
(2.1)

f(x) is primitive recursive; however, this is difficult to show so we omit
it. The reader is invited to try to prove it.

5. Let f(x) be the xth prime. f(x) is primitive recursive; however, this is
difficult to show so we omit it. The reader is invited to try to prove it.

6. If you replace prime with square or power of 14 or Fibonacci prime or
perfect number in the last two example then the resulting function is
primitive recursive. Several of these are difficult.
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Exercise 14

1. Show that f(x, y) = xy is primitive recursive.

2. Show that there exists a 0-1 valued function that is not primitive re-
cursive. (Hint: Use diagonalization.)

Notice the pattern here. Successor is primitive recursive. Iterated succes-
sor is addition, so that is primitive recursive. Iterated addition is multiplica-
tion, so that is primitive recursive. Iterated multiplication is exponentiation,
so that is primitive recursive. What is iterated exponentiation? It is often
called the tower function, which we denote by TOW . TOW (x, y) is the re-
sult of taking x to the x to the x ... to the x, where you do this y times.
That is quite large. But it does not stop there. What happens if you iterate
TOW? This is called the WOW function.

The bound we proved on W (k, c) is not primitive recursive! The reason
is that the bound was quite large. Is there some natural function that is
similar to our bound? Yes, Ackermann’s function.

Def 2.3.3 Ackermann’s function is the function defined by

A(0, y) = y + 1

A(x+ 1, 0) = A(x, 1)

A(x+ 1, y + 1) = A(x,A(x+ 1, y))

It is easy to see that Ackermann’s function is computable; however, it
cannot be primitive recursive because it grows too fast. Ackermann’s func-
tion grows fast by using a recursion where the depth of the recursion is itself
an argument to the function. Primitive recursive functions have a constant
bound on the depth of the recursion. While this is not a proof that Acker-
mann’s function is not primitive recursive, it is an intuition.

Primitive recursive bounds are found!

By the mid 1980’s the best known bounds on W (k, c) were still those
from Theorem 2.2.8. In particular, they were not primitive recursive. It was
thought that one of the following would happen:
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1. A logician would prove that W (k, c) was not primitive recursive. In
1977 Paris and Harrington showed that the Large Ramsey numbers
were not primitive recursive [61]. In fact,they showed something much
stronger: the Large Ramsey Theorem could not be proven in Peano
Arithmetic. There were similar results by Kanamori and McAloon [43,
59]. The proof of VDW was in Peano Arithmetic; however, perhaps a
refinement of their techniques would lead to W (k, c) not being primitive
recursive.

2. A combinatorialist would prove that W (k, c) is primitive recursive with
a different proof of VDW.

What happened? In 1988 Shelah, a logician, proved that W (k, c) is prim-
itive recursive with a different proof of VDW! His proof is purely combina-
torial. He actually found a proof of the Hales-Jewett Theorem which yielded
better upper bounds on the Hales-Jewett numbers which, in turn, gave better
upper bounds on the VDW numbers. We will give his proof in Chapter8.

Real bounds are found!
Shelah’s upper bounds were still quite large. They do not have an easy

description like W (k, c) ≤ 22kc . Better bounds were found by following a
research plan that was first formulated by ErdHos.

Imagine that you 12-color N. There must be a monochromatic 84-AP.
Imagine that I tell you, informally, that RED appears the most times. Then
you might think that there is a RED 84-AP. Erdős conjectured that this was
indeed the case. We state this rigorously in our timeline below.

Def 2.3.4 If A ⊆ N, then the upper density of A is lim supn→∞
|A∩[n]|
n

.

We give a history of how better bounds on W (k, c) were found. We also
include some side roads about POLYVDW.

1. In 1927 van der Waerden proves VDW. His proof yields bounds on
W (k, c) that are not primitive recursive.

2. In 1936 Erdős and Turan [24] conjectured that every set of positive up-
per density has a 3-AP. A proof of this would yield a proof of VDW(3, c)
that is very different from the original proof (and from Shelah’s proof).
They have often been credited with conjecturing that every set of posi-
tive upper density has a k-AP with this paper as the reference; however,
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Soifer [78] gives compelling evidence that the conjecture for k-AP was
made by Erdős in 1957 (next item).

3. In 1953 Roth [72] (see also [58]) proved that, for every δ > 0, for every

N ≥ 22O(δ−1

, for every A ⊆ [N ] with |A| ≥ δN , A has a 3-AP. The
proof used Fourier Analysis. This result did lead to better bounds on
W (3, c), namely W (3, c) ≤ 22O(c)

(see Exercise 17).

4. In 1957 Erdős [22] conjectured that every set of positive upper density
has a k-AP. A proof of this would yield a proof of VDW that is very
different from the original proof (and from Shelah’s proof). Such a
proof might lead to better bounds on W (k, c). We will call this The
Conjecture.

5. In 1974 Szemerédi [83] proved the k = 4 case of The Conjecture with a
purely combinatorial proof. This result did not lead to better bounds
on W (4, c). Even though it is purely combinatorial, it is rather difficult.

6. In 1975 Szemerédi [84] proved The Conjecture with a purely combi-
natorial proof. His result did not lead to better bounds on W (k, c)
because the proof used VDW. Even though it is purely combinato-
rial, it is rather difficult. In order to prove this he first proved Sze-
merédi’s Regularity Lemma which has been very useful in a variety of
fields [47, 48, 79].

7. In 1977 Fürstenberg [26] proved The Conjecture with ergodic methods.
His proof did not appear to lead to any bounds on W (k, c) since it
was nonconstructive. Avigad and Towsner [2] (see also [31, 32, 45, 1])
have shown that, in principle, one can extract bounds from the proof;
however, these bounds are no better than the classic bounds and may
be worse.

8. In 1988 Shelah [76] obtained a new proof of VDW that yielded primitive
recursive bounds on W (k, c). The bounds are still quite large and
cannot be written down. The proof is purely combinatorial and does
not use any of the techniques related to The Conjecture.

9. In 1996 Bergelson and Leibman [7] used ergodic techniques to prove
the following generalization of The Conjecture:
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Let p1, . . . , pk ∈ Z[x] such that (∀i)[pi(0) = 0]. If A is a set of positive
upper density then there exists a, d ∈ N such that a, a + p1(d), a +
p2(d), . . . , a+ pk(d) ∈ A.

An easy corollary is POLYVDW which we restate here:

For any polynomials p1(x), . . . , pk(x) ∈ Z[x] such that (∀i)[pi(0) = 0],
for any natural number c, there exists W = W (p1, . . . , pk; c) such that,
for any c-coloring χ:[W ] → [c] there exists a, d ∈ N such that χ(a) =
χ(a+ p1(d)) = χ(a+ p2(d)) = · · · = χ(a+ pk(d)).

Their proof did not appear to lead to any bounds on W since it was
nonconstructive. Towsner [87] showed that, in principle, one can ex-
tract bounds from the proof; however, these bounds are no better than
the classic bounds and may be worse.

10. In 2000 Walters [90] obtained a proof of POLYVDW that yielded
bounds W (p1, . . . , pk; c). these bounds were not primitive recursive.

11. In 2001 Gowers [34, 35] proved The Conjecture using Fourier methods.
His proof did yield better bounds on W (k, c). In particular he obtains

W (k, c) ≤ 22c
22k+9

12. In 2002 Shelah [75] obtained a proof of POLYVDW that yielded prim-
itive recursive bounds on W (p1, . . . , pk; c).

13. In 2006 Graham and Solymosi [37] obtained a purely combinatorial

proof that W (3, c) ≤ 222O(c)

.

This is currently the best-known bound on W (k, c). Note that this bound
can actually be written down, unlike the original proof or Shelah’s proof.

Exercise 15 Let p(k, c) be the bound on W (k, c) that comes out of the
original proof of VDW (the proof we gave of Theorem 2.2.8). Give upper
and lower bounds on p(k, c) using Ackermann’s function.

Exercise 16 Let n ∈ N. Think of n as being large. Only use elementary
methods in solving this problem. (Also, you cannot use any of the results in
the list above.)
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1. Show that if A ⊆ [n] and |A| > 2n/3 then A has a 3-AP.

2. (Open-ended) Find the smallest α you can such that you can prove,
using elementary methods and a computer program, that if |A| > αn
then A has a 3-AP.

3. (Open-ended) Fix k. Find the smallest α you can such that you can
prove, using elementary methods and a computer program, that if |A| >
αn then A has a k-AP.

Exercise 17

1. Use Roth’s theorem to show that W (3, c) ≤ 22O(c)
.

2. Bourgain [10] showed that A ⊆ [n] and |A| ≥ Ω
(
n
√

log logn
logn

)
then A

has a 3-AP. Use this to obtain a bound on W (3, c) that is better than
the one just found above.

2.3.2 Lower bounds on W (k, c)

Theorem 2.3.5 For all k, c, W (k, c) ≥
√
k − 1c(k−1)/2.

Proof:
We will derive the result as we prove the theorem. Let W be a number

to be picked later. We are going to try to c-color [W ] such that there are no
monochromatic k-AP’s. More precisely, we are going to derive a value of W
such that we can show such a coloring exists.

Consider the following experiment: for each i ∈ [W ] randomly pick a
color from [c] for i. The distribution is uniform. What is the probability
that a monochromatic k-AP is formed?

First pick the color of the progression. There are c options. Then pick
the value of the first point a. There are at most W options. Then pick the
value of the difference d. There are at most W/(k − 1) options. Once these
are determined, the color of the distinct k values in

{a, a+ d, a+ 2d, . . . , a+ (k − 1)d}

are determined. There are W − k values left. Hence the number of such
colorings is bounded above by cW 2cW−k/(k − 1).
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Hence the probability that the c-coloring has a monochromatic k-AP is
bounded above by

cW 2cW−k

(k − 1)cW
=

W 2

(k − 1)ck−1
.

If this number is less than 1, then the probability of no monochromatic k-AP
must be positive, so such a coloring must exist. Hence we need

W 2 < (k − 1)ck−1,

meaning
W < c(k−1)/2

√
k − 1.

Therefore there is a c-coloring of
√
k − 1(c(k−1)/2 − 1) without a monochro-

matic k-AP. Hence W (k, c) ≥
√
k − 1c(k−1)/2.

Note that the proof of Theorem 2.3.5 is nonconstructive in that a coloring
is not produced. Is there a constructive proof for this bound? This depends
on how you define constructive. Are there better lower bounds? Yes. Gasarch
and Haeupler [30] have a survey of lower bounds on van der Waerden numbers
that also clarifies the issues surrounding non-constructive proofs.

2.3.3 Lower bounds on W (3, c)

2.3.4 Three-free sets

2.3.5 Some exact values for W (k, c)

Very few of the VDW numbers are known. The following table summarizes
all that is known.

VDW number Value Reference
W (2, 3) 9 Folklore and above
W (3, 3) 27 Chvátal [13]
W (3, 4) 76 Brown [11]
W (4, 2) 35 Chvátal [13]
W (4, 3) 293 Kouril (personal communication)
W (5, 2) 178 Stevens and Shantarum [80]
W (6, 2) 1132 Kouril [50]

The results above were not obtained by brute force search over all possible
colorings. That would take too much time. We briefly discuss how Kouril
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and Paul [50] obtained W (6, 2) = 1132. We note that Kouril and Franco [49]
obtained W (6, 2) ≤ 1131.

Def 2.3.6 Let c, n, L ∈ N. Let χ be a c-coloring of [n]. Let b1, . . . , bL ∈
[c]. We say that χ has the pattern b1b2 · · · bL if there exists an x such that
χ(x)χ(x+ 1) · · ·χ(x+ L− 1) = b1b2 · · · bL.

Def 2.3.7 A 2-coloring of [n] with no monochromatic 6-AP is called a good
coloring.

The first step in proving that W (6, 2) = 1132 is to find some unavoidable
patterns.

1. They showed that any good coloring of [240] has either the pattern
0000 or 1111. By symmetry they assume its 0000.

2. They found extensions of 0000 that were unavoidable. They stopped
when they had 2,537,546 unavoidable patters of length either 28 or 29.
Several clever heuristics were used; however, there approach did yield
all such unavoidable patterns of these lengths.

3. Which patterns can be in the middle of a good coloring of [240]? For
each pattern p they formulated as a SAT question: Is there a good
coloring of [240] with p in the middle portion?

4. Using a SAT-solver they found all solutions to this formula. There
were only 111. Hence there are patterns p1l, . . . , p111 such that any
good coloring of [240] has one of these patterns as the middle. Hence
the same is true for any good colorings of [326].

5. Using a SAT-solver see for which of the 111 patterns p is there a good
coloring of [326] with p in the middle. There are only 52 such patterns.
This yields 648,005 good colorings of [326].

6. For each of the 648,005 possible good coloring of [326] p, for all 1 ≤
i ≤ 806 find all good colorings where the pattern p is the coloring for
the numbers between i and i+ 325. There are only 3552 of them. Note
that these are all possible good colorings of [1031].
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7. Test if any of these 3552 good colorings of [1031] can be extended to
good colorings of [1032]. They cannot.

The above sequence (when actually carried out) shows that there is a
good coloring of [1331] but not of [1332]. Hence W (6, 2) = 1132.

Exercise 18

1. Use techniques similar to that above to obtain some of the van der
Warden Numbers in Table For W (2, 3) do not use a computer. For the
rest use it sparingly.

2. (Open) Find some new van der Waerden Numbers.

3. (Open) Let 1 ≤ i < j. For small values of i, j, c find the least U such
that, for any c-coloring of [U ], there exists a, d such that a, a+id, a+jd
are the same color.
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Chapter 3

The Square Theorem

51
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Chapter 4

Coloring and Equations:
Rado’s Theorem

4.1 Introduction

VDW Theorem with k = 4 can be stated as follows:

For all c, for all c-colorings χ:N→ [c], there exists a, d such that

χ(a) = χ(a+ d) = χ(a+ 2d) = χ(a+ 3d).

We rewrite this in terms of equations.

For all c, for all c-colorings χ:N → [c], there exists distinct e1, e2, e3, e4

such that

χ(e1) = χ(e2) = χ(e3) = χ(e4)

and

e2 − e1 = e3 − e2

e2 − e1 = e4 − e3.

We rewrite these equations:

e1 − 2e2 + e3 + 0e4 = 0
e1 − e2 − e3 + e4 = 0.

53
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Let A be the matrix: (
1 −2 1 0
1 −1 −1 1

)
.

VDW for k = 4 can be rewritten as
For all c, for all c-colorings χ:N→ [c] there exist distinct e1, e2, e3, e4 such

that

χ(e1) = χ(e2) = χ(e3) = χ(e4),

A~e = ~0,

where ~e = (e1, e2, e3, e4).
What other matrices have this property? We drop the requirement that

the ei be distinct for now.

Def 4.1.1

1. (b1, . . . , bn) ∈ Zn is regular if the following holds: For all c, there exists
R = R(b1, . . . , bn; c) such that for all c-colorings χ:[R]→ [c] there exist
e1, . . . , en ∈ [R] such that

χ(e1) = · · · = χ(en),

n∑
i=1

biei = 0.

2. A matrix A of integers is regular if the following holds: For all c, there
exists R = R(A; c) such that for all c-colorings χ:[R]→ [c] there exists
~e = (e1, . . . , en) such that

χ(e1) = · · · = χ(en),

A~e = ~0.

(Note that the definition of a regular matrix subsumes that of a regular
vector.)
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In Section 4.2 we will prove the Single Equation Rado Theorem which
gives an exact condition for single equations to be regular. In Section 4.3 we
will prove the Full Rado Theorem which gives an exact condition for matrices
to be regular.

Exercise 19 Write down the matrix that represents the theorem VDW(5, 2).

Exercise 20 Write a computer program that will, given k, c, output the
matrix that corresponds to VDW(k, c).

Exercise 21

a) Find a number X such that

• For every 2-coloring of [X]. there exists monochromatic e1, e2, e3

such that e1 + e2 = e3. (The ei need not be distinct.)

• There is a 2-coloring of [X−1] such that there is no monochromatic
e1, e2, e3 (not necessarily distinct) with e1 + e2 = e3.

b) Do Part a of with the extra condition that e1, e2, e3 are all distinct.

4.2 The Single Equation Rado Theorem

We will prove two theorems, Theorem 4.2.7 and Theorem 4.2.8 that when
combined yield The Single Equation Rado Theorem. This theorem was first
proven by Rado [68, 69]; however, see the historical notes at the end of
chapter 5 for more details.

Notation 4.2.1 Z6=0 is Z\{0}. Hence Zn6=0 is the set of n-vectors of nonzero
integers.

Theorem 4.2.2 (b1, . . . , bn) ∈ Zn6=0 is regular if and only if some nonempty
subset of {b1, . . . , bn} sums to 0.

In the proof of Theorem 4.2.2 we will be given (b1, . . . , bn) such that some
subset sums to 0, a c-coloring of N, and we will find (e1, . . . , en) such that
they are all colored the same and

∑n
i=1 biei = 0. However, many of the ei’s

are the same. What if we want all of the ei’s to be different?
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Def 4.2.3 A vector (b1, . . . , bn) ∈ Zn is distinct-regular if the following holds:
For all c, for all c-colorings χ :N → [c] there exists e1, . . . , en, all distinct,
such that

χ(e1) = · · · = χ(en), and

n∑
i=1

biei = 0.

Is it possible that all regular (b1, . . . , bn) are also distinct regular? NO,
consider (1,−1) or any (b,−b). These are clearly regular but not distinct-
regular. We will see that these are essentially the only exceptions.

We will prove the following

Theorem 4.2.4 If (b1, b2, . . . , bn) ∈ Zn6=0 is regular and there exists λ1, . . . , λn 6=
~0, all distinct, such that

∑n
i=1 λibi = 0 then (b1, . . . , bn) is distinct-regular.

To prove this we need a Key Lemma:

4.2.1 If . . . then (b1, . . . , bn) is not regular

We show that (2, 5,−1) is not regular. We find a 17-coloring (actually 16-
coloring) that demonstrates this. Our first attempt at finding a 17-coloring
will not quite work, but our second one will.

First Attempt:
We define a 17-coloring χ:N→ {0, . . . , 16}.

χ(n) is the number between 0 and 16 that is ≡ n (mod 17).

Assume χ(e1) = χ(e2) = χ(e3). We will try to show that

2e1 + 5e2 − e3 6= 0.

Assume, by way of contradiction, that

2e1 + 5e2 − e3 = 0.
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Let e be such that e1 ≡ e2 ≡ e3 ≡ e (mod 17) and 0 ≤ e ≤ 16. Then

0 = 2e1 + 5e2 − e3 ≡ 2e+ 5e− e ≡ 6e (mod 17).

Hence 6e ≡ 0 (mod 17). Since 6 has an inverse mod 17, we obtain e ≡ 0
(mod 17).

We have not arrived at a contradiction. We have just established that if

χ(e1) = χ(e2) = χ(e3)

and

2e1 + 5e2 − e3 = 0,

then χ(e1) = χ(e2) = χ(e3) = 0.
Hence we will do a similar coloring but do something else when n ≡ 0

(mod 17).

Second Attempt:
We define a 16-coloring χ:N → [16]. Assume that n = 17in′ where 17

does not divide n′.

χ(n) is the number between 1 and 16 that is ≡ n′ (mod 17).

Note: χ(n) will never be 0. Hence this is really a 16-coloring.
Assume

χ(e1) = χ(e2) = χ(e3).

We show that

2e1 + 5e2 − e3 6= 0.

Let i, j, k, e′1, e
′
2, e
′
3, e be such that

1. 17i divides e1, 17i+1 does not divide e1, e1 = 17ie′1.

2. 17j divides e2, 17j+1 does not divide e2, e2 = 17je′2.

3. 17k divides e3, 17k+1 does not divide e3, e3 = 17ke′3.

4. e′1 ≡ e′2 ≡ e′3 ≡ e (mod 17).
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If
2e1 + 5e2 − e3 = 0

then

2× 17ie′1 + 5× 17je′2 − 17ke′3 = 0.

To use what we know, we must cancel some 17’s and exploit the congru-
ence of e′1, e

′
2, e
′
3 mod 17. We must explore several cases. All congruences

below are mod 17.

1. i < j and i < k: We have

2× 17ie′1 + 5× 17je′2 − 17ke′3 = 0.

Divide by 17i to get

2× e′1 + 5× 17j−ie′2 − 17k−ie′3 = 0.

We take this equation mod 17 to be left with

2e′1 ≡ 2e ≡ 0.

Since 2 has an inverse mod 17 we have e = 0. This contradicts that
e 6= 0.

2. i = j < k: We have

2× 17ie′1 + 5× 17ie′2 − 17ke′3 = 0.

Divide by 17i to get

2× e′1 + 5× e′2 − 17k−ie′3 = 0.

We take this equation mod 17 to be left with

2e′1 + 5e′2 ≡ 7e ≡ 0.

Since 7 has an inverse mod 17 we have e = 0. This contradicts that
e 6= 0.
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3. Rather than go through all of the cases in detail, we say what results
in all cases, including those above.

(a) i < j and i < k: 2e ≡ 0.

(b) j < i and j < k: 5e ≡ 0.

(c) k < i and k < j: −e ≡ 0.

(d) i = j < k: 2e+ 5e ≡ 0.

(e) i = k < j: 2e− e ≡ 0.

(f) j = k < i: 5e− e ≡ 0.

(g) i = j = k: 2e+ 5e− e ≡ 0.

There are 7 = 23 − 1 cases, each corresponding to a non-empty combi-
nation of the coefficients. The key is that every combination was relatively
prime to 17.

We now use the ideas in the above example to prove a theorem.

Def 4.2.5 Fix a prime p. For every n ∈ N, write n = n′pk where p 6 | n′.
Let χp:N → [p − 1] be the coloring so that χp(n) ≡ n′ (mod p). Note that
the color is never 0.

Theorem 4.2.6 Let (b1, . . . , bn) ∈ Zn6=0. If (b1, . . . , bn) is regular than there
exists I ⊆ [n], I 6= ∅ such that

∑
i∈I bi = 0.

Proof:
We will use χp from Definition 4.2.5, for some prime p to be selected later.
By regularity, we know that there exists x1, . . . , xn ∈ N and e ∈ [p − 1]

such that

χp(x1) = · · · = χp(xn) = e

and

b1x1 + · · ·+ bnxn = ~0. (4.1)

By dividing ~x by p as needed, we may assume that some xi is not divisible
by p.
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Then we know
x1 = e1p

k1

x2 = e2p
k2

...
xn = enp

kn ,

where e1 ≡ e2 ≡ · · · ≡ en ≡ e (mod p). Note that e 6= 0.
I0 = {i | ki = 0}, so that i ∈ I0 if any only if p 6 | xi. Since we assumed

that some xi is not divisible by p, I0 is nonempty.
Reducing the Equation 4.1 modulo p, we get∑

i/∈I0

bieip
ki +

∑
i∈I0

biei ≡ 0 (mod p).

Since, for all i /∈ I0, ki ≥ 1, and, for all i, ei ≡ e (mod p) we have

e
m∑
i∈I0

bi ≡ 0 (mod p),

Since e is relatively prime to p, this implies that

m∑
i=1

bi ≡ 0 (mod p).

We would like to say that
∑m

i=1 bi is equal to 0, regardless of p. To get
this, we can pick p > |

∑m
i=1 bi|.

However, we do not know ahead of time which subset of the bi’s we will
be looking at (recall that we renumbered the indices for convenience). Thus
we should actually pick p so that

p > max
J⊆[n]

{∣∣∣∣∣∑
i∈J

bi

∣∣∣∣∣
}
.

In particular, it suffices to pick p ≥ 1 +
∑n

i=1 |bi|.

Exercise 22 In the proof of Theorem 4.2.6 we took p >
∣∣∑

i∈J bi
∣∣ for every

nonempty J ∈ [n]. In fact, this is a large overestimate in some cases. Using
the same argument as above, find a function f(b1, . . . , bn) which is (much)
smaller than this bound infinitely often, but still has the same property: For
all (b1, . . . , bn) with no subset adding to zero, and all primes p ≥ f(b1, . . . , bn),
χp has no monochromatic solutions to

∑n
i=1 bixi = 0.



4.2. THE SINGLE EQUATION RADO THEOREM 61

Theorem 4.2.7 Let (b1, . . . , bn) ∈ Zn. If all nonempty subsets of {b1, . . . , bn}
have a non-zero sum then (b1, . . . , bn) is not regular.

Proof: For every I ⊆ {1, . . . , n} let SI =
∑

i∈I bi. By hypothesis none of
these are 0. Hence there exists a number c that is not a multiple of any SI .
By Theorem 4.2.6 there is a (c − 1)-coloring of N with no monochromatic
solutions.

4.2.2 If . . . then (b1, . . . , bn) is regular

Motivation

So when is b1, . . . , bn regular? If (b1, . . . , bn) does not satisfy the premise of
Theorem 4.2.7 then some nonempty subset of {b1, . . . , bn} sums to 0. It turns
out this is enough.

Theorem 4.2.8 Let (b1, . . . , bn) ∈ Zn6=0. Assume a nonempty subset of {b1, . . . , bn}
sums to 0. Then (b1, . . . , bn) is regular.

Before proving this theorem we do an example. Consider the equation

5e1 + 6e2 − 11e3 + 7e4 − 2e5 = 0.

Note that the first three coefficients add to 0: 5+6−11 = 0. We are thinking
about colorings. We can use the following version of van der Waerden’s
Theorem!

Van der Waerden’s Theorem: For all x1, . . . , xk ∈ Z, for all c, for all
c-colorings χ:N→ [c] there exists a, d such that

χ(a) = χ(a+ x1d) = χ(a+ x2d) = · · · = χ(a+ xkd).

We use the k = 5 case. Is there a choice of x1, x2, x3, x4, x5 that will give
us our theorem?

Say that ei = a+ xid. Then

5e1 + 6e2 − 11e3 + 7e4 − 2e5 =

5(a+ x1d) + 6(a+ x2d)− 11(a+ x3d) + 7(a+ x4d)− 2(a+ x5d) =
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(5 + 6− 11)a+ d(5x1 + 6x2 − 11x3) + (7− 2)a+ d(7x4 − 2x5) =

(5 + 6− 11)a+ d(5x1 + 6x2 − 11x3 + 7x4 − 2x5) + 5a.

Good news: The first a has coefficient (5 + 6− 11) = 0.
Good news: We can pick x1, x2, x3, x4, x5 such that

5x1 + 6x2 − 11x3 + 7x4 − 2x5 = 0.

Bad news: The 5a looks hard to get rid of.
It would be really great if we did not have that ‘5a’ term. Hence we need

a variant of van der Waerden’s Theorem.

Variant of VDW

Lemma 4.2.9 For all k, s, c, there exists U = EW (k, s, c)1 such that for
every c-coloring χ:[U ]→ [c] there exists a, d such that

χ(a) = χ(a+ d) = · · · = χ(a+ (k − 1)d) = χ(sd).

Proof: We prove this by induction on c. Clearly, for all k, s,

EW (k, s, 1) = max{k, s}.

We assume EW (k, s, c− 1) exists and show that EW (k, s, c) exists. We
will show that

EW (k, s, c) ≤ W ((k − 1)sEW (k, s, c− 1) + 1, c).

Let χ be a c-coloring of [W ((k − 1)sEW (k, s, c − 1) + 1, c)]. By the
definition of W there exists a, d such that

χ(a) = χ(a+ d) = · · · = χ(a+ (k − 1)sEW (k, s, c− 1)d).

Assume the color is RED. There are several cases.
Case 1: If sd is RED then, since a, a+ d, . . . , a+ (k − 1)d are all RED, we
are done.

1The name EW in Lemma 4.2.9 stands for Extended van der Waerden
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Case 2: If 2sd is RED then, since a, a+ 2d, a+ 4d, . . . , a+ 2(k− 1)d are all
RED, we are done.

...

Case EW(k,s,c-1): If EW (k, s, c− 1)sd is RED then, since
a,a+EW (k, s, c−1)d,a+2EW (k, s, c−1)d,. . ., a+(k−1)EW (k, s, c−1)d
are all RED, we are done.

Case EW(k,s,c-1)+1: None of the above cases happen. Hence
sd, 2sd, 3sd, . . . , EW (k, s, c− 1)sd
are all not RED.
Consider the c-coloring χ′:[EW (k, s, c− 1)]→ [c] defined by

χ′(x) = χ(xsd).

The key is that none of these will be colored RED, so there are only
c − 1 colors (even though the colors are taken from [c]). By the inductive
hypothesis there exists a′, d′ such that

χ′(a′) = χ′(a′ + d′) = · · · = χ′(a′ + (k − 1)d′) = χ′(sd′),

so

χ(a′sd) = χ(a′sd+ d′sd) = · · · = χ(a′sd+ (k − 1)d′sd) = χ(sd′sd).

Let A = a′sd and D = d′sd. Then

χ(A) = χ(A+D) = · · · = χ(A+ (k − 1)D) = χ(sD).

NEED FIGURE CHANGE: insert a picture illustrating this proof.
We state without proof an easy corollary of Lemma 4.2.9 which we will

use in the next theorem.

Corollary 4.2.10 For all x1, . . . , xm ∈ Z, s, c, there exists U = EW (x1, . . . , xm; s, c)
such that for every c-coloring χ:[U ]→ [c] there exists a, d such that

χ(a+ x1d) = · · · = χ(a+ xmd) = χ(sd).
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Back to the Proof
We now restate and prove the main theorem of this section.

Theorem 4.2.11 Let (b1, . . . , bn) ∈ Zn6=0. If there is a nonempty subset of
{b1, . . . , bn} that sums to 0 then (b1, . . . , bn) is regular.

Proof: By renumbering, we can assume that there is an m ≤ n such that

m∑
i=1

bi = 0.

We need to find a number R such that any c-coloring of [R] gives positive
integers e1, . . . , en all the same color with b1e1 + · · · + bnen = 0. We will
show that R = EW (x1, . . . , xm; s, c) from Lemma 4.2.10 works, for values of
x1, . . . , xm and s to be found later.

Let χ be a c-coloring of [R]. By choice of R, there exists a, d such that

χ(a+ x1d) = χ(a+ x2d) = · · · = χ(a+ xmd) = χ(sd).

We will let
e1 = a+ x1d,

e2 = a+ x2d,

...

em = a+ xmd,

and
em+1 = · · · = en = sd.

Then

n∑
i=1

biei =
m∑
i=1

biei +
n∑

i=m+1

biei =
m∑
i=1

bi(a+ xid) +
n∑

i=m+1

bisd.

This is equal to

a
m∑
i=1

bi + d
m∑
i=1

bixi + sd
n∑

i=m+1

bi.

Here we recall that
∑m

i=1 bi = 0, so the first term drops out. Hence we
need x1, . . . , xm ∈ Z6=0 and s ∈ N such that
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d
m∑
i=1

bixi + sd

n∑
i=m+1

bi = 0.

Divide by d to get
m∑
i=1

bixi + s

n∑
i=m+1

bi = 0.

Let
∑n

i=m+1 bi = B. We rewrite this as

m∑
i=1

bixi + sB = 0.

We can take

s = m · |lcm{b1, . . . , bm}|

x1 = − sB

mb1

x2 = − sB

mb2

...

xm = − sB

mbm
.

Exercise 23 Schur’s Theorem is as follows: For all c there exists s = s(c)
such that for all c-colorings of [s] there exists monochromatic x, y, z such that
x+y = z. Schur’s Theorem follows from the Single Equation Rado Theorem.
Let s(c) be the smallest value of n such that, for any c-coloring of [n] there
exists x, y, z the same color such that x+ y = z.

a) Use Rado’s Theorem to obtain upper bounds on s(c). Try to determine
this bound explicitly for some small values of c.

b) Find a statement of Ramsey’s Theorem for graphs.

c) Use Ramsey’s Theorem to prove Schur’s Theorem.
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d) Use this proof to obtain upper bounds on s(c). Try to determine this
bound explicitly for some small values of c.

e) (Speculative) Which proof gave better bounds?

f) (Open-ended) Obtain better bounds for s(c).

4.2.3 If . . . then (b1, . . . , bn) is distinct-regular

We will prove the following theorem due to Rado [69, 68].

Theorem 4.2.12 If (b1, b2, . . . , bn) is regular and there exists λ1, . . . , λn dis-
tinct such that

∑n
i=1 λibi = 0 then (b1, . . . , bn) is distinct-regular.

To prove this we need a Key Lemma:

Key lemma

The lemma is in three parts. The first one we use to characterize which
vectors are distinct-regular. The second and third are used in a later section
when we prove the Full Rado Theorem.

The following definitions are used in the third part of the lemma.

Def 4.2.13 Let n ∈ N.

1. A set G ⊆ Nn is homogeneous if, for all α ∈ N,

(e1, . . . , en) ∈ G =⇒ (αe1, . . . , αen) ∈ G.

2. A set G ⊆ Nn is regular if, for all c, there exists R = R(G; c) such
that the following holds: For all c-colorings χ : [R] → [c] there exists
~e = (e1, . . . , en) ∈ G such that all of the ei’s are colored the same.

Example 4.2.14

1. Let G = {(a, a+ d, . . . , a+ (k − 1)d) | a, d ∈ N} be the set of k-APs in
N. G is homogeneous. By VDW, G is also regular.

2. Let b1, . . . , bn ∈ Z. Let G = {(e1, . . . , en) |
∑n

i=1 biei = 0}. G is
homogeneous. G is regular if and only if (b1, . . . , bn) is.
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3. Let A be an m× n matrix. Let G = {~e | A~e = ~0}. G is homogeneous.
G is regular if and only if M is.

Lemma 4.2.15

1. For all (b1, . . . , bn) ∈ Zn regular, for all c,M ∈ N, there exists L =
L(b1, . . . , bn; c,M) with the following property. For any c-coloring χ :
[L]→ [c] there exists e1, . . . , en, d ∈ [L] such that the following hold.

(a) b1e1 + · · ·+ bnen = 0.

(b) All of these numbers have the same color:

e1 −Md, . . . , e1 − d, e1, e1 + d, . . . , e1 +Md
e2 −Md, . . . , e2 − d, e2, e2 + d, . . . , e2 +Md

...
...

...
...

...
en −Md, . . . , en − d, en, en + d, . . . , en +Md.

2. For all (b1, . . . , bn) ∈ Zn regular, for all c,M, s ∈ N, there exists L2 =
L2(b1, . . . , bn; c,M, s) with the following property. For any c-coloring
χ : [L2] → [c] there exists e1, . . . , en, d ∈ [L2] such that the following
hold.

(a) b1e1 + · · ·+ bnen = 0.

(b) All of these numbers have the same color:

e1 −Md, . . . , e1 − d, e1, e1 + d, . . . , e1 +Md
e2 −Md, . . . , e2 − d, e2, e2 + d, . . . , e2 +Md

...
...

...
...

...
en −Md, . . . , en − d, en, en + d, . . . , en +Md

sd.

3. For all n ∈ N, for all G ⊆ Nn, G regular and homogeneous, for all
c,M, s ∈ N there exists L3 = L3(G; c,M, s) with the following property.
For any c-coloring χ : [L3] → [c] there exists e1, . . . , en, d ∈ [L3] such
that the following hold.

(a) (e1, . . . , en) ∈ G.
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(b) All of these numbers have the same color:

e1 −Md, . . . , e1 − d, e1, e1 + d, . . . , e1 +Md
e2 −Md, . . . , e2 − d, e2, e2 + d, . . . , e2 +Md

...
...

...
...

...
en −Md, . . . , en − d, en, en + d, . . . , en +Md

sd.

Proof: (Part 1)
Since b1, . . . , bn is regular, by Definition 4.1.1 there exists R = R(b1, . . . , bn; c)
such that for any c-coloring of [R] there exists e1, . . . , en such that
(1) all of the ei’s are the same color, and
(2)
∑n

i=1 biei = 0.
We will choose the desired number L later. Throughout the proof we will

add conditions to L. The first one is that R divides L.
Let χ:[L]→ [c] be a coloring.
We want to show that the conclusion of the theorem holds for χ.
We define a new coloring χ∗:[L/R]→ [c]R as follows:

χ∗(n) = (χ(n), χ(2n), χ(3n), . . . , χ(Rn)) .

In order to find an arithmetic progression, we will pick L so that L/R ≥
W (2X + 1, cR). We will determine X later.

Apply (a slight variant of) VDW to the cR-coloring χ to obtain the fol-
lowing: There exists a,D (but not our desired d) such that

χ∗(a−XD) = χ∗(a− (X − 1)D) = · · · = χ∗(a) = · · · = χ∗(a+XD).

Since we know

χ∗(n) = (χ(n), χ(2n), . . . , χ(Rn)) ,

this gives us

χ(a−XD) = χ(a− (X − 1)D) = · · · = χ(a) = · · · = χ(a+XD)
χ(2(a−XD)) = χ(2(a− (X − 1)D)) = · · · = χ(2a) = · · · = χ(2(a+XD))
χ(3(a−XD)) = χ(3(a− (X − 1)D)) = · · · = χ(3a) = · · · = χ(3(a+XD))

... =
... = · · · =

... = · · · =
...

χ(R(a−XD)) = χ(R(a− (X − 1)D)) = · · · = χ(Ra) = · · · = χ(R(a+XD)).
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We need a subset of these that are all the same color. Consider the
coloring χ∗∗:[R]→ [c] defined by

χ∗∗(n) = χ(na).

By the definition of R there exists f1, . . . , fn such that

1.
∑n

i=1 bifi = 0. Hence
∑n

i=1 bi(afi) = a
∑n

i=1 bifi = 0.

2. χ∗∗(f1) = χ∗∗(f2) = · · · = χ∗∗(fn).

By the definition of χ∗∗ we have

χ(af1) = χ(af2) = · · · = χ(afn).

Note that we have that the following are all the same color:

(a−XD)f1, (a− (X − 1)D)f1, · · · , af1, · · · , (a+XD)f1

(a−XD)f2, (a− (X − 1)D)f2, · · · , af2, · · · , (a+XD)f2

(a−XD)f3, (a− (X − 1)D)f3, · · · , af3, · · · , (a+XD)f3
...

...
...

...
(a−XD)fn, (a− (X − 1)D)fn, · · · , afn, · · · , (a+XD)fn.

For all i, 1 ≤ i ≤ n let ei = afi. We rewrite the above:

e1 − f1XD, e1 − f1(X − 1)D, · · · , e1, · · · , e1 + f1XD
e2 − f2XD, e2 − f2(X − 1)D, · · · , e2, · · · , e2 + f2XD
e3 − f3XD, e3 − f3(X − 1)D, · · · , e3, · · · , e3 + f3XD

...
...

...
...

en − fnXD, en − fn(X − 1)D, · · · , en, · · · , en + fnXD.

We are almost there — we have our e1, . . . , en that are the same color,
and lots of additive terms from them are also that color. We just need a
value of d such that

{d, 2d, 3d, . . . ,Md} ⊆ {f1D, 2f1D, 3f1D, . . . , Xf1D},
{d, 2d, 3d, . . . ,Md} ⊆ {f2D, 2f2D, 3f2D, . . . , Xf2D},

...
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{d, 2d, 3d, . . . ,Md} ⊆ {fnD, 2fnD, 3fnD, . . . , XfnD}.

We have no control over D, but we haven’t chosen X or d yet. We know
that, for all i, fi ≤ R. Clearly d = f1f2 · · · fnD ≤ RnD is a sensible choice,
so we use that.

We need, for every 1 ≤ i ≤ n,

{(
n∏
j=1

fi

)
D, 2

(
n∏
j=1

fi

)
D, . . . ,M

(
n∏
j=1

fi

)
D

}
⊆ {fiD, 2fiD, . . . , XfiD}.

Equivalently, we need

{(
n∏
j=1

fi

)
, 2

(
n∏
j=1

fi

)
, . . . ,M

(
n∏
j=1

fi

)}
⊆ {fi, 2fi, . . . , Xfi}.

Taking X = MRn−1 will suffice.
Since we have X = Rn−1M , we now know our bound for L:

L = R ·W (2Rn−1M + 1, cR), where R = R(b1, . . . , bn; c).

(Part 2)
We prove this by induction on c.
Base Case: For c = 1 this is easy; however, we find the actual bound
anyway. The only issue here is to make sure that the objects we want to
color are actually in [L(b1, . . . , bn; 1,M, s)]. Let (e1, . . . , en) ∈ Nn be a solu-
tion to

∑n
i=1 biei = 0 such that emin = min{e1, . . . , en} > M . Let emax =

max{e1, . . . , en} > M . Let L2 = L2(b1, . . . , bn; 1,M, s) = max{emax + M, s}.
Let χ:[L2] → [1]. We claim that e1, . . . , en, 1 work. Note that, for all i ∈ [n]
and j ∈ {−M, . . . ,M}, we have ei+ j×1 ∈ [L2]. Also note that s×1 ∈ [L2].
Thus, taking d = 1, we have our solution.

Induction Hypothesis: We assume the theorem is true for c− 1 colors. In
particular, for any M ′, L2(b1, . . . , bn; c − 1,M ′, s) exists. This proof will be
similar to the proof of Lemma 4.2.9.

Induction Step: We want to show that L2(b1, . . . , bn; c,M, s) exists. We
show that there isM ′ so that, if you c-color [L] (where L = L(b1, . . . , bn; c,M ′)
from part 1), then there exists the required e1, . . . , en, d. The M ′ will depend
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on L2 for c − 1 colors. Let χ be a c-coloring of [L]. By part 1 there exists
E1, . . . , En, D such that

∑n
i=1 biEi = 0 and the following are all the same

color, which we will call RED.

E1 −M ′D, . . . , E1 −D, E1, E1 +D, . . . , E1 +M ′D
E2 −M ′D, . . . , E2 −D, E2, E2 +D, . . . , E2 +M ′D

...
...

...
...

...
...

...
En −M ′D, . . . , En −D, En, En +D, . . . , En +M ′D.

There are now several cases.

Case 1: If sD is RED then we are done so long as M ′ ≥M . Use d = D.

Case 2: If 2sD is RED then we are done so long as M ′ ≥ 2M . Use d = 2D.
...

Case X: If XsD is RED then so long as M ′ ≥ MX we are done. Use
d = XD.

Case X+1: None of the above cases hold. Hence

sD, 2sD, . . . , XsD

are all not RED. Hence the coloring restricted to this set is a c− 1 coloring.
Let X = L2(b1, . . . , bn; c − 1,M, s), and M ′ = MX. Consider the (c − 1)-
coloring χ∗ of [M ′] defined by

χ∗(x) = χ(xsD).

By the induction hypothesis and the definition of M ′ there exists e1, . . . , en, d
such that

∑n
i=1 biei = 0 and all of the following are the same color under χ∗:

e1 −Md, e1 − (M − 1)d, . . . , e1, . . . , e1 +Md
e2 −Md, e2 − (M − 1)d, . . . , e2, . . . , e2 +Md

...
...

...
...

en −Md, en − (M − 1)d, . . . , en, . . . , en +Md

sd.

By the definition of χ∗, the following have the same color via χ:
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(e1 −Md)sD, (e1 − (M − 1)d)sD, . . . , e1sD, . . . , (e1 +Md)sD
(e2 −Md)sD, (e2 − (M − 1)d)sD, . . . , e2sD, . . . , (e2 +Md)sD

...
...

...
...

(en −Md)sD, (en − (M − 1)d)sD, . . . , ensD, . . . , (en +Md)sD

sdsD.

By taking the vector (e1sD, . . . , ensD) and common difference sdD, we
obtain the result.

(Part 3)
In both of the above parts, the only property of the set{

(x1, . . . , xn)

∣∣∣∣∣
n∑
i=1

bixi = 0

}

that we used is that it was homogeneous and regular. Hence all of the proofs
go through without any change and we obtain this part of the lemma.

Back to our Story

Theorem 4.2.16 If (b1, . . . , bn) is regular and there exists (λ1, . . . , λn) such
that

∑n
i=1 λibi = 0 and all of the λi are distinct, then (b1, . . . , bn) is distinct-

regular.

Proof: LetM be a parameter to be picked later. Let L = L(b1, . . . , bn; c,M)
from part 1 of Lemma 4.2.15. Let χ be a c-coloring of [L]. We know that
there exists e1, . . . , en, d ∈ [L] such that the following occur.

1. b1e1 + · · ·+ bnen = 0.

2. The following are the same color:

e1 −Md, . . . , e1 − d, e1, e1 + d, . . . , e1 +Md
e2 −Md, . . . , e2 − d, e2, e2 + d, . . . , e2 +Md

...
...

...
...

...
en −Md, . . . , en − d, en, en + d, . . . , en +Md.
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Let A ∈ Z be a constant to be picked later. Note that

n∑
i=1

bi(ei + Adλi) =

(
n∑
i=1

biei

)
+

(
Ad

n∑
i=1

biλi

)
= 0.

Thus (e1+Adλ1, . . . , en+Adλn) is a solution. For it to be monochromatic,
we need M to be such that there exists an A with

1. e1 + Adλ1, . . ., en + Adλn are all distinct, and

2. For all i, |Aλi| ≤M .

Since λi 6= λj, there is at most 1 value of A which makes ei + Adλi =
ej + Adλj — viewing this condition as a linear equation in A. Therefore,
there are at most

(
n
2

)
values of A which make item 1 false.

In order to satisfy item 2 we need, for all i, |A| ≤ M/|λi|. Let λ =
max{|λ1|, . . . , |λn|}. We let M =

(
n
2

)
λ. Any choice of A with |A| ≤

(
n
2

)
will

satisfy condition 2. There are more than
(
n
2

)
values of A that satisfy this,

hence we can find a value of A one that satisfies items 1 and 2.

Exercise 24 (Open-ended)

a) Consider the equation 10x1 +13x2−40x3 = 0. By Theorem 4.2.6 there
is a 40-coloring of N such that there is no monochromatic solution.
Exercise 22 gives a 6-coloring with the same property, but we do not
know whether it is best. Find the value of c such that

• There is a c-coloring of N such that 10x1 + 13x2 − 40x3 = 0 has
no monochromatic solution.

• For every c−1-coloring of N there is a monochromatic solution to
10x1 + 13x2 − 40x3 = 0.

b) We define (b1, . . . , bn) be be c-regular if, for every c-coloring of N, there
is a monochromatic solution to

∑n
i=1 bixi = 0. Find some condition X

such that, for all (b1, . . . , bn) and c, (b1, . . . , bn) is c-regular iff X.

c) Define c-distinct-regular in the analogous way. Repeat the problem
above with that notion of c-distinct regular.
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4.3 The Full Rado Theorem

Recall what it means for a matrix to be regular:

Def 4.3.1 A matrix A of integers is regular if if the following holds: For all
c, there exists R = R(A; c) such that for all c-colorings χ : [R] → [c] there
exists ~e = (e1, . . . , en) such that

χ(e1) = · · · = χ(en),

A~e = ~0.

Def 4.3.2 A matrix A with columns ~a1, . . . ,~an satisfies the columns condi-
tion if the set [n] can be partitioned into sets I0, . . . , Ik such that∑

i∈I0

~ai = ~0,

and for all j ∈ {1, . . . , k},
(∑

i∈Ij ~ai

)
can be written as a linear combination

of the vectors {~ai | i ∈ I0 ∪ · · · ∪ Ij−1}.

Example 4.3.3

1. We began the chapter with this matrix corresponding to van der Waer-
den’s Theorem (for 4-APs):

A =

(
1 −2 1 0
1 −1 −1 1

)
.

The columns add to ~0, so we may take I0 = {1, 2, 3, 4}.

2. Let

A =

 1 −1 0 1 −2 0
2 0 −2 1 0 −2
3 −3 0 1 −4 4

 .

One partition of columns is I0 = {1, 2, 3}, I1 = {4, 5}, I2 = {6}. The
relevant relations between columns are

~a1 + ~a2 + ~a3 = ~0
~a4 + ~a5 = 1

2
~a1 + 3

2
~a2

~a6 = −2~a2 − 2~a4.



4.3. THE FULL RADO THEOREM 75

We will prove the following:
The Full Rado Theorem:

Theorem 4.3.4 A is regular if and only if A satisfies the columns condition.

First we will show the “only if” part. This will use the same coloring
approach as used in Section 4.2.1:

4.3.1 If A is regular then . . .

For the proof of the Full Rado Theorem we will need to look at matrix equa-
tions modulo prime powers and deduce things about the matrix equations
without the modulus. The following lemma will be helpful.

Lemma 4.3.5 Let I be a finite index set.

1. Let ~b, {~ai}i∈I be integer vectors of the same length. There exists a p0

such that, for all p ≥ p0, for all j ≥ 1, the following holds:

If pj~b is a linear combination of {~ai}i∈I modulo pj+1 (with coefficients

in {0, . . . , pj+1 − 1}), then ~b is a linear combination of {~ai}i∈I with
coefficients in Q.

2. Let {~ai}i∈I be integer vectors of the same length. There exists a p0 such
that, for all p ≥ p0, for all j ≥ 1, for all I ′ ⊆ I the following holds.

If ~b =
∑

i∈I′ ~ai and if pj~b is a linear combination of {~ai}i∈I−I′ modulo

pj+1 with coefficients in {0, . . . , pj+1−1}. then ~b is a linear combination
of {~ai}i∈I with coefficients in Q. (This follows from part 1 by taking
the maximum p over all possible I ′ ⊆ I.)

Proof:
Assume, by way of contradiction, that for all p there exists (fi)i∈I0 such

that
pj~b ≡

∑
i∈I

fi~ai (mod pj+1)

but ~b is not a linear combination of {~ai}i∈I with coefficients in Q.

Since ~b and all of the ~ai are vectors over the integers, this means that ~b is
not in the span of {~ai}i∈I . By the Gram-Schmidt orthogonalization process
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(See Exercise 25) there exists an integer vector ~v that is orthogonal to all of

the ~ai but not to ~b. Let ~b · ~v = t. We pick p > |t|.
Note that

pj~b · ~v ≡
∑
i∈I

fi~ai · ~v (mod pj+1)

pjt ≡ 0 (mod pj+1)

Since p > |t| this is a contradiction.

Theorem 4.3.6 Let A be a matrix. If A is regular then A satisfies the
columns condition.

Proof:
We will use χp from Definition 4.2.5, for some prime p to be selected later.
By regularity, we know that there exists x1, . . . , xn ∈ N and e ∈ [p − 1]

such that

χp(x1) = · · · = χp(xn) = e

and

A~x = ~0.

Rewrite this as
x1~a1 + · · ·+ xn~an = ~0. (4.2)

By dividing ~x by p as needed, we may assume that some xi is not divisible
by p.

Then we know
x1 = e1p

k1

x2 = e2p
k2

...
xn = enp

kn ,

where e1 ≡ e2 ≡ · · · ≡ en ≡ e (mod p). Note that e 6= 0.
For each j ≥ 0, let Ij = {i | ki = j}, so that i ∈ Ij if any only if pj|xi,

but pj+1 6 | xi.
Since we assumed that some xi is not divisible by p, I0 is nonempty.
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Reducing the Equation 4.2 modulo p, we get∑
i/∈I0

ei~ai +
∑
i∈I0

ei~ai ≡ ~0 (mod p).

Since ki ≥ 1 for all i /∈ I0, and ei ≡ e (mod p) for all i, we have∑
i∈I0

e~ai ≡ ~0 (mod p).

Since e is relatively prime to p we can divide it out to obtain∑
i∈I0

~ai ≡ ~0 (mod p). (4.3)

Recall that we would like to show
∑

i∈I0 ~ai is equal to ~0, regardless of p.
We will show that I0, I1, . . . is the partition we seek. Note that only a

finite number of the Ij will be nonempty.
Now consider Ij for j > 0. We will reduce Equation 4.2 modulo pj+1.

All of the terms xi~ai where i ∈ Ij+1 ∪ Ij+2 + · · · will vanish. The terms xi~ai
where i ∈ Ij are the most interesting to us. Note that xi = eip

j where ei ≡ e
(mod p). Hence there is an A ∈ N such that ei = e+ Ap. Therefore

xi = eip
j = (e+ Ap)pj = epj + Apj+1 ≡ epj (mod pj+1).

With this in mind we obtain∑
i∈Ij

e~aip
j +

∑
i∈Ij−1

ei~aip
j−1 + · · ·+

∑
i∈I0

ei~ai ≡ ~0 (mod pj+1).

Rearranging this and multiplying by e−1 (mod pj+1), we get

pj
∑
i∈Ij

~ai ≡ −
∑
i∈Ij−1

eie
−1~aip

j−1 − · · · −
∑
i∈I0

eie
−1~ai (mod pj+1).

In other words,

pj
∑
i∈Ij

~ai is a linear combination of {~ai}I0∪···∪Ij−1
modulo pj+1. (4.4)

Recall that we would like to show that
∑

i∈Ij ~ai is a (rational) linear combi-

nation of {~ai}i∈I0∪···∪Ij−1
regardless of p.
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We claim that Equation 4.3 and Equation 4.4 can each only hold for
finitely many primes p, so that picking a prime large enough should give a
contradiction. However, the reader must keep in mind that we don’t know a
priori what the sets Ij will be.

For Equation 4.3 take p to be any prime that is larger than the sum of the
absolute values of all of the elements of A. For Equation 4.4 use Lemma 4.3.5.

Exercise 25 (Gram-Schmidt orthogonalization process)

a) Given two vectors ~a,~b, define

~c = ~b−

(
~a ·~b
~a · ~a

)
~a

Show that {~a,~c} have the same span as {~a,~b}, and ~c is orthogonal to
~a.

b) Given vectors ~a1, . . . ,~an, show how to find ~c1, . . . ,~cn orthogonal with
the same span as the original vectors.

c) Use this process to show that, given vectors ~a1, . . . ,~an, and~b not in their
span, there is a vector ~v orthogonal to ~a1, . . . ,~an but not orthogonal to
~b. Hint: consider ~an+1 = ~b.

d) Notice that if ~a1, . . . ,~an,~b were all integer vectors, then ~v can be taken
as an integer vector (after perhaps multiplying by a scalar).

4.3.2 If . . . then A is regular

Def 4.3.7 We say that S ⊆ Z is an (m, p, c)-set if there are values y0, . . . , ym >
0 so that S consists of the values

cy0 + λ1y1 + λ2y2 + · · · + λm−1ym−1 + λmym
cy1 + λ2y2 + · · · + λm−1ym−1 + λmym

...
cym−1 + λmym

cym

for every choice of |λ1| ≤ p, . . . , |λm| ≤ p.
The values y0, . . . , ym are said to generate S.
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Note 4.3.8

• Unfortunately, in this section c refers both to the prescribed coefficient
in (m, p, c)-sets and the number of colors in a coloring. We will suppress
the number of colors, which is usually irrelevant.

• In this section, p is no longer restricted to being prime.

Example 4.3.9 A (1, p, c)-set has the form

S = {cy − pz, . . . , cy − z, cy, cy + z, . . . , cy + pz, cz}

for some choice of y and z. Writing a = cy and d = z, this gives us the
now-familiar

S = {a− pd, . . . , a− d, a, a+ d, . . . , a+ pd, cd},

where the value a is restrained to be in cN. Since cN is a homogeneous set,
and trivially regular, part 3 of Lemma 4.2.15 (with s = c) tells us that there
is an L so that any finite coloring of [L] yields a monochromatic set of this
type. That is, the collection of all (1, p, c)-sets is regular (for a fixed p and
c). This can also be obtained more simply from Lemma 4.2.9.

Note 4.3.10 The definitions of a set G being homogeneous and regular re-
quire that G ⊆ Nn — the elements must be lists, not sets. When we say
the collection of all (1, p, c)-sets has these properties, we really mean that,
if one were to order them (say in increasing order) then the result would be
regular. We will ignore this distinction from now on.

Theorem 4.3.11 For every m, p, c, the collection of (m, p, c)-sets is regular.

Proof: We will show this by induction on m. The case m = 1 was
Example 4.3.9.

Suppose we know the collection of (m, p, c)-sets is regular. Since we may
scale the y1, . . . , ym, we see that this collection is also homogeneous. Thus
we may apply part 3 of Lemma 4.2.2 with M = p and s = c.

Let y0, . . . , ym be the generators for the monochromatic (m, p, c)-set found,
and let ym+1 = d be the common difference given by the application of
Lemma 4.2.9. Then the reader may check that y0, . . . , ym, ym+1 generate a
monochromatic (m+ 1, p, c)-set.
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Now we restate and prove our claim.

Theorem 4.3.12 If A satisfies the columns condition, then it is regular.

Proof: As usual, let ~a1, . . . ,~an be the columns of A, and [n] = I0∪· · ·∪Ik
be the partition of indices given by the columns condition. We rewrite these
conditions as follows:

tj
∑
i∈Ij

~ai +
∑

i∈I0∪···∪Ij−1

bij~ai = ~0

for some nonzero integers t0 = 1, t1, . . . , tk, and integers {bij | i ∈ I` for some ` <
j}. By scaling each equation, we may assume t0 = · · · = tk = c, which would
be the least common multiple of the original t0, . . . , tk.

For completion, set

bij = tj for all i ∈ Ij, and

bij = 0 for i ∈ Ij+1 ∪ · · · ∪ Ik.
Finally, define the matrix B = (bij), so that we may compactly say AB = (0).
Note that B is, in a certain sense, lower triangular with diagonal c. That is,
if i ∈ Ij, then bij = c and bi` = 0 for ` > j.

Since AB = (0), we see that AB~y = ~0 for any ~y. This suggests we search
for any solution vector of the form B~y. Let p = max |bij|, and m = k, the
final index of our partition I0 ∪ · · · ∪ Ik.

Let (y0, . . . , ym) be the generators of any (m, p, c)-set S, using the values
we have chosen for m, p, c. By definition of an (m, p, c)-set, and by the noted
property of the matrix B, S contains all coordinates of the vector B~y. Thus,
since the collection of (m, p, c)-sets is regular, so is A.

Example 4.3.13 When finitely coloring N, we would like to find a monochro-
matic solution to the following system of equations:

x1 − x2 + x4 − 2x5 = 0
2x1 − 2x3 + x4 − 2x6 = 0
3x1 − 3x2 + x4 − 4x5 + 4x6 = 0.

This corresponds to the following matrix:

A =

 1 −1 0 1 −2 0
2 0 −2 1 0 −2
3 −3 0 1 −4 4

 .
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As we saw in Example 4.3.3, we may partition the columns as I0 = {1, 2, 3}, I1 =
{4, 5}, I2 = {6}. The needed relations between columns are

~a1 + ~a2 + ~a3 = ~0
~a4 + ~a5 = 1

2
(~a1 + 3~a2)

~a6 = −2(~a2 + ~a4).

After scaling the equations by 2, the corresponding matrix B is

B =


2 −1 0
2 −3 4
2 0 0
0 2 4
0 2 0
0 0 2

 .

Note that AB = (0)3×3.
Here we have c = 2, p = 4, m = 2. If y0, y1, y2 generate a (2, 4, 1)-set S,

then we see it includes the following values:

2y0 − y1

2y0 − 3y1 + 4y2

2y0

2y1 + 4y2

2y1

2y2.

These are exactly the coordinates of B~y. Thus, a monochromatic (2, 4, 1)-set
gives us a monochromatic vector of the form ~x = B~y, which is a monochro-
matic solution to A~x = ~0.

Finally, without any more work, we see that any regular matrix A with
a solution of distinct entries is distinct-regular.

Theorem 4.3.14 If A is a regular matrix, and ~λ is an integer vector with
distinct entries so that A~λ = ~0, then A is distinct-regular.
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We omit the proof, as it is identical to the proof of Theorem 4.2.16, the
analogous theorem which tells that a regular sequence (b1, . . . , bn) with a
solution of distinct values b1x1 + · · · bnxn = 0 is distinct-regular.

Exercise 26 Prove Theorem 4.3.14.

Exercise 27 We prove a subcase of Theorem 4.3.12 that is interesting in its
own right, referred to as Folkman’s Theorem in the literature. Its statement
is part 2 of this exercise.

a) Let n(k, c) be the least n (if it exists) such that the following happens:
for all c-colorings χ of [n] there exists

a1 < a2 < · · · < ak

such that
(1) a1 + a2 + · · ·+ ak ≤ n,
(2) for all I ⊆ [k] χ(

∑
i∈I ai) depends only on max{i ∈ I}.

Use the following to give two proofs that n(k, c) exists:

(a) Show that n(1, c), n(2, c), and n(k, 1) all exist.

(b) Show that, for all k ≥ 3 for all c ≥ 2, n(k + 1, c) ≤ n(k, c)W (k +
2, cn(k,c)). (This yields one proof that, for all k, c ≥ 1, n(k, c)
exists.)

(c) Show that, for all k ≥ 3 for all c ≥ 2, n(k+ 1, c) ≤ 2W (n(k, c), c).
(This yields another proof that, for all k, c ≥ 1, n(k, c) exists.)

b) Show that for all k and c there exists F = F (k, c) such that, for all
c-colorings χ of [n] there exists

a1 < a2 < · · · < ak

such that
(1) a1 + a2 + · · ·+ ak ≤ n,
(2) for all I, J ⊆ [k] χ(

∑
i∈I ai) = χ(

∑
j∈J aj). (That is, all sums of

subsets are the same color.)

Exercise 28 (Open-ended) Obtain better bounds for F (k, c) then the ones
you get from Exercise 27



Chapter 5

Applications II

5.1 Fermat’s Last Theorem Mod p Fails for

Almost all p

In 1637 Fermat wrote in the margins of Arithmetica, a book on Number
Theory by Diophantus, the following (translated from Latin)

To divide a cube into two cubes, a fourth power, or in general any power
whatever above the second into two powers of the same denomination, is
impossible, and I have assuredly found a proof of this, but the margin is too
narrow to contain it.

In modern terminology he was stating that the equation xn+yn = zn has
no solution where x, y, z, n ∈ N, x, y, z ≥ 1, and n ≥ 3. Many mathemati-
cians have tried to prove this and did not succeed. This open question was
known as Fermat’s Last Theorem.

In 1993 Andrew Wiles announced that he had a proof of Fermat’s Last
Theorem. This proof had a gap; however, with the help of Richard Taylor, the
gap was fixed and a correct proof was published in 1994 [91],[86]. This lead to
Tom Lehrer adding the following verse to his song That’s Mathematics [56].

Andrew Wiles gently smiles,
Does his thing and voila!
QED, we agree, and we all shout hurrah!
As he confirms what Fermat
Jotted down in that margin,
Which could’ve used some enlargin’.

83
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This was the most famous open problem in mathematics. Why?

1. You could explain it to a layperson.

2. The story of Fermat writing it in the margin is interesting.

3. There was steady progress on it. By the year 1900 Fermat’s Last
Theorem was proven true for all n ≤ 100 [21]. By the year 1993,
with the help of computers, Fermat’s Last Theorem was proven for all
n ≤ 4, 000, 000.

4. Fermat’s Last Theorem connected to many other fields of mathematics
including algebraic geometry.

5. There was a cash prize offered for its solution. To quote [81]

Interest in FLT rocketed when a German doctor and amateur mathe-
matician called Paul Wolfskehl offered a huge cash prize in 1908 for its
solution. Many people, mostly amateur mathematicians, sent in their
potential solutions to their nearest universities. Over a thousand proofs
were received in this period, mail got so heavy that some institutions
resorted to printing form sheets saying “Thank you for your ‘proof’
of FLT. The first mistake is on page XX”! The hyperinflation of the
1920’s considerably reduced the value of the prize but it was still worth
$50,000 when Andrew Wiles collected it in a grand ceremony in June
1997 in the Great Hall at Gottingen University.

This problem inspired many mathematicians, including Wiles. In that
respect, it is almost a shame that it has been solved.

Here is an approach to proving Fermat’s Last Theorem that was first
proposed by Sophie Germain. (See [52] and [70] for more information.) We
first give a trivial theorem and then we give her sophisticated theorem.

Theorem 5.1.1 Fix n ≥ 3, a prime.

1. Fix a prime p. Let Ap = {1n, 2n, . . . , (p−1)n}, all reduced modulo p. If
there is no a, b, c ∈ Ap such that a+b ≡ c (mod p) then in any solution
of xn + yn = zn one of x, y, z is ≡ 0 (mod p).
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2. Assume that for an infinite number of primes p there are not a, b, c ∈ Ap
such that a+ b ≡ c (mod p). Then xn + yn = zn has no solution.

Proof:
a) If xn + yn = zn then xn + yn ≡ zn (mod p). Since there is no a, b, c ∈ Ap
such that a+ b = c, at least one of xn, yn, zn is ≡ 0 (mod p). Hence at least
one of x, y, z is divisible by p.

b) Let p1, p2, p3, . . . be the infinite set of primes. If xn + yn = zn, then each
pi must divide at least one of x, y, z, meaning one the three must be divisible
by an infinite subset of {p1, p2, p3, . . .}. This is not possible.

Exercise 29

a) For 1 ≤ a ≤ 28 compute a7 (mod 29).

b) Show that if x7 + y7 = z7 then one of x, y, z is divisible by 29.

Note that in Theorem 5.1.1 we needed to look at all a, b, c ∈ Ap. Also
note that if there was a d such that d, d+1 ∈ Ap then by letting a = 1, b = d,
and c = d + 1 we would have a, b, c ∈ Ap with a + b ≡ c (mod d). Sophie
Germain showed that, in some cases, this is the only case we need to check.

Theorem 5.1.2 Fix n ≥ 3, a prime.

1. Fix a prime p. Let Ap = {1n, 2n, . . . , (p − 1)n}, all reduced modulo p.
Suppose n /∈ Ap, and there is no a such that a and a + 1 are both in
Ap. Then in any solution of xn + yn = zn, one of x, y, z is divisible by
p.

2. Assume there is an infinite number of primes p such that n /∈ Ap and
there is no a with a and a+1 in Ap. Then xn+yn = zn has no solution.

Using either Theorem 5.1.1 or 5.1.2 looks promising. Alas, neither ap-
proach can work. Libri [57] showed that for n = 3, 4, for all but a finite
number of primes, that xn + yn ≡ zn (mod p) has a solution. He stated that
this was true for all n, but did not prove it in general. Pellet [62] proved
that for all n, for almost all p, xn + yn ≡ zn (mod p) has a solution. Pellet’s
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proof did not give any bounds on how large p has to be. Cornacchia [15],
Dickson [19], and Hurwitz [42] obtained that, for all n, for all

p ≥ (n− 1)2(n− 2)2 + 6n− 2.

xn + yn ≡ zn (mod p) has a solution. Pepin [63, 64] also did some work
on this problem. The proofs of Pellet, Cornacchia, Dickson, Hurwitz, and
Pepin are not combinatorial. The papers are not in English; however, they
are available. (See Exercise 30.)

Schur [74] later gave a proof using Rado’s Theorem (Theorem 4.2.2). It
is more accurate to say that he proved what is now a corollary to Rado’s
Theorem in order to get a proof. Schur obtained bounds for p, but they are
not as good as those of Cornacchia, Dickson, and Hurwitz.

We will need some number theory first. The results are standard and can
be found in any basic number theory text.

Def 5.1.3 Let p be a prime, A ⊆ {0, 1, . . . , p− 1}, and b ∈ [p− 1]. Then

bA = {bx | x ∈ A}.

Lemma 5.1.4 Let p be a prime. There exists a number g ∈ [p − 1] such
that, doing arithmetic mod p,

{1, . . . , p− 1} = {g0, g1, . . . , gp−2}.

In addition, gp−1 ≡ 1 (mod p).

Such a g is called a generator of Z∗p, the multiplicative group of non-zero
integers mod p.

Lemma 5.1.5 Let p be a prime, b, c ∈ [p− 1], n ∈ N and

Hn = {xn (mod p) | x ∈ [p− 1]}.

1. Hn has p−1
gcd(n,p−1)

elements.

2. Either bHn = cHn or bHn ∩ cHn = ∅.

3. |Hn| = |bHn|
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4. Let h = p−1
|Hn| = gcd(n, p− 1) ≤ n. There exists b1, . . . , bh such that the

collection {biA} form a partition of [p− 1].

Def 5.1.6 Let b1, . . . , bm ∈ Z and c ∈ N. Let R = R(b1, . . . , bm; c) be the
least number (if it exists) such that, for all c-colorings of [R], there exists a
monochromatic e1, . . . , em such that

∑m
i=1 eibi = 0.

Note that, by either Theorem 4.2.2 or Exercise 23 from Chapter 4, R(1, 1,−1;n)
exists for all n.

Theorem 5.1.7 For all n ≥ 1 and all primes p ≥ R(1, 1,−1;n). there exists
x, y, z 6≡ 0 (mod p) such that

xn + yn ≡ zn (mod p).

Note 5.1.8 If gcd(n, p−1) = 1 then, by Lemma 5.1.5, |Hn| = p−1. Hence all
numbers in {1, . . . , p− 1} are nth powers mod p. In this case Theorem 5.1.7
is easy: just take any three numbers a, b, c ∈ [p − 1] such that a + b ≡ c
(mod p) and note that there is an x, y, z such that a ≡ xn (mod p), b ≡ yn

(mod p), and c ≡ zn (mod p).

Proof: Fix n.
Let p be a prime such that p ≥ R(1, 1,−1;n). All congruences are modulo

p.
Let Hn = {xn (mod p) | x ∈ [p − 1]}. Let h = gcd(n, p − 1) ≤ n.

By Lemma 5.1.5 there exists b1, . . . , bh such that the collection biA form a
partition of [p− 1]. Note that h is independent of p.

Here is the key step: we now define a coloring χ:[p− 1]→ [h] by

χ(x) = i such that x ∈ biHn.

By the definition of R(1, 1,−1;n), there exists e1, e2, e1 + e2 of the same
color. Let the color be i. Let b = bi. Hence e1, e2, e1 + e2 ∈ bHn. Let
x, y, z ∈ [p− 1] be such that e1 ≡ bxn, e2 ≡ byn, (e1 + e2) ≡ bzn. Note that

bxn + byn ≡ e1 + e2 ≡ bzn.

Hence

xn + yn ≡ zn.
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Exercise 30 Consider the following papers: Libri [57], Pellet [62], Pepin [63,
64], Dickson [19], or Cornacchia [15]. All of these papers are at http://www.
cs.umd.edu/$sim$gasarch/res.

a) For those that are in languages other than English, translate them to
English.

b) Write a survey article, with proofs, of these results. Include history.

d) We are particularly interested in Pellet’s proof of the following: For all
n there exists a prime p0 such that, for all primes p ≥ p0 there exists
x, y, z 6≡ 0 (mod p) such that xn + yn ≡ zn (mod p). This proof did
not give bounds on p0.

5.2 nth powers and Non-nth Powers for n ≥ 2

Theorem 5.1.2 raises the question of when there are consecutive nth powers
mod p. In this section we show that, for all k, for all n ≥ 2, for almost
all primes p, there are k consecutive nth powers mod p and k consecutive
non-nth powers mod p. We will obtain Theorem 5.1.7 as an easy corollary.

5.3 Quadratic Residues and Non-Residues

Exercise 31 Show that x2 ≡ (p− x)2 (mod p).

We use this exercise so that when looking at squares mod p we need only
look at 12, 22, . . . , (p−1

2
)2.

Consider the integers mod 13. Here are the squares mod 13, excluding 0.
12 ≡ 1, 22 ≡ 4, 32 ≡ 9, 42 ≡ 3, 52 ≡ 12, 62 ≡ 10.

Look at the squares in increasing order: {1, 3, 4, 9, 10, 12}. There is a
sequence of two consecutive squares: 3, 4. Is there a p so that we can get
three consecutive squares? Four? More? Now look at the non-squares in
increasing order: {2, 5, 6, 7, 8, 11}. There is a sequence of four consecutive
non-squares: 5, 6, 7, 8. Is there a p so that we can get five consecutive
non-squares? Six? More?

We now look at the squares mod 23. 12 ≡ 1, 22 ≡ 4, 32 ≡ 9, 42 ≡ 16,
52 ≡ 2, 62 ≡ 13, 72 ≡ 3, 82 ≡ 18, 92 ≡ 12, 102 ≡ 8, 112 ≡ 6. Look at
the squares in increasing order: {1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18}. There is a
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sequence of four consecutive squares: 1, 2, 3, 4. There is a sequence of four
consecutive non-squares: 19, 20, 21, 22.

Are the following statements true?

• For every k there exists a prime p such that there are k consecutive
squares mod p.

• For every k there exists a prime p such that there are k consecutive
non-squares mod p.

We will prove both of these. What will we use? a variant of VDW! (Why
else would we talk about it?) Recall the following lemma that we used to
prove the single equation Rado Theorem. It is this lemma that we can apply.
Lemma 4.2.9 For all k, s, c, there exists U = EW (k, s, c) such that for
every c-coloring χ:[U ]→ [c] there exists a, d such that

χ(a) = χ(a+ d) = · · · = χ(a+ (k − 1)d) = χ(sd).

Def 5.3.1 Let p be a prime.

1. A number x ∈ [p − 1] is a quadratic residue mod p if there exists
y ∈ {1, . . . , p − 1} such that y2 ≡ x (mod p). If no such y exists then
x is called a quadratic non-residue mod p. In both cases the “mod p”
may be omitted if it is understood. Likewise, we may omit the word
“quadratic” when we are only dealing with squares. The number 0 is
considered to be neither a residue nor a non-residue.

2. If x and y are either both residues or both non-residues then we say
they have the same status.

We will use the results in the following exercises implicitly throughout
the rest of this chapter.

Exercise 32

a) Show that if x is a residue then x−1 is a residue.

b) Show that if x is a non-residue residue then x−1 is a non-residue.

c) Show that if x, y are residues then xy is a residue.
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Exercise 33 The point of this exercise is to guide you through a proof that
the product of two elements of the same status is a residue. Assume through-
out that p is a prime. All arithmetic is done mod p.

a) Show that if a ∈ [p− 1] then a2 (mod p) ∈ [p− 1].

b) Let SQp be the function from [p − 1] to [p − 1] that maps of a to a2

(mod p). Show that for every b in the image, there are exactly two a’s
such that SQp(a) = b.

c) Show that there are exactly p−1
2

residues and p−1
2

non-residues.

d) Let a ∈ [p − 1]. Show that {ab | b ∈ [p − 1]} = [p − 1]. That is, show
that a · [p− 1] = [p− 1].

e) Show that if a and b have different status then ab is not a residue.

f) Show that if a and b have the same status then ab is a residue.

Exercise 34 The point of this exercise is to guide you through a different
proof that the product of two elements of the same status is a residue. Assume
throughout that p is a prime. All arithmetic is done mod p. For this problem
we use −1 to represent p− 1.

a) Show that the only roots of x2 − 1 = 0 are 1 and −1. (Note: this is
false when p is not prime.)

b) Show that for all a ∈ [p− 1], a(p−1)/2 ∈ {−1, 1}.

c) Show that if a is a residue then a(p−1)/2 = 1.

d) Show that the polynomial x(p−1)/2 − 1 = 0 has exactly (p− 1)/2 roots.

e) Show that if a is a non-residue then a(p−1)/2 = −1.

f) Show that if a and b have the same status then ab is a residue.

Theorem 5.3.2 Let k ∈ N. If p ≥ EW (k, 1, 2) and p is prime then there
exists k consecutive residues mod p. (Recall EW from Lemma 4.2.9.)
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Proof:
Let p be a prime such that p ≥ EW (k, 1, 2). All of the arithmetic in this

proof is mod p.
Let χ be the following 2-coloring of [p− 1]:

χ(x) =

{
0 if x is not a residue

1 if x is a residue
(5.1)

There exists a, d such that a, a+ d, a+ 2d, . . . , a+ (k− 1)d, d all have the
same status. Hence all of the following are residues:

ad−1, (a+ d)d−1, (a+ 2d)d−1, . . . , (a+ (k − 1)d)d−1

which is

ad−1, ad−1 + 1, ad−1 + 2, . . . , ad−1 + k − 1.

Def 5.3.3

1. Let con2(k) be the least prime such that, for all primes p ≥ con2(k),
there are k consecutive residues.

2. Let connon2(k) be the least prime such that, for all primes p ≥ connon2(k),
there are k consecutive non-residues.

Theorem 5.3.2 states that con2(k) ≤ EW (k, 1, 2). By the proof of Lemma 4.2.9
EW (k, 1, 2) ≤ W (k2, 2). This bound is large. We will consider the question
of better bounds in Section 5.4.1.

Theorem 5.3.4 For all k, for all primes p ≥ con2((k − 1)k!), there are k
consecutive non-residues mod p. Hence connon2(k) ≤ con2((k − 1)k!).

Proof:
Fix k. Since p ≥ con2((k−1)k!) there is a consecutive sequence of residues.

Let

b, b+ 1, b+ 2, . . . , b+ (k − 1)k!.

be that sequence.
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Let n be the least a non-residue in [p− 1].
Case 1: n ≤ k!. Then the numbers b, b + n, b + 2n, . . . , b + (k − 1)n are all
greater than b and less than b+ (k − 1)k! when reduced modulo p.

Hence

b, b+ n, b+ 2n, . . . , b+ (k − 1)n.

are all residues. Multiply them all by the non-residue n−1 to obtain the
following consecutive sequence of non-residues:

bn−1, bn−1 + 1, bn−1 + 2, . . . , bn−1 + (k − 1).

Case 2: n > k!. Hence the numbers

1, 2, 3, . . . , n− 1

are all residues. (Note that for this case we are not using the sequence
b, b+ 1, . . . , b+ (k − 1)k! at all.)

Consider the following subset of the above sequence

n− k!, n− k!

2
, n− k!

3
, . . . , n− k!

k
.

Since 1, 2, 3, . . . , k are residues the following are residues:

1 ·
(
n− k!

1

)
, 2 ·

(
n− k!

2

)
, 3 ·

(
n− k!

3

)
, . . . , k ·

(
n− k!

k

)
.

n− k!, 2n− k!, 3n− k!, . . . , kn− k!.

We multiply by non residue n−1 to obtain the following sequence of con-
secutive non residues:

1− n−1k!, 2− n−1k!, 3− n−1k!, . . . , k − n−1k!.

Exercise 35 Show that, for all p ≡ 1 mod 4, there are k consecutive residues
modulo p if and only if there are k consecutive non-residues modulo p.
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5.4 nth Residues and nth-Non-Residues for

n ≥ 3

Def 5.4.1 Let p be a prime and g be a generator of Z∗p. Let h divide p− 1,
with h > 1. Then logmodp,g,h:[p− 1]→ Zh is defined by

logmodp,g,h(g
a) = a (mod h).

When p, g and h are understood we use logmod.

Note 5.4.2 Since gp−1 ≡ 1 (mod p), the exponent b satisfying gb ≡ a
(mod p) is only determined mod p− 1.

Theorem 5.4.3 For all n ≥ 3, for all k, for all primes p ≥ EW (k, 1, h)
there are k consecutive nth roots mod p.

As noted before, this theorem is trivial when gcd(n, p − 1) = 1, since
everything is an nth power mod p in this case.
Proof: Let p be a prime larger than EW (k, 1, n). All of the arithmetic in
this proof is mod p unless otherwise specified.

Let g be the generator of Z∗p, which exists by Lemma 5.1.4. Let logmod =
logmodp,g,h, where h = gcd(n, p− 1). Let ` = n

h
The key observation is that,

since logmod maps to Zh, we may treat it as an h-coloring.
By Lemma 4.2.9 there exists a, d such that

a, a+ d, a+ 2d, . . . , a+ (k − 1)d, d

all have the same color. Let that color be i. Hence there exists b0, . . . , bk−1

such that

a = gb0h+i, a+ d = gb1h+i, a+ 2d = gb2h+i, . . . , a+ (k − 1)d = gbk−1h+i.

Note also that there exists m such that d = gmh+i. Hence d−1 = g−mh−i.
Note that

ad−1, (a+ d)d−1, (a+ 2d)d−1, . . . , (a+ (k − 1)d)d−1
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is both

g(b0−m)h, g(b1−m)h, . . . , g(bk−1−m)h

and

ad−1, ad−1 + 1, . . . , ad−1 + k − 1.

Hence we have k consecutive hth powers. Finally, rewriting

grh =
(
g`
−1r
)h`

=
(
g`
−1r
)n
,

where `−1 is the inverse of ` mod p−1, we see that these are really consecutive
nth powers as well.

Def 5.4.4 Let conn(k) be the least prime such that, for all primes p ≥
conn(k), there are k consecutive nth powers. Let connonn(k) be the least
prime such that, for all primes p ≥ connonn(k) with gcd(n, p− 1) > 1, there
are k consecutive non-nth powers.

Theorem 5.4.5 For all n, k, connonn ≤ conn((k − 1)k!).

Proof: This proof is virtually identical to the proof of Theorem 5.3.4.

Exercise 36 Prove that for all n there is an infinite set of primes p such
that all numbers mod p are nth powers.

Exercise 37

a) Prove Theorem 5.4.5.

b) Prove the following slightly stronger version of Theorem 5.4.5: For all
n, k, for all primes p ≥ conn((k − 1)k!) with gcd(n, p − 1) > 1, for all
generators g of Zp, there are k consecutive numbers that have the same
logmodp,g,n value.
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5.4.1 Better Bounds on conn(k) and connonn(k)

By Theorems 5.4.3 and 5.4.5

conn(k) ≤ EW (k, 1, n)

and
connonn(k) ≤ conn((k − 1)k!) ≤ EW ((k − 1)k!, 1, n).

What more can be said about these two functions? The first two results
below are due to Peralta [65]. The rest are due to Davenport [16, 17]. Both
Peralta and Davenport used number theory, not combinatorics.

1. con2(k) ≤ 3k2k−1

2. connon2(k) ≤ 3k2k−1.

3. conn(2) ≤ O(n2)

4. connonn(2) ≤ O(n2)

5. conn(3) ≤ 100n12

6. connonn(3) ≤ 100n12

We have not been able to find anything more on bounds for conn(k) or
connonn(k). However, the following are known:

1. Lehmer and Lehmer [53] proved that con2(2) = 7. See Exercise 38.

2. Dunton [20] proved that con3(2) = 79. See Exercise 40.

3. Lehmer, Lehmer, Mills, and Selfridge [55] proved that con3(3) = 293.

4. Mills and Bierstedt [9] proved that con4(2) = 43.

5. Lehmer and Lehmer and Mills [54] showed that con5(2) = 103.

6. Lehmer and Lehmer and Mills [54] showed that if con6(2) = 281.

Exercise 38 In this exercise you will prove con2(2) = 7. Let p /∈ {2, 3, 5}.
Throughout we abbreviate consecutive run of two square by CR2S.
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a) Show that if 2 or 5 is a square mod p then there is a CR2S.

b) Show that if 2 and 5 are not squares mod p then there is a CR2S.

c) Where did your proof use that p /∈ {2, 3, 5}?

d) Characterize exactly which primes have a CR2S.

e) Determine con2(2).

Exercise 39 Let p be a prime of the form p = 3k + 1. Let g be a generator
of Z∗p. Let logmod = logmodp,g,3.

a) Show that logmod(xy) ≡ logmod(x) + logmod(y) (mod 3).

b) Show that if x, y ∈ [p−1], logmod(x), logmod(y) 6= 0, and logmod(x) 6=
logmod(y) then logmod(xy) = 0.

c) Show that, for all x, y ∈ [p − 1]. one of x, y, xy, xy2 is a cube mod p
(hence its logmod value is 0).

Exercise 40 In this exercise you will prove that con3(2) ≤ 79. Let p be a
prime of the form p = 3k+1 such that p ≥ 79. All arithmetic in this exercise
is done mod p. Throughout we abbreviate consecutive run of two cubes by
CR2C. Hint: Several of the problems in this exercise use Exercise 39.

a) Show that if logmod(2) = 0 or logmod(3) = 0 or logmod(7) = 0 or
logmod(28) = 0 then there is a CR2C.

b) Show that if logmod(2) 6= 0 and logmod(7) 6= 0 and logmod(28) 6= 0
then logmod(14) = 0 and logmod(2) 6= logmod(7).

Note: In parts c,d,e,f of this problem we assume logmod(2) 6= 0,
logmod(3) 6= 0, logmod(7) 6= 0, logmod(28) 6= 0, logmod(14) = 0,
and logmod(2) 6= logmod(7). Since clearly if logmod(13) = 0 we have
a CR2C we will also assume logmod(13) 6= 0. Let FACT 1 be the set
of facts we are assuming at this point.

c) Show that if logmod(2) 6= logmod(13) then there is a CR2C.

Note: In parts d,e,f of this problem we assume FACT 2: logmod(2) =
logmod(13).
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d) Show that if logmod(3) = logmod(7) then there is a CR2C.

Note: In part e,f of this problem we assume FACT 3: logmod(3) =
logmod(7).

e) Assume FACT 1,2,3. For which x, y such that logmod(x) 6= 0 and
logmod(y) 6= 0 do we know that logmod(x) 6= logmod(y)? For which
x, y such that logmod(x) 6= 0 and logmod(y) 6= 0 do we know that
logmod(x) = logmod(y)? For which x do we now know logmod(x) = 0?

f) Show the following.

(a) If logmod(11) = 0 then there is a CR2C.

(b) If logmod(11) = logmod(7) then there is a CR2C.

(c) If logmod(11) 6= 0 and logmod(11) 6= logmod(7) then there is a
CR2C.

g) Where in the above steps did you use the fact that p ≥ 79?

h) For all primes p, 2 ≤ p ≤ 79, determine which ones have CR2C. (To
save time use Note 5.1.8.)

i) Determine con3(2) exactly.

Exercise 41 Research problem. Find upper and lower bounds on conn(k)
for small values of k and n.

Exercise 42 Write a survey paper summarizing everything that is known
about conn(k). You can use the website http://www.cs.umd.edu/~gasarch/
res as a starting point.

5.5 Historical Notes

In chapters 4 and 5 we presented Rado’s Theorem and then some applications
to Number Theory. Historically the applications and the theorem came hand
in hand.
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The first theorem involving equations and colorings was Schur’s Theorem
which we presented in Exercise 23. Schur proved this theorem to obtain The-
orem 5.1.7. There had been prior proves of it. Schur’s proof is combinatorial
rather than number theoretic.

Rado, a student of Schur, later [68, 69] proved the full Rado Theorem,
which we stated and prove in Section 4.3.

Schur conjectured that, for all k, for almost all primes p, there are k
consecutive quadratic residues. Bauer, a student of Schur, proved this using
VDW (not Extended VDW, Lemma 4.2.9). His proof essentially proved
extended VDW in this context. Schur then proved the Extended VDW.
Schur also, building on Bauer’s proof, showed that for all n, k, for almost all
primes p, there are k consecutive nth powers. There is some confusion about
whose result this is: Schur claims it is Bauer’s and Bauer claims it is Schur’s.



Chapter 6

The Polynomial van der
Waerden’s Theorem

6.1 Introduction

In this Chapter we state and proof a generalization of van der Waerden’s
Theorem known as the Polynomial van der Waerden’s Theorem. We rewrite
van der Waerden’s Theorem with an eye toward generalizing it.
Van der Waerden’s Theorem: For all k, c ∈ N there exists W = W (k, c)
such that, for all c-colorings χ:[W ] → [c], there exists a, d ∈ [W ], such that
the following set is monochromatic:

{a} ∪ {a+ id | 1 ≤ i ≤ k − 1}.

Note that van der Waerden’s Theorem was really about the set of func-
tions {id | 1 ≤ i ≤ k − 1}. Why this set of functions? Would other sets of
functions work? What about sets of polynomials? The following statement
is a natural generalization of van der Waerden’s Theorem; however, it is not
true.

False POLYVDW: Fix c ∈ N and P ⊆ Z[x] finite. Then there exists
W = W (P, c) such that, for all c-colorings χ:[W ] → [c], there are a, d ∈ N,
d 6= 0, such that the following set is monochromatic:

{a} ∪ {a+ pi(d) | p ∈ P}.

The above statement is false since the polynomial p(x) = 2 and the

99
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coloring
1 2 3 4 5 6 7 8 9 10 · · ·
R R B B R R B B R R · · ·

provides a counterexample. Hence we need a condition to rule out constant
functions. The condition (∀p ∈ P )[p(0) = 0] suffices.
The Polynomial van der Waerden Theorem (POLYVDW) Fix c ∈ N
and P ⊆ Z[x] finite, with (∀p ∈ P )[p(0) = 0]. Then there exists W = W (P, c)
such that, for all c-colorings χ:[W ]→ [c], there are a, d ∈ [W ], such that the
following set is monochromatic:

{a} ∪ {a+ pi(d) | p ∈ P}.

This was proved for k = 1 by Fürstenberg [26] and (independently)
Sarkozy [73]. The original proof of the full theorem by Bergelson and Leib-
man [7] used ergodic methods. A later proof by Walters [90] uses purely
combinatorial techniques. We will present an expanded version of Walters’
proof.

Note 6.1.1 Do we need the condition d ∈ [W ]? For the classical van der
Waerden Theorem d ∈ [W ] was obvious since

{a} ∪ {a+ d, . . . , a+ (k − 1)d} ⊆ [W ] =⇒ d ∈ [W ].

For the Polynomial van der Waerden’s Theorem one could have a polynomial
with negative coefficients, hence it would be possible to have

{a} ∪ {a+ p(d) | p ∈ P} ⊆ [W ] and d /∈ [W ].

For the final result we do not care where d is; however, in order to prove
POLYVDW inductively we will need the condition d ∈ [W ].

Note 6.1.2 The condition (∀p ∈ P )[p(0) = 0] is strong enough to make
the theorem true. There are pairs (P, c) where P ⊆ Z[x] (that does not
satisfy the condition) and c ∈ N such that the theorem is true. Classifying
which pairs (P, c) satisfy the theorem is an interesting open problem. We
investigate this in Section 6.4. What happens if instead of polynomials we
use some other types of functions? This is also an interesting open question.
See Section 6.5 for a commentary on that.
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Recall that VDW was proven by induction on k and c. The main step
was showing that if (∀c)[W (k, c) exists ] then (∀c)[W (k + 1, c) exists ]. To
prove POLYVDW we will do something similar. We will assign to every set
of polynomials (that do not have a constant term) a type. The types will be
ordered. We will then do an induction on the types of polynomials.

Def 6.1.3 Let ne, . . . , n1 ∈ N. Let P ⊆ Z[x]. P is of type (ne, . . . , n1) if
the following hold:

1. P is finite.

2. (∀p ∈ P )[p(0) = 0]

3. The largest degree polynomial in P is of degree ≤ e.

4. For all i, 1 ≤ i ≤ e, There are ≤ ni different lead coefficients of the
polynomials of degree i. Note that there may be many more than ni
polynomials of degree i.

Note 6.1.4

1. Type (0, ne, . . . , n1) is the same as type (ne, . . . , n1).

2. We have no n0. This is intentional. All the polynomials p ∈ P have
p(0) = 0.

3. By convention P will never have 0 in it. For example, if

Q = {x2, 4x}

then

{q − 4x : q ∈ Q}

will be {x2 − 4x}. We will just omit the 0.

Example 6.1.5

1. The set {x, 2x, 3x, 4x, . . . , 100x} is of type (100).
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2. The set

{x4 +17x3−65x, x4 +x3 +2x2−x, x4 +14x3,−x4−3x2 +12x,−x4 +78x,

x3 − x2, x3 + x2, 3x, 5x, 6x, 7x}
is of type (2, 1, 0, 4)

3. The set

{x4 + b3x
3 + b2x

2 + b1x | −1010 ≤ b1, b2, b3 ≤ 1010 }

is of type (1, 0, 0, 0).

4. If P is of type (1, 0) then there exists b ∈ Z and k ∈ N such that

P ⊆ {bx2 + ix | −k ≤ i ≤ k}.

5. If P is of type (1, 1) then there exists b2, b1 ∈ Z, and k ∈ N such that

P ⊆ {b2x
2 − kx, b2x

2 − (k − 1)x, . . . , b2x
2 + kx} ∪ {b1x} ∪ {0}.

6. If P is of type (n3, n2, n1) then there exists b
(1)
3 , . . . , b

(n3)
3 ∈ Z, b

(1)
2 , . . . , b

(n2)
2 ∈

Z, b
(1)
1 , . . . , b

(n1)
1 ∈ Z, k1, k2 ∈ N, T1 of type (k1), and T2 of type (k2, k1)

such that

P ⊆ {bi3x3 + p(x) | 1 ≤ i ≤ f, p ∈ T2}∪
{bi2x2 + p(x) | 1 ≤ i ≤ g, p ∈ T1}∪
{bi1x | 1 ≤ i ≤ h}

7. Let
P = {2x2 + 3x, x2 + 20x, 5x, 8x}.

Let
Q = {p(x)− 8x | p ∈ P}.

Then
Q = {2x2 − 5x, x2 + 12x,−3x, }.

P is of type (2, 2) and Q is of type (2, 1). If we did not have out
convention of omitting 0 then the type of Q would have been (2, 2).
The type would not have gone “down” (in an ordering to be defined
later). This is why we have the convention.
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8. Let P be of type (ne, . . . , ni + 1, 0, . . . , 0). Let bxi be the leading term
of some polynomial of degree i in P (note that we are not saying that
bxi ∈ P ). Let

Q = {p(x)− bxi | p ∈ P}.
There are numbers ni−1, . . . , n1 such thatQ is of type (ne, . . . , ni, ni−1, . . . , n1).
The type is decreasing in an ordering to be defined later.

Def 6.1.6

1. Let P ⊆ Z[x] such that (∀p ∈ P )[p(0) = 0]. POLYVDW(P ) means
that the following holds:

For all c ∈ N, there exists W = W (P, c) such that for all c-colorings
χ:[W ]→ [c], there exists a, d ∈ [W ] such that

{a} ∪ {a+ p(d) | p ∈ P} is monochromatic.

(If we use this definition on a coloring of {s + 1, . . . , s + W} then the
conclusion would have a ∈ {s+ 1, . . . , s+W} and d ∈ [W ].)

2. Let ne, . . . , n1 ∈ N. POLYVDW(ne, . . . , n1) means that, for all P ⊆
Z[x] of type (ne, . . . , n1) POLYVDW(P ) holds.

3. Let (ne, . . . , ni, ω, . . . , ω) be the e-tuple that begins with (ne, . . . , ni)
and then has i− 1 ω’s.

POLYVDW(ne, . . . , ni, ω, . . . , ω)

is the statement∧
ni−1,...,n1∈N

POLYVDW(ne, . . . , ni, ni−1, . . . , n1).

4. POLYVDW is the statement

∞∧
i=1

POLYVDW(ω, . . . , ω)( ω occurs i times).

Note that POLYVDW is the complete Polynomial van der Waerden
Theorem.
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Example 6.1.7

1. The statement POLYVDW(ω) is equivalent to the ordinary van der
Waerden’s Theorem.

2. To prove POLYVDW(1, 0) it will suffice to prove POLYVDW(P ) for
all P of the form

{bx2 − kx, bx2 − (k − 1)x, . . . , bx2 + kx}.

3. Assume that you know

POLYVDW(ne, . . . , ni, ω, . . . , ω)

and that you want to prove

POLYVDW(ne, . . . , ni + 1, 0, . . . , 0).

Let P be of type (ne, . . . , ni + 1, 0 . . . , 0). Let bxi be the first term of
some polynomial of degree i in P .

(a) Let
Q = {p(x)− bxi | p ∈ P}.

Then there exists ni−1, . . . , n1, such that Q is of type

(ne, . . . , ni, ni−1, . . . , n1).

Since
POLYVDW(ne, . . . , ni, ω, . . . , ω)

holds by assumption, we can assert that POLYVDW(Q) holds.

(b) Let U ∈ N. Let

Q = {p(x+ u)− p(u)− bxi | p ∈ P, 0 ≤ u ≤ U}.

Note q(0) = 0 for all q ∈ Q. Then there exists ni−1, . . . , n1, such
that Q is of type

(ne, . . . , ni, ni−1, . . . , n1).

Since
POLYVDW(ne, . . . , ni, ω, . . . , ω)

holds by assumption, we can assert that POLYVDW(Q) holds.
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We will prove the Polynomial van der Waerden’s Theorem by an induction
on a complicated structure. We will prove the following:

1. POLYVDW(1) (this will easily follow from the pigeon hole principle).

2. For all ne, . . . , ni ∈ N,

POLYVDW(ne, . . . , ni, ω, . . . , ω) =⇒ POLYVDW(ne, . . . , ni+1, 0, 0, . . . , 0).

Note that this includes the case

POLYVDW(ne, . . . , n2, n1) =⇒ POLYVDW(ne, . . . , n2, n1 + 1).

The ordering we use is formally defined as follows:

Def 6.1.8 (ne, . . . , n1) � (me′ , . . . ,m1) if either

• e < e′, or

• e = e′ and, for some i, 1 ≤ i ≤ e, ne = me, ne−1 = me−1, . . .,
ni+1 = mi+1, but ni < mi.

This is an ωω ordering.

Example 6.1.9 We will use the following ordering on types.

(1) ≺ (2) ≺ (3) ≺ · · ·

(1, 0) ≺ (1, 1) ≺ · · · ≺ (2, 0) ≺ (2, 1) ≺ · · · ≺ (3, 0) · · · ≺

(1, 0, 0) ≺ (1, 0, 1) ≺ · · · ≺ (1, 1, 0) ≺ (1, 1, 1) ≺ (1, 2, 0) ≺ (1, 2, 1) ≺

(2, 0, 0) ≺ · · · ≺ (3, 0, 0) ≺ · · · (4, 0, 0) · · · .
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6.2 The Proof of the Polynomial van der Waer-

den Theorem

6.2.1 POLYVDW({x2, x2 + x, . . . , x2 + kx})
Def 6.2.1 Let k ∈ N.

Pk = {x2, x2 + x, . . . , x2 + kx}.

We show POLYVDW(Pk). This proof contains many of the ideas used in
the proof of POLYVDW.

We prove a lemma from which POLYVDW(Pk) will be obvious.

Lemma 6.2.2 Fix k, c throughout. For all r there exists U = U(r) such that
for all c-colorings χ:[U ]→ [c] one of the following statements holds.
Statement I: There exists a, d ∈ [U ], such that

• {a} ∪ {a+ d2, a+ d2 + d, . . . , a+ d2 + kd} ⊆ [U ],

• {a} ∪ {a+ d2, a+ d2 + d, . . . , a+ d2 + kd} is monochromatic.

Statement II: There exists a, d1, . . . , dr ∈ [U ] such that the following hold.

• {a+ d2
1, a+ d2

1 + d1, . . . , a+ d2
1 + kd1} ⊆ [U ].

{a+ d2
2, a+ d2

2 + d2, . . . , a+ d2
2 + kd2} ⊆ [U ].

...

{a+ d2
r, a+ d2

r + dr, . . . , a+ d2
r + kdr} ⊆ [U ].

(The element a is called the anchor)

• {a+ d2
1, a+ d2

1 + d1, . . . , a+ d2
1 + kd1} is monochromatic.

{a+ d2
2, a+ d2

2 + d2, . . . , a+ d2
2 + kd2} is monochromatic.

...

{a+ d2
r, a+ d2

r + dr, . . . , a+ d2
r + kdr} is monochromatic.

With each monochromatic set being colored differently and differently
from a. We refer to a as the anchor.

Informal notes:
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1. We are saying that if you c-color [U ] either you will have a monochro-
matic set of the form

{a} ∪ {a+ d2, a+ d2 + d, . . . , a+ d2 + kd}

or you will have many monochromatic sets of the form

{a+ d2, a+ d2 + d, . . . , a+ d2 + kd},

all of different colors, and different from a. Once “many” is more
than c, then the latter cannot happen, so the former must, and we have
POLYVDW(P ).

2. If we apply this theorem to a coloring of {s + 1, . . . , s + U} then we
either have

d ∈ [U ] and {a} ∪ {a+ d2 + d, . . . , a+ d2 + kd} ⊆ {s+ 1, . . . , s+ U}.

or
d1, . . . , dr ∈ [U ] and, for all i with 1 ≤ i ≤ r such that

{a} ∪ {a+ d2
i + di, . . . , a+ d2

i + kdi} ⊆ {s+ 1, . . . , s+ U}, and

{a+d2
i+di, . . . , a+d2

i+kdi} ⊆ {s+1, . . . , s+U} monochromatic for each i.

Proof:
We define U(r) to be the least number such that this Lemma holds. We

will prove U(r) exists by giving an upper bound on it.
Base Case: r = 1. U(1) ≤ W (k + 1, c)2 +W (k + 1, c).

Let χ be any c-coloring of [W (k + 1, c) + W (k + 1, c)2]. Look at the
coloring restricted to the last W (k + 1, c) elements. By van der Waerden’s
Theorem applied to the restricted coloring there exists

a′ ∈ [(W (k + 1, c))2 + 1, . . . , (W (k + 1, c))2 +W (k + 1, c)]

and
d′ ∈ [W (k + 1, c)]

such that

{a′, a′ + d′, a′ + 2d′, . . . , a′ + kd′} is monochromatic .
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Let the anchor be a = a′ − (d′)2 and let d1 = d′.

{a′, a′+d′, a′+2d′, . . . , a′+kd′} = {a+d2
1, a+d2

1+d1, . . . , a+d2
1+kd1} is monochromatic.

If a is the same color then Statement I holds. If a is a different color then
Statement II holds. There is one more issue– do we have

a, d1 ∈ [(W (k + 1, c))2 +W (k + 1, c)]?

Since
a′ ≥ (W (k + 1, c))2 + 1

and
d′ ≤ W (k + 1, c)

we have that

a ≥ (W (k + 1, c))2 + 1− (W (k + 1, c))2 = 1.

Clearly
a < a′ ≤ W (k + 1, c) + (W (k + 1, c))2.

Hence
a ∈ [W (k + 1, c) + (W (k + 1, c))2].

Since d1 = d′ ∈ [W (k + 1, c)] we clearly have

d1 ∈ [W (k + 1, c) + (W (k + 1, c))2].

Induction Step: Assume U(r) exists, and let

X = W (k + 2U(r), cU(r)).

(X stands for eXtremely large.)
We show that

U(r + 1) ≤ (X × U(r))2 +X × U(r).

Let χ be a c-coloring of

[(X × U(r))2 +X × U(r)].
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View this set as (X × U(r))2 consecutive elements followed by X blocks of
length U(r). Let the blocks be

B1, B2, . . . , BX .

Restrict χ to the blocks. Let χ∗:[X] → [cU(r)] be the coloring viewed as
a cU(r)-coloring of the blocks. By VDW applied to χ∗ and the choice of X
there exists A,D′ ∈ [X] such that

• {A,A+D′, . . . , A+ (k + 2U(r))D′} ⊆ [X],

• {BA, BA+D′ , . . . , BA+(k+2U(r))D′} is monochromatic. How far apart are
corresponding elements in adjacent blocks? Since the blocks viewed
as points are D′ apart, and each block has U(r) elements in it, cor-
responding elements in adjacent blocks are D = D′ × U(r) numbers
apart.

Consider the coloring of BA. Since BA is of size U(r) either there exists
a, d ∈ U(r) such that

• {a} ∪ {a+ d2, a+ d2 + d, . . . , a+ d2 + kd} ⊆ BA,

• {a} ∪ {a+ d2, a+ d2 + d, . . . , a+ d2 + kd} is monochromatic

in which case Statement I holds so we are done, or there exists
a′ ∈ BA, d′1, . . . , d

′
r ∈ [U(r)]

such that

• {a′ + d′1
2, a′ + d′1

2 + d′1, . . . , a
′ + d′1

2 + kd′1} ⊆ BA

{a′ + d′2
2, a′ + d′2

2 + d′2, . . . , a
′ + d′2

2 + kd′2} ⊆ BA

...

{a′ + d′r
2, a′ + d′r

2 + d′r, . . . , a
′ + d′r

2 + kd′r} ⊆ BA

• {a′ + d′1
2, a′ + d′1

2 + d′1, . . . , a
′ + d′1

2 + kd′1} is monochromatic.

{a′ + d′2
2, a′ + d′2

2 + d′2, . . . , a
′ + d′2

2 + kd′2} is monochromatic.

...

{a′ + d′r
2, a′ + d′r

2 + d′r, . . . , a
′ + d′r

2 + kd′r} is monochromatic.
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with each monochromatic set colored differently from the others and
from a′.

Since {BA, BA+D, . . . , BA+(k+2U(r))D} is monochromatic we also have
that, for all j with 0 ≤ j ≤ k + 2U(r),

NEED FIGURE

{a′+d′1
2
+jD, a′+d′1

2
+d′1 +jD, . . . , a′+d′1

2
+kd′1 +jD | 0 ≤ j ≤ k+2U(r)}

is monochromatic

{a′+d′2
2
+jD, a′+d′2

2
+d′2 +jD, . . . , a′+d′2

2
+kd′2 +jD} | 0 ≤ j ≤ k+2U(r)}

is monochromatic
...

{a′+d′r
2
+jD, a′+d′r

2
+d′r+jD, . . . , a′+d′2

2
+kd′r+jD} | 0 ≤ j ≤ k+2U(r)}

is monochromatic.

with each monochromatic set colored differently from the others and from a′,
but the same as their counterpart in BA.

Let the new anchor be a = a′−D2. Let di = D+d′i for all 1 ≤ i ≤ r, and
dr+1 = D. We first show that these parameters work and then show that
a, d1, . . . , dr ∈ [U(r + 1)].

For 1 ≤ i ≤ r we need to show that

{a+ (D + d′i)
2, a+ (D + d′i)

2 + (D + d′i), . . . , a+ (D + d′i)
2 + k(D + d′i)}

is monochromatic. Let 0 ≤ j ≤ k. Note that

a+(D+d′i)
2+j(D+d′i) = (a′−D2)+(D2+2Dd′i+d

′
i
2
)+(jD+jd′i) = a′+d′i

2
+jd′i+(j+2d′i)D.

Notice that 0 ≤ j + 2d′i ≤ k + 2U(r). Hence a + d2
i + jdi ∈ BA+(j+2d′i)D

′ ,
the (j + 2d′i)th block. Since BA is the same color as BA+(j+2d′i)D

′ ,

χ(a+ d2
i ) = χ(a+ d2

i + jdi).
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So we have that, for all 0 ≤ i ≤ r, for all j, 0 ≤ j ≤ k, the set

{a+ d2
i , a+ d2

i + di, . . . , a+ d2
i + kdi}

is monochromatic for each i. And, since the original sequences were
different colors, so are our new sequences. Finally, if χ(a) = χ(a + d2

i ) for
some i, then we have {a, a+d2

i , a+d2
i +di, . . . , a+d2

i +kdi} monochromatic,
satisfying Statement I. Otherwise, we satisfy Statement II.

We still need to show that a, d1, . . . , dr ∈ [X × U(r))2 +X × U(r)]. This
is an easy exercise based on the lower bound on a′ (since it came from the
later X × U(r) coordinates) the inductive upper bound on the di’s, and the
upper bound D ≤ U(r).

Theorem 6.2.3 For all k, POLYVDW(Pk).

Proof: We show W (Pk, c) exists by bounding it. Let U(r) be the function
from Lemma 6.2.2. We show W (Pk, c) ≤ U(c). If χ is any c-coloring of [U(c)]
then second case of Lemma 6.2.2 cannot happen. Hence the first case must
happen, so there exists a, d ∈ [U(c)] such that

• {a} ∪ {a+ d2, a+ d2 + d, . . . , a+ d2 + kd} ⊆ [U(c)]

• {a} ∪ {a+ d2, a+ d2 + d, . . . , a+ d2 + kd} is monochromatic.

Therefore W (Pk, c) ≤ U(c).

Note 6.2.4 The proof of Theorem 6.2.3 used VDW. Hence it used POLYVDW(ω).
The proof can be modified to proof POLYVDW(1, 0). So the proof can be
viewed as showing that POLYVDW(ω) =⇒ POLYVDW(1, 0).

6.2.2 The Full Proof

We prove a lemma from which the implication

POLYVDW(ne, . . . , ni, ω, . . . , ω) =⇒ POLYVDW(ne, . . . , ni+1, 0, 0, . . . , 0)

will be obvious.
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Lemma 6.2.5 Let ne, . . . , ni ∈ N. Assume that POLYVDW(ne, . . . , ni, ω, . . . , ω)
holds. Let P ⊆ Z[x] of type (ne, . . . , ni + 1, 0, . . . , 0). Let c ∈ N. We regard
these as fixed. For all r, there exists U = U(r)1 such that for all c-colorings
χ:[U ]→ [c] one of the following Statements holds.
Statement I: there exists a, d ∈ [U ], such that

• {a} ∪ {a+ p(d) | p ∈ P} ⊆ [U ].

• {a} ∪ {a+ p(d) | p ∈ P} is monochromatic.

Statement II: there exists a, d1, . . . , dr ∈ [U ] such that the following hold.

• {a+ p(d1) | p ∈ P} ⊆ [U ]

{a+ p(d2) | p ∈ P} ⊆ [U ]

...

{a+ p(dr) | p ∈ P} ⊆ [U ]

(The number a is called the anchor)

• {a+ p(d1) | p ∈ P} is monochromatic

{a+ p(d2) | p ∈ P} is monochromatic

...

{a+ p(dr) | p ∈ P} is monochromatic

With each monochromatic set being colored differently and differently from
a.

Informal notes:

1. We are saying that if you c-color [U ] either you will have a monochro-
matic set of the form

{a} ∪ {a+ p(d) | p ∈ P}

or you will have many monochromatic sets of the form

{a+ p(d) | p ∈ P},
1Formally U depends on P , c, r; however, we suppress the dependence on P and c for

notational ease.
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all of different colors, and different from a. Once “many” is more than
c, then the latter cannot happen, so the former must, and we have

POLYVDW(ne, . . . , ni, ω, . . . , ω) =⇒ POLYVDW(ne, . . . , ni+1, 0, . . . , 0).

2. If we apply this theorem to a coloring of {s + 1, . . . , s + U} then we
either have

d ∈ [U ] and {a} ∪ {a+ p(d) | p ∈ P} ⊆ {s+ 1, . . . , s+ U}

or
d1, . . . , dr ∈ [U ] and, for all i with 1 ≤ i ≤ r

{a} ∪ {a+ p(di) | p ∈ P} ⊆ {s+ 1, . . . , s+ U}.

Proof: We define U(r) to be the least number such that this Lemma holds.
We will prove U(r) exists by giving an upper bound on it. In particular, for
each r, we will bound U(r). We will prove this theorem by induction on r.

One of the fine points of this proof will be that we are careful to make
sure that a ∈ [U ]. The fact that we have inductively bounded the di’s will
help that.

Fix P ⊆ Z[x] of type (ne, . . . , ni + 1, 0, . . . , 0). Fix c ∈ N. We can assume
P actually has ni + 1 lead coefficients for degree i polynomials (else P is
of smaller type and hence POLYVDW(P, c) already holds and the lemma
is true). In particular there exists some polynomial of degree i in P . We
assume that xi be the first term of some polynomial of degree i in P (the
proof for bxi with b ∈ Z is similar).
Base Case: r = 1. Let

Q = {p(x)− xi | p ∈ P}.

It is easy to show that there exists ni−1, . . . , n1 such that Q is of type
(ne, . . . , ni, ni−1, . . . , n1), and that (∀q ∈ Q)[q(0) = 0]. Since POLYVDW(ne, . . . , ni, ω, . . . , ω)
is true, POLYVDW(Q) is true. Hence W (Q, c) exists.

We show that
U(1) ≤ W (Q, c)i +W (Q, c).

Let χ be any c-coloring of [W (Q, c)i + W (Q, c)]. Look at the coloring
restricted to the last W (Q, c) elements. By POLYVDW(Q) applied to the
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restricted coloring there exists a′ ∈ {W (Q, c)i + 1, . . . ,W (Q, c)i + W (Q, c)}
and d′ ∈ [W (Q, c)] such that

{a′} ∪ {a′ + q(d′) | q ∈ Q} ⊆ {W (Q, c)i + 1, . . . ,W (Q, c)i +W (Q, c)}

{a′} ∪ {a′ + q(d′) | q ∈ Q} is monochromatic .

(Note- we will only need that {a′ + q(d′) | q ∈ Q} is monochromatic.)
Let the new anchor be a = a′ − b(d′)i. Let d1 = d′. (We will use b > 0

later to show that a ∈ [U(1) ≤ W (Q, c)i +W (Q, c)].)
Then

{a′ + q(d′) | q ∈ Q} = {a′ + p(d′)− b(d′)i | p ∈ P}
= {(a′ − b(d1)i) + p(d1) | p ∈ P}
= {a+ p(d1) | p ∈ P} is monochromatic.

If a is the same color then Statement I holds. If a is a different color then
Statement II holds. There is one more issue– do we have a, d ∈ [U(1)]?

Since
a′ ≥ W (Q, c)i + 1

and

d′ ≤ W (Q, c) (Recall that POLYVDW has the restriction d ∈ [W ].)

we have that

a = a′ − b(d′)i ≥ W (Q, c)i + 1− d(d′)i ≥ W (Q, c)i + 1−W (Q, c)i = 1

Clearly
a < a′ ≤ W (Q, c)i +W (Q, c)

Hence
a ∈ [W (Q, c)i +W (Q, c)].

Since d1 = d′ ∈ [W (Q, c)] we clearly have

d1 ∈ [W (Q, c)i +W (Q, c)].

Induction Step: Assume U(r) exists. Let
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Q = {p(x+ u)− p(u)− xi | p ∈ P, 0 ≤ u ≤ U(r)}.

Note that

{p(x)− xi | p ∈ P} ⊆ Q.

Clearly (∀q ∈ Q)[q(0) = 0]. It is an easy exercise to show that, there
exists ni, . . . , n1 such that Q is of type (ne, . . . , ni+1, ni, . . . , n1).

Now, let

Q′ =

{
q(x× U(r))

U(r)
| q ∈ Q

}
Since every q ∈ Q is an integer polynomial with q(0) = 0, it follows that

U(r) divides q(xU(r)), so we have Q′ ⊆ Z[x]. Moreover, it’s clear that Q′

has the same type as Q.
Since POLYVDW(ne, . . . , ni, ω, . . . , ω) holds, we have POLYVDW(Q′).
Hence (∀c′)[W (Q′, c′) exists]. We show that

U(r + 1) ≤ b
(
U(r)W (Q′, cU(r))

)i
+ U(r)W (Q′, cU(r)).

Let χ be a c-coloring of[
b
(
U(r)W (Q′, cU(r))

)i
+ U(r)W (Q′, cU(r))

]
.

View this set as b
(
U(r)W (Q′, cU(r))

)i
elements followed byW (Q′, cU(r)) blocks

of size U(r) each. Restrict χ to the blocks. Now view the restricted c-
coloring of numbers as a cU(r)-coloring of blocks. Call this coloring χ∗.
Let the blocks be

B1, B2, . . . , BW (Q′,cU(r)).

By the definition of W (Q′, cU(r)) applied to χ∗, and the assumption that
POLYVDW(ne, . . . , ni, ω, . . . , ω) holds, there exists A,D′ ∈ [W (Q′, cU(r))]
such that

{BA+q′(D′) | q′ ∈ Q′} is monochromatic.

Note that we are saying that the blocks are the same color. Let D =
D′ × U(r) be the distance between corresponding elements of the blocks.
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Because each block is length U(r), if we have an element x ∈ BA, then in
block BA+q′(D′) we have a point x′, where

CHECK NORMAL VDW WITH THIS POINT ABOUT BLOCKS
NEED FIGURE

x′ = x+ q′(D′)U(r)

= x+ q′
(

D

U(r)

)
U(r)

= x+ q(D) for some q ∈ Q, by definition of Q′

This will be very convenient.

Consider the coloring of BA. Since BA is of size U(r) one of the following
holds.

I) There exists a ∈ BA and d ∈ [U(r)] such that

• {a} ∪ {a+ p(d) | p ∈ P} ⊆ BA

• {a} ∪ {a+ p(d) | p ∈ P} is monochromatic (so we are done).

II) There exists a′ ∈ BA (so a′ ≥ W (Q′, cU(r))i+1) and d′1, . . . , d
′
r ∈ [U(r)]

such that

• {a′ + p(d′1) | p ∈ P} ⊆ BA

{a′ + p(d′2) | p ∈ P} ⊆ BA

...

{a′ + p(d′r) | p ∈ P} ⊆ BA

• {a′ + p(d′1) | p ∈ P} is monochromatic

{a′ + p(d′2) | p ∈ P} is monochromatic

...

{a′ + p(d′r) | p ∈ P} is monochromatic

with each monochromatic set being colored differently from each other
and from a′.

Since {BA+q′(D′) | q′ ∈ Q′} is monochromatic, and since we know that
x ∈ BA corresponds to x+ q(D) ∈ BA+q′(D′), we discover that, for all q ∈ Q,
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{a′ + p(d′1) + q(D) | p ∈ P} is monochromatic
{a′ + p(d′2) + q(D) | p ∈ P} is monochromatic

...
{a′ + p(d′r) + q(D) | p ∈ P} is monochromatic.

with each monochromatic set being colored differently from each other,
and from a′, but the same as their counterpart in BA.

Our new anchor is a = a′ −Di. Note that since

a′ ≥ W (Q′, cU(r))i + 1

and
D ≤ W (Q′, cU(r))

we have

a = a′ −Di ≥ W (Q′, cU(r))i + 1−W (Q′, cU(r))i = 1

Clearly a ≤ a′ ≤ W (Q′, cU(r) + U(r)W (Q′, cU(r)). Hence

a ∈ [W (Q′, cU(r))i + U(r)W (Q′, cU(r))].

Since
{BA+q′(D′) | q′ ∈ Q′}

is monochromatic (viewing the coloring on blocks) we know that

{a′ + q(D) | q ∈ Q}

is monochromatic (viewing the coloring on numbers). Remember that the
following is a subset of Q:

{p(x)− xi | p ∈ P}.

Hence the following set is monochromatic:

{a′ + p(D)−Di | p ∈ P} = {a+Di + p(D)−Di | p ∈ P}
= {a+ p(D) | p ∈ P}.

If a is the same color then Statement I holds and we are done. If a is
a different color then we have one value of d, namely dr+1 = D. We seek r
additional ones to show that Statement II holds.
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For each i we want to find a new di that works with the new anchor a.
Consider the monochromatic set {a′ + p(d′i) | p ∈ P}. We will take each
element of it and shift it q(D) elements for some q ∈ Q. The resulting set is
still monochromatic. We will pick q ∈ Q carefully so that the resulting set,
together with the new anchor a and the new values di = d′i +D work.

CHECK VDW AND QVDW FOR THIS POINT
For each p ∈ P we want to find a q ∈ Q such that a+ p(d′i +D) is of the

form a′ + p(d′i) + q(D), and hence the color is the same as a′ + p(d′i).

a′ + p(d′i) + q(D) = a+ p(d′i +D)
a′ + p(d′i) + q(D)− a = p(d′i +D)

Di + p(d′i) + q(D) = p(d′i +D)
q(D) = p(d′i +D)− p(d′i)−Di

Take q(x) = p(x + d′i) − p(d′i) − Di. Note that d′i ≤ U(Q, c, r) so that
q ∈ Q.

— Put bounds on di in here.
BILL - CHECK THIS
Let di = d′i +D for 1 ≤ i ≤ r, and dr+1 = D.
We have seen that

{a+ p(d1) | p ∈ P} is monochromatic

...

{a+ p(dr) | p ∈ P} is monochromatic

AND

{a+ p(dr+1) | p ∈ P} is monochromatic

The first r are guaranteed to be different colors by the inductive assump-
tion. The (r + 1)st is yet another color, because it shares a color with the
anchor of our original sequences, which we assumed had its own color. So
here we see that the Lemma is satisfied with parameters a, d1, . . . , dr, dr+1.

Lemma 6.2.6 For all ne, . . . , ni

POLYVDW(ne, . . . , ni, ω, . . . , ω) =⇒ POLYVDW(ne, . . . , ni+1, 0, 0, . . . , 0).
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Proof: Assume POLYVDW(ne, . . . , ni, ω, . . . , ω). Let P be of type
POLYVDW(ne, . . . , ni + 1, 0, 0, . . . , 0). Apply Lemma 6.2.5 to P with r = c.
Statement II cannot hold, so statement I must, and we are done.

We can now prove the Polynomial van der Waerden Theorem.

Theorem 6.2.7 For all P ⊆ Z[x] finite, such that (∀p ∈ P )[p(0) = 0], for
all c ∈ N, there exists W = W (P, c) such that for all c-colorings χ:[W ]→ [c],
there exists a, d ∈ [W ] such that

• {a} ∪ {a+ p(d) | p ∈ P} ⊆ [W ],

• {a} ∪ {a+ p(d) | p ∈ P} is monochromatic.

Proof:
We use the ordering from Definition 6.1.8. The least element of this set

is (0). POLYVDW(0) is the base case. The only sets of polynomials of
type (0) are ∅. For each of these sets, the Polynomial van der Waerden
Theorem requires only one point to be monochromatic (the anchor), so of
course POLYVDW (0) holds.

Lemma 6.2.5 is the induction step.
This proves the theorem.

Note 6.2.8

1. Our proof of POLYVDW did not use van der Waerden’s Theorem. The
base case for POLYVDW was POLYVDW(0) which is trivial.

2. Let p(x) = x2−x and P = {p(x)}. Note that p(1) = 0. The statement
POLYVDW(P, 2012) is true but stupid: if χ is an 2012-coloring of [1]
then let a = 0 and d = 1. Then a, a + p(d) are the same color since
they are the same point. Hence POLYVDW(P, 2012) holds. The proof
of POLYVDW we gave can be modified to obtain a d so that not only
is d 6= 0 but

{a} ∪ {a+ p(d) | p ∈ P}
has all distinct elements. Once this is done POLYVDW(P, 2012) is
true in a way that is not stupid.

BILL- ADD STUFF ON CAROLYN NUMBERS
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6.3 Bounds on the Polynomial van der Waer-

den numbers

6.3.1 Upper Bounds

6.3.2 Upper Bounds via Alternative Proofs

6.3.3 Lower Bounds

Theorem 6.3.1 Let P ⊆ Z[x] be a set of k− 1 polynomials with 0 constant
term. Assume that there is no positive integer for which any pair assumes
the same value. For all c, POLYVDW(P, c) ≥ c(k−1)/2.

Proof: We will prove this theorem as though we didn’t know the result.
Let W be a number to be picked later. We are going to try to c-color

[W ] such that there is no a, d with {a} ∪ {a+ p(d) : p ∈ P} monochromatic.
More precisely, we are going to derive a value of W such that we can show
that such a coloring exists.

Consider the following experiment: for each i ∈ [W ] randomly pick a
color from [c] for i. The distribution is uniform. What is the probability
that an a, d exist such that {a} ∪ {a+ p(d) : p ∈ P} is monochromatic?

The number of colorings is cW . We now find the number of colorings that
have such an a, d.

First pick the color of the sequence. There are c options. Then pick the
value of a. There are W options. Then pick the value of d. Note that we
are using the version of the POLYVDW where d ∈ [W ], so there are W
options. Once these are determined, the color of the distinct k values in
{a} ∪ {a + p(d) : p ∈ P} are determined (they are distinct because of the
assumption in the premise of this theorem.) There are W − k values left.
Hence the number of such colorings is bounded above by cW 2cW−k.

The probability that the c-coloring has a monochromatic k-AP is bounded
above by

cW 2cW−k

cW
=

W 2

ck−1
.

We need this to be < 1. Hence we need

W 2 < ck−1.
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W < c(k−1)/2.

Therefore there is a c-coloring of [c(k−1)/2 − 1] without a monochromatic
k-AP. Hence POLYVDW(P, c) ≥ c(k−1)/2.

We actually obtained a better bound in Theorem 2.3.5 when dealing
with the ordinary VDW. This is because we knew more about the actual
polynomials involved. Below we obtain better bounds for particular sets of
polynomials.

Theorem 6.3.2 Let c, k ∈ N. Let P = {x, x2, . . . , xk}. POLYVDW(P, c) ≥

Proof: We will prove this theorem as though we didn’t know the result.
Let W be a number to be picked later. We are going to try to c-color [W ]

such that there is no a, d with {a} ∪ {a + dj : 1 ≤ j ≤ k} monochromatic.
More precisely, we are going to derive a value of W such that we can show
that such a coloring exists.

Consider the following experiment: for each i ∈ [W ] randomly pick a
color from [c] for i. The distribution is uniform. What is the probability
that an a, d exist such that {a} ∪ {a+ p(d) : p ∈ P} is monochromatic?

The number of colorings is cW . We now find the number of colorings that
have such an a, d.

First pick the color of the sequence. There are c options. Then pick
the value of a. There are W options. Then pick the value of d. Note
that we need to have a + dk ∈ [W ]. Hence d ≤ W 1/k, so there are W 1/k

options. Once these are determined, the color of the distinct k values in
{a}∪{a+dj : 1 ≤ j ≤ k} are determined There are W −k values left. Hence
the number of such colorings is bounded above by cW 1+1/kcW−k.

The probability that the c-coloring has a monochromatic k-AP is bounded
above by

cW 1+1/kcW−k

cW
=
W 1+1/k

ck−1
.

We need this to be < 1. Hence we need

W 1+1/k < ck−1.

W < c(1−ε)k where ε = 2
k+1

.
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Therefore there is a c-coloring of [c(1−ε)k− 1] without such an a, d. Hence
POLYVDW(P, c) ≥ c(1−ε)k − 1

Better bounds are known. See [82] and [67]
BILL- FILL IT IN- ADD MORE REFS AND POSSIBLY PROOFS

6.4 What if we use Polynomials with a Con-

stant term?

6.5 What if we do not use Polynomials?

The POLYVDW was motivated by replacing d, 2d, . . . , (k−1)d with polyno-
mials in d. Would other functions work? Would exponential functions work?
For which choice of b, c ∈ N is the following true:

for every c-coloring χ of N there exists a, d ∈ N such that with

χ(a) = χ(a+ bd)

Alas, this is never true.

Theorem 6.5.1 Fix b ∈ N. Let p be the smallest prime number which is
not a factor of b, Then there is a p-coloring χ:N → [p] such that, ∀a, d ∈
N, χ(a) 6= χ(a+ bd).

Proof: Fix b, p ∈ N with p the smallest prime non-factor of b. Now define
the p-coloring χ :N → [p] such that χ(n) = n′, where n′ is the reduction
of n modulo p with n′ ∈ [p]. Most importantly, χ(n) ≡ n (mod p). Thus,
χ(a) = χ(b) if and only if p | (b− a).

Now let a, d ∈ N, and consider χ(a) and χ(a+ bd). Well, since p is prime
and p - b, we know that p - bd. This guarantees that χ(a) 6= χ(a+ bd), which
is what was to be shown.

It is an open question to determine if Theorem 6.5.1 is tight. Also, it is
open to investigate other functions.



Chapter 7

An Applications of the Poly
van der Waerden Theorem

BILL- FILL IN - VDW where the d has to be a square, or some other poly,
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Chapter 8

The Hales-Jewett Theorem

8.1 Introduction

HJ feels very much like VDW, despite living in a very different domain.
In the case of HJ, we replace [W ] with a hypercube, and the arithmetic
progressions with monochromatic lines, but it will feel very similar. Here’s
the cast of players in HJ:

• The hypercube: Given c, t, N ∈ N, we will color the elements of the
N -dimensional hypercube of length t, namely [t]N .

When t = 26, we can look at [t]N as strings of letters. For example,
PUPPY and TIGER are points in [26]5.

• The lines: In [t]N , a line is a collection of points P1, P2, . . . , Pt such
that ∃λ ⊆ [N ], λ 6= ∅ satisfying

(∀s ∈ λ)(∀i)[P s
i = s and ∀s /∈ λ,∀i, j, P s

i = P s
j ]( See Example below )

where P s
i denotes the sth component of the point Pi. We call λ the

“moving” coordinates, and the rest are static.

Example 8.1.1 The following form a line in [26]9, with λ = {2, 3, 5, 8}:

GAABARDAA

GBBBBRDBA
...

GZZBZRDZA

125
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• The line−. A line− is the first t− 1 points of a line in [t]N . The line−

corresponding to the previous example is

GAABARDAA

GBBBBRDBA
...

GYYBYRDYA

Given a line L, we will refer to L− as the line− corresponding to L.

• Completion: the would-be tth point of a line−. The completion of our
line− is the point GZZBZRDZ. If more than one point would complete
the line, we choose the least such point, according to a lexicographical
ordering of [t]N .

Note 8.1.2 When t ≤ 2, a line− may have more than one completion,
since in that case a line− is a single point. For example, {BAA} is a
line− in [2]3. Its completions are BAB, BBA, and BBB, depending on
our choice of moving coordinates. However, when t ≥ 3, a line− will
have at least 2 points, which establishes the set of moving coordinates,
and thus the completion of the line. This means, when t ≥ 3, every
line− has a unique, predetermined tth point. The definition’s use of the
“least” tth point only matters when t ≤ 2

We are now ready to present HJ .

Hales-Jewett Theorem ∀t, c,∃N = HJ(t, c) such that, for all c-colorings
χ:[t]N → [c],∃L ⊆ [t]N , L a monochromatic line.

There are some easy base cases:

Fact 8.1.3

• c = 1: HJ(t, 1) = 1. Any 1-coloring of [t]1 = [t] easily has a monochro-
matic line. For example, if we 1-color [4] we have that (1), (2), (3),
(4) are all RED and they form a line.
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• t = 1:HJ(1, c) = 1. When t = 1 there is only a single point.

There is also a slightly harder base case:

Proposition 8.1.4 HJ(2, c) = c+ 1

Proof:

Let χ:[2]c+1 → [c] be a c-coloring of [2]c+1. Consider the following elements
of [2]c+1

1 1 1 · · · 1 1
1 1 1 · · · 1 2
1 1 1 · · · 2 2
...

...
...

...
...

...
1 2 2 · · · 2 2
2 2 2 · · · 2 2

Since there are c+1 elements and only c colors, two of these elements are
the same color. We can assume they are of the form

1i2j where i+ j = c+ 1

1i
′
2j
′

where i′ + j′ = c+ 1

These two elements form a monochromatic line. (For example

1 1 1 1 1 1 2 2 2
1 1 1 1 2 2 2 2 2

form a monochromatic line with λ = {5, 6}.)

We will give two proof of the HJ: (1) The original proof due to Hales
and Jewett [39], presented as a color-focusing argument, and (2) a proof due
to Shelah [76] and yields much better upper bounds on the Hales-Jewett
numbers.

8.2 Proof of the Hales-Jewett Theorem

We prove a lemma from which the theorem will easily follow.
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Lemma 8.2.1 Fix t, c ∈ N. Assume (∀c′)[HJ(t − 1, c′) exists]. Then, for
all r, there exists U = U(r) 1 such that, for all c-colorings χ:[t]U → [c] one
of the following statements holds.

Statement I: There exists a monochromatic line L ⊆ [t]U .

Statement II: There exist r monochromatic lines− L−1 , L
−
2 , . . . , L

−
r ⊆ [t]U ,

and a point Q ∈ [t]U , such that each L−i has a different color, Q is yet
another color, and Q is the completion of every L−i . (Informally, we say that
if you c-color [t]U then you will either have a monochromatic line, or many
monochromatic line− structures, each of a different color. Once “many”
becomes more than c, we must have a monochromatic line.)

Proof:
We define U(r) to be the least number such that this Lemma holds. We

will prove U(r) exists by giving an upper bound for it.

Base Case: If r = 1 then U(1) ≤ HJ(t − 1, c) suffices (actually U(1) =
HJ(t− 1, c)). We take any c-coloring of [t]HJ(t−1,c), and restrict the domain
to a c-coloring of [t − 1]HJ(t−1,c) to find a monochromatic line, which it has
by definition of HJ. This becomes a monochromatic line− in [t]HJ(t−1,c), so
we are done.

Induction Step: By induction, assume U(r) exists. Let

X = ct
U(r)

. This is the number of ways to c-color [t]U(r).

(X stands for eXtremely large.)
We will show that

U(r + 1) ≤ HJ(t− 1, X) + U(r).

BILL- CHECK ON THIS- HERE WE HAVE U(r+1) BOUNDED, ELSE-
WHERE WE HAVE IT EXACT. IS IT SUPPOSED TO BE THE LEAST
NUMBER OR A NUMBER?

Let N = HJ(t− 1, X) + U(r). Now we view [t]N as

[t]HJ(t−1,X) × [t]U(r).

1Formally U depends on k, c, r; however, we suppress the dependence on k and c for
ease of notation.
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Define S =
{
χ | χ : [t]U(r) → [c]

}
. Note that |S| = X. How convenient.

Let χ:[t]N → [c] be our c-coloring. We define, for each σ ∈ [t−1]HJ(t−1,X),

χ′(σ):[t− 1]HJ(t−1,X) → S.

Note 8.2.2 At this point, it is essential to realize that χ′ is an X-coloring
of [t − 1]HJ(t−1,X). With every vector in [t − 1]HJ(t−1,X), we associate some
χ ∈ S. Although χ is itself a coloring, here we treat it as a color.

For example, χ′(σ) might be the following 3-coloring of [2]3

(σ)(0, 0, 0) = 1

(σ)(0, 0, 1) = 1

(σ)(0, 1, 0) = 3

(σ)(0, 1, 1) = 2

(σ)(1, 0, 0) = 1

(σ)(1, 0, 1) = 3

(σ)(1, 1, 0) = 2

(σ)(1, 1, 1) = 2

Given σ ∈ [t−1]HJ(t−1,X), χ′(σ) will be a c-coloring of [t]U(r). Accordingly,
we define χ′(σ) by telling the color of τ for τ ∈ [t]U(r). From here, our choice
is clear — we associate to σ the c-coloring (σ):[t]U(r) → [c] defined by

(σ)(τ) = χ(στ).

Here στ is the vector in [t]N which is the concatenation of σ and τ .
We treat χ′(σ) as an X-coloring of [t − 1]HJ(t−1,X). By definition of

HJ(t− 1, X), we are guaranteed a monochromatic line, L, where

L ⊆ [t− 1]HJ(t−1,X) ⊂ [t]HJ(t−1,X).

Let L = {P1, P2, . . . , Pt−1}. So we have

(P1) = χ′(P2) = · · · = χ′(Pt−1) = χ
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L is a line in [t− 1]U(r), but it is only a line− in [t]HJ(t−1,X). Let Pt be its
completion.

Of course, χ itself is a c-coloring of [t]U(r). By definition of U(r), we get
one of two things:

Case 1: If χ gives a monochromatic line L′ = {Q1, Q2, . . . , Qt}, then our
monochromatic line in [t]N is

{P1Q1, P1Q2, . . . , P1Qt}

and we are done. (Note that {P2Q1, P2Q2, . . . , P2Qt} also would have worked,
as would {P3Q1, P3Q2, . . . , P3Qt} etc.)

Case 2: We have L−1 , L
−
2 , . . . , L

−
r , each a monochromatic line− in [t]U(r), and

each with the same completion Q ∈ [t]U(r). Note that Q must have an (r+1)st

color, or else we would be in case 1. Let Qj
i denote the jth point on L−i . We

now have all the components needed to piece together r + 1 monochromatic
line− structures:

{P1Q
1
1, P2Q

2
1, . . . , Pt−1Q

t−1
1 }

{P1Q
1
2, P2Q

2
2, . . . , Pt−1Q

t−1
2 }

...

{P1Q
1
r, P2Q

2
r, . . . , Pt−1Q

t−1
r }

AND

{P1Q,P2Q, . . . , Pt−1Q}

We already know the first r have different colors.
Case 2.1: The line− {P1Q,P2Q, . . . , Pt−1Q} is the same color as the

sequence {P1Q
1
i , P2Q

2
i , . . . , Pt−1Q

t−1
i } for some i. Then the line given by

{P1Q
1
i , P1Q

2
i , . . . , P1Q

t−1
i , P1Q}

is monochromatic, so we are done, satisfying Statement I.
Case 2.2: The line− structures listed are all monochromatic and different

colors. Note that PtQ is the completion for all of them, so Statement II is
satisfied.
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We now restate and prove HJ:

Theorem 8.2.3 Hales-Jewett Theorem ∀t, c,∃N = HJ(t, c) such that,
for all c-colorings χ:[t]N → [c],∃L ⊆ [t]N , L a monochromatic line.

Proof:
We prove this by induction on t. We show that

• (∀c)[HJ(1, c) exists]

• (∀c)[HJ(t− 1, c) exists] =⇒ (∀c)[HJ(t, c) exists]

Base Case: t = 1 As noted in Fact 8.1.3 HJ(1, c) = 1 exists.
Induction Step: Assume (∀c)[HJ(t−1, c) exists ]. Fix c. Consider Lemma 8.2.1
when r = c. In any c-coloring of [t]U(c), either there is a monochromatic line,
or there are c monochromatic line− structures which are all colored differ-
ently, and share a completion Q colored differently. Since there are only c
colors, this cannot happen, and we must have a monochromatic line. Hence
HJ(t, c) ≤ U(t).

8.3 Shelah’s Proof of the Hales-Jewett The-

orem

8.4 Bounds on the Hales-Jewett numbers

8.4.1 Upper Bounds on the Hales-Jewett numbers

8.4.2 Lower Bounds on the Hales-Jewett numbers
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Chapter 9

Applications of the
Hales-Jewett Theorem

9.1 Positional Games

9.2 VDW and Variants

9.3 Comm. Comp. of χ

9.4 The Square Theorem: Fourth Proof

Use HJ directly.

9.5 The Gallai-Witt Theorem (Multidim VDW)

Theorem 9.5.1 Let c,M ∈ N. Let χ∗ :N × N → [c]. There exists a, d,D
such that all of the following are the same color.

{(a+ iD, d+ jD) | −M ≤ i, j ≤M}.

9.6 The Canonical VDW

We first recall the following version of van der Waerden’s Theorem.

133
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VDW For every k ≥ 1 and c ≥ 1 for every c-coloring χ:[N]→ [c] there exists
a monochromatic k-AP. In other words there exists a, d such that

χ(a) = χ(a+ d) = · · · = χ(a+ (k − 1)d).

What if we use an infinite number of colors instead of a finite number of
colors? Then the theorem is false as the coloring χ(x) = x shows. However,
in this case, we may get something else.

Def 9.6.1 Let k ∈ N. Let χ be a coloring of N (which may use a finite
or infinite number of colors). A rainbow k-AP is an arithmetic progression
a, a+ d, a+ 2d, . . . , a+ (k− 1)d such that all of these are colored differently.

The following is the Canonical van der Waerden’s Theorem. Erdős and
Graham [23] claim that it follows from Szemerëdi’s Theorem on density.
Later Prömel and Rödl [66] obtained a proof that used the Gallai-Witt The-
orem.

Theorem 9.6.2 Let k ∈ N. Let χ:N→ N be a coloring of the naturals. One
of the following two must occur.

• There exists a monochromatic k-AP.

• There exists a rainbow k-AP.

Proof:
Let χ∗ be the following finite coloring of N× N. Given (a, d) look at the

following sequence

(χ(a), χ(a+ d), χ(a+ 2d), . . . , χ(a+ (k − 1)d)).

This coloring partitions the numbers {0, . . . , k − 1} in terms of which
coordinates are colored the same. For example, if k = 4 and the coloring
was (R,B,R,G) then the partition is {{0, 2}, {1}, {3}}. We map (a, d) to
the partition induced on {0, . . . , k − 1} by the coloring. There are only a
finite number of such partitions. (The Stirling numbers of the second kind
are S(k, L) are the number of ways to partition k numbers into L nonempty
sets. The Bell numbers are Bk =

∑k
L=1 S(k, L). The actual number is colors

is Bk.)
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Example 9.6.3

1. Let k = 10 and assume

(χ(a), χ(a+ d), . . . , χ(a+ (9d)) = (R, Y,B, I, V, Y,R,B,B,R).

Then (a, d) maps to {{0, 6, 9}, {1, 5}, {2, 7, 8}, {3}, {4}, }.

2. Let k = 6 and assume

(χ(a), χ(a+ d), . . . , χ(a+ (5d)) = (R, Y,B, I, V, Y ).

Then (a, d) maps to {{0}, {1}, {2}, {3}, {4}, {5}}.

Let M be a constant to be picked later. By Theorem 9.5.1 There exists
a, d,D such that all of the following are the same χ∗

{(a+ iD, d+ jD) | −M ≤ i, j ≤M}.

There are two cases.
Case 1: χ∗(a, d) is the partition of every element into its own class. This
means that there is a rainbow k-AP and we are done.
Case 2: There exists x, y such that χ∗(a, d) is the partition that puts a+xd
and a+ yd in the same class. More simply, χ(a+ xd) = χ(a+ yd). Since for
all −M ≤ i, j ≤M ,

χ∗(a, d) = χ∗(a+ iD, d+ jD).

we have that, for all −M ≤ i, j ≤M ,

χ(a+ iD + x(d+ jD)) = χ(a+ iD + y(d+ jD)).

Assume that χ(a + xd) = χ(a + yd) = RED. Note that we do not know
χ(a+ iD + x(d+ jD)) or χ(a+ iD + y(d+ jD)), but we do know that they
are the same.

We want to find the (i, j) with −M ≤ i, j ≤M such that
χ∗(a+ iD, d+ jD) affects χ(a+ xd).

Note that
if

a+ xd = a+ iD + x(d+ jD)
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then

xd = iD + xd+ xjD

0 = iD + xjD

0 = i+ xj

i = −xj.
Hence we have that

a+ xd = (a− xj)D + x(d+ jD).

So what does this tell us? For all −M ≤ i, j ≤M ,

χ(a+ iD + x(d+ jD)) = χ(a+ iD + y(d+ jD)).

Let i = −xj and you get

χ(a− xjD + x(d+ jD)) = χ(a− xjD + y(d+ jD)).

RED = χ(a+ xd) = χ(a+ yd+ j(yD − xD)).

This holds for −M ≤ j ≤ M . Looking at j = 0, 1, . . . , k − 1, and letting
A = a+ yd and D′ = yD − xD, we get

χ(A) = χ(A+D′) = χ(A+ 2D′) = · · · = χ(A+ (k − 1)D′) = RED.

This yields an monochromatic k-AP.
What value do we need for M? We want j = 0, 1, . . . , k − 1. We want

i = −xj. We know that x ≤ k − 1. Hence it suffices to take M = (k − 1)2.

Note 9.6.4 We used the two-dimensional VDW to prove the one-dimensional
canonical VDW. For all d there is a d-dimensional canonical VDW, and it is
proven using the d+1-dimensional VDW. The actual statement is somewhat
complicated. The interested reader can see [66].



9.7. COMM. COMP. OF
∑K

I=1XI ≡ 0 (MOD 2N − 1) 137

9.7 Comm. Comp. of
∑k

i=1 xi ≡ 0 (mod 2n − 1)
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Chapter 10

The Polynomial Hales-Jewett
Theorem

10.1 Introduction

Much as VDW has a generalization to POLYVDW, so does HJ. To get there,
we must first generalize a few definitions, and create some we had no need
for in the original version.

Recall that, in HJ, we colored elements of [t]N and looked for monochro-
matic lines. Of course, we used the ground set [t] only for convenience — we
used none of the numerical properties. In that spirit, we may replace [t] with
any alphabet Σ of t letters.

Let Σ = (Σd, . . . ,Σ1) be a list of alphabets, and n a natural number. A
Hales-Jewett space has the form

SΣ(n) = Σnd

d × Σnd−1

d−1 × · · · × Σn
1

We view an element A ∈ SΣ(n) as a collection of structures: a vector with
coordinates from Σ1, a square with coordinates from Σ2, a cube with coordi-
nates from Σ3, and so on. In the case of d = 1, and Σ = [t], this is precisely
the space colored in the ordinary HJ.

We define a set of formal polynomials over Σ by

Σ[γ] =
{
adγ

d + · · ·+ a1γ | ai ∈ Σi

}
Note that every polynomial has exactly d terms — omitting a term is not
permitted. This differs from POLYVDW where we allowed any polynomials.

139
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For example, x3 is a valid polynomial when dealing with POLYVDW. The
closest we can come to this in POLYHJ is 1x3 + 0x2 + 0x. Note that 1x3 +
0x2 +0x is not equivalent to x3. In fact, the term x3 has no meaning since the
coefficients come out of a finite alphabet. Note that although the coefficients
may suggest meaning to the reader, they will have no numerical significance
in the context of HJ .

Let A ∈ SΣ(n), p ∈ Σ[γ] of the form p(γ) = adγ
d+ · · ·+a1γ, and λ ⊆ [n].

Then we define A + p(λ) ∈ SΣ(n) as follows. Take the line from A, and
replace the coordinates in λ by a1. Similarly, replace the coordinates from
the square in λ2 = λ× λ with a2, and so on.

Example 10.1.1 Let Σ1 = {a, b, c, d},Σ2 = [9], and Σ = (Σ2,Σ1). Let
A ∈ SΣ(3) be

A =

 3 1 2
8 8 9
4 5 3

 (a d c)

Note that A consists of a 3× 3 block and a 1× 3 block together, but they
have no mathematical significance as a matrix or a vector.

Now, let p ∈ Σ[γ] be given by p(γ) = 1γ2 + bγ, and let λ = {1, 2}. Then

A+ p(λ) =

 1 1 2
1 1 9
4 5 3

 (b b c)

Now, we can restate HJ in this language.

Theorem 10.1.2 Hales-Jewett Theorem
For every c, every finite alphabet Σ, there is some N such that, for any c-
coloring χ:SΣ(N) → [c], there is a point A ∈ SΣ(N), λ ⊆ [N ], with λ 6= ∅
such that the set {A+ σλ | σ ∈ Σ} is monochromatic.

From this terminology, we see a very natural generalization to a polyno-
mial version of the theorem.

Theorem 10.1.3 Polynomial Hales-Jewett Theorem
For every c, every list of finite alphabets Σ = (Σd, . . . ,Σ1), and every collec-
tion P ⊆ Σ[γ], there is a number N = HJ(Σ, P, c) with the following prop-
erty. For any c-coloring χ:SΣ(N)→ [c], there is a point A ∈ SΣ(N), λ ⊆ [N ]
with λ 6= ∅, such that the set {A+ p(λ) | p ∈ P} is monochromatic.
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Example 10.1.4 Let d = 2,Σ2 = {0, . . . , 9},Σ1 = {a, . . . , z}. Let

P = {1γ2 + aγ, 1γ2 + bγ, 2γ2 + cγ}.

If N = 3 and λ = {2, 3}, then the following would be an appropriate
monochromatic set:  5 2 4

7 1 1
1 1 1

 (f a a)

 5 2 4
7 1 1
1 1 1

 (f b b)

 5 2 4
7 2 2
1 2 2

 (f c c)

POLYHJ was first proven by Bergelson and Leibman [8] using ergodic
methods. We present the proof by Walters [90] that uses purely combinatorial
techniques.

10.2 Defining Types of Sets of Polynomials

Note that, in POLYVDW, we needed to assume that p(0) = 0 for every
p ∈ P . We have no such statement here, because we have no notion of a
constant term for a polynomial in Σ[γ].

To prove this theorem, we will do induction on the “type” of the set of
polynomials P , as in the POLYVDW. However, each polynomial necessarily
has degree d, which makes the notion of type used previously rather unhelp-
ful. In order to get the induction to work, we need to introduce a relative
notion of degree, and tweak the definition of type.

Def 10.2.1 Let Σ be a list of finite languages, and p, q ∈ Σ[γ]. Then we say
the degree of p relative to q is the degree of the highest term on which they
differ. Formally, let p(γ) = adγ

d + · · · + a1γ
1, and q(γ) = bdγ

d + · · · + b1γ
1.

Let k be the largest index such that ak 6= bk (or 0 if p = q). Then p has
degree k with respect to q. We also say that p has leading coefficient ak with
respect to q
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Note that the definition is symmetric: the degree of p relative to q is the
same as the degree of q relative to p.

Example 10.2.2 Define

f(γ) = aγ3 + 3γ2 +♥γ

g(γ) = aγ3 + 3γ2 +♦γ
h(γ) = bγ3 + 3γ2 +♥γ

The we see the following:

• f has degree 1 relative to g.

• f has leading coefficient ♥ relative to g, and g has leading coefficient
♦ relative to f .

• h has degree 3 relative to both f and g.

• h has leading coefficient b relative to f and g, which each have leading
coefficient a relative to h.

With this definition, we can now define the type of a set of polynomials
relative to q virtually the same as we did for POLYVDW.

Def 10.2.3 Let Σ be a list of d finite alphabets, and P ⊆ Σ[γ], q ∈ Σ[γ]. For
each index k, let Pk ⊆ P be the subset of polynomials with degree k relative
to q. Let nk be the number of leading coefficients relative to q of polynomials
in Pk. Then the type of P relative to q is vector (nd, . . . , n1). We give these
type vectors the same ordering as before, as seen in Definition 6.1.8.

For each pi ∈ P , let ti be the type of P relative to pi. Then we say P has
[absolute] type t = min ti.

Example 10.2.4 Let P = {p1, p2, p3, p4, p5}, where

p1 = aγ3 + 6γ2 +♦γ

p2 = aγ3 + 6γ2 +♥γ
p3 = aγ3 + 7γ2 +♥γ
p4 = bγ3 + 6γ2 +♦γ
p5 = bγ3 + 6γ2 +♥γ

Let Q = Q− {p5}. We see that:
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• The type of P relative to p1 and p2 is (1, 1, 1).

• The type of P relative to p3 is (1, 1, 0).

• The type of P relative to p4 and p5 is (1, 0, 1).

• The [absolute] type of P is (1, 0, 1), minimized by p4 and p5.

• P and P − {p5} have the same type relative to p1, p2, and p3, the type
remains unchanged.

• The type of P − {p5} relative to p4 is (1, 0, 0) — lower than the type
of P .

The next proposition states that this last point always happens — the type
of a set always decreases when you remove the polynomial which minimizes
it.

Proposition 10.2.5 Let P be a set of polynomials, such that p ∈ P mini-
mizes its type. Then P − {p} has lower type.

Proof: Let P have type (nd, . . . , n1), and let p minimize the type of P .
Choose q ∈ P to have minimal degree with respect to p, and call that degree
k. Define Q = P−{p}. For polynomials in Q of degree greater than k relative
to p, the degree is unchanged relative to q. Since the leading coefficients are
also unchanged, the first d−k coefficients of the type vector are identical for
P and Q.

Now, let Qk ⊆ Q be the set of polynomials with degree ≤ k relative to
p. By definition of the type vector, there are [exactly] nk different leading
coefficients of degree k polynomials in this set. Moreover, there are no poly-
nomials of lower degree relative to p, since q was chosen to minimize k. Now,
q has one of the nk leading coefficients relative to p. Thus, relative to q, Qk

has nk − 1 leading coefficients of degree k, with the remaining polynomials
reducing in degree, because they agree with q on that coefficient. Thus, the
type of Q relative to q is (nd, . . . , nk+1, nk − 1, n′k−1, . . . , n

′
1), for some values

of n′k−1, . . . , n
′
1. This type is lower than that of P , so the minimum type of

Q is lower as well.

Remark: We picked k to be the minimal degree of a polynomial relative to
p. This means that the type of P is (nd, . . . , nk, 0, . . . , 0). If there were any
polynomials of degree < k, we would have picked one of those rather than q.
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10.3 How to View and Alphabet

Now, in proving the HJ, it was important to view Σn+m as Σn×Σm. We will
need something similar for the polynomial version.

Proposition 10.3.1 Let n,m ∈ N, and Σ be a list of finite alphabets. Then
there is a finite list of alphabets Σ′ so that SΣ(n + m) ∼= SΣ(n) × SΣ′(m),
where Σ′ is independent of m.

The proof of this is rather messy, but is done by manipulating the defi-
nition of SΣ(n+m). Rather than prove it in general here, we show the case
when Σ = (Σ2,Σ1).

SΣ(n+m) = Σ
(n+m)2

2 × Σn+m
1
∼= Σn2

2 × Σ2nm
2 × Σm2

2 × Σn
1 × Σm

1

∼=
(

Σn2

2 × Σn
1

)
×
(

Σm2

2 × [Σ2n
2 × Σ1]m

)
By setting Σ′ = (Σ2,Σ

2n
2 × Σ1), this comes out to be SΣ(n) × SΣ′(m), as

desired. We view the transformation from SΣ(n + m) to SΣ(n)× SΣ′(m) as
follows:

• Cut the line of length n+m into two lines — one of length n, and one
of length m. The former belongs to SΣ(n), and the latter to SΣ′(m).

• Cut the (n + m) × (n + m) block into four blocks. One is an n × n
square, which belongs to SΣ(n). Another is an m × m square, which
lives in the 2-dimensional portion of SΣ′(m). Leftover are blocks of size
n × m and m × n. We view these as “thick” lines of length m, with
each entry representing n entries of the original space. In this way, we
attach these pieces of the square to the line in SΣ′(m).

• Similarly, the k-dimensional block of SΣ(n + m) will be cut into 2k

pieces. One goes to the k-dimensional portion of SΣ(n) and another to
the k-dimensional portion of SΣ′(m). The rest go to lower-dimensional
portions of SΣ′(m).

Looking the other direction, let A′ be a point in SΣ′(m).

• The d-dimensional part of A′ comes from the d-dimensional portion of
the point in the original space (SΣ(n+m)).
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• The (d − 1)-dimensional part has one piece which is “truly” (d − 1)-
dimensional, and the rest of the pieces originally lived in d dimensions.

• The k-dimensional part ofA′ has one piece which is “truly” k-dimensional,
and the other pieces are from higher dimensions.

How does viewing SΣ(n+m) like this affect polynomials? Let λ ⊆ {1, . . . , n},
and κ ⊆ {n+ 1, . . . , n+m}. Consider a polynomial p(γ) = 1γ2 + 2γ. Then,
given a point A ∈ SΣ(n + m), A + p(λ ∪ κ) involves putting a 1 at every
point in (λ ∪ κ)2, and a 2 in λ ∪ κ. That is, we must put a 1 everywhere in
λ×λ, λ×κ, κ×λ, and κ×κ, and a 2 in λ and κ. We may now [nearly] view
p as two polynomials: one in Σ[γ], and the other in Σ′[γ]. The first is just p,
since the alphabet has not changed. For the other, we need to know ahead
of time what λ will be, to correctly place the 1’s in λ×κ and κ×λ, since we
have control over all entries in [n] × κ and κ × [n]. For this, we define p|λ,
the restriction of p to the entries of λ, by

p|λ(γ) = 1γ2 + (2, a1, . . . , a2n)γ

Here ai = 1 if i ∈ λ or i + n ∈ λ. For all other ai, we have the freedom
to prescribe any entries from Σ2. For now we will use x as an unspecified
symbol from Σ2 to highlight where the choice lies.

So how do these polynomials work together? Let A ∈ SΣ(2 + 3) be all
0’s:

A =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 (0 0 | 0 0 0)

Now, let λ = {1}, and κ = {3, 4}, and let (B,C) be the decomposition of A
as an element of SΣ(2)× SΣ′(3). Then we get
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A+ p(λ ∪ κ) =


1 0 1 1 0
0 0 0 0 0
1 0 1 1 0
1 0 1 1 0
0 0 0 0 0

 (2 0 | 2 2 0)

A′ = (B + p(λ), C + p|λ(κ)) =


1 0 1 1 0
0 0 x x 0
1 x 1 1 0
1 x 1 1 0
0 0 0 0 0

 (2 0 | 2 2 0)

Note 10.3.2 A′ is a close approximation of A + p(λ ∪ κ) — it agrees on
(λ ∪ κ)2 and on λ ∪ κ as required by p. It only differs where x appears,
because we could not predict what entries A would have there. Fortunately,
in proving the theorem, we will only be interested in controlling the entries
of (λ ∪ κ)2 and (λ ∪ κ) and ensuring the rest does not change. Therefore, if
we are given a set of polynomials P ⊆ Σ[γ], we may decompose each p ∈ P
as (p, p|λ) as above, and prescribe constant values for the x’s. In proving
POLYHJ , if we have a sequence

{(B + p(λ), C + p|λ(κ)) | p ∈ P}

we will fix the x’s so that it is equal to

{(B,C) + p(λ ∪ κ) | p ∈ P}

To do this, we will have a fixed polynomial p0 over Σ which will dictate
all these choices. Formally, let p, p0 ∈ Σ[γ] be polynomials, with p(γ) =
adγ

d+ · · ·+a1γ, and p0(γ) = bdγ
d+ · · ·+ b1γ. Then p|λ(γ) = cdγ

d+ · · ·+ c1γ
has the following structure:

• cd = ad

• cd−1 is a list of symbols. One of these is ad−1. The rest come from
ad and bd, but which goes where depends on λ. These coefficients are
for the d-dimensional piece of the polynomial. We can therefore define
cd−1 as (ad−1, f(ad, bd, λ)).



10.4. THE PROOF 147

• ck is a list of symbols. One of these is ak. The rest are divided up
based on which dimension they represent. The coefficients representing
dimension j come from aj or bj, depending on λ. Thus, we can write

ck = (ak, f(ad, . . . , ak+1, bd, . . . , bk+1, λ))

• If ad = bd, . . . , ak+1 = bk+1, then λ has no on the kth coefficient, so we
can write it as

ck = (ak, g(ad, . . . , ak+1))

Def 10.3.3 Just as in the proof of the POLYVDW, we define POLY HJ(nd, . . . , n1)
to be the statement that the POLYHJ holds for all sets of polynomials of type
(nd, . . . , n1). As in Definition 6.1.6, we also define POLY HJ(nd, . . . , nk, ω, . . . , ω)
to be the analogous statement.

10.4 The Proof

We are now ready to prove a lemma from which the theorem will become
trivial.

Lemma 10.4.1 Assume POLY HJ(nd, . . . , nk, ω, . . . , ω) holds. Fix a finite
list of alphabets Σ and let P ⊆ Σ[γ] have type (nd, . . . , nk + 1, 0, . . . , 0),
minimized by p0 ∈ P . Then, for all numbers c, r > 0, there is a number U =
U(Σ, P, c, r) with the following property. For all c-colorings χ:SΣ(U) → [c],
one of the following Statements holds:

Statement I: There is a point A ∈ SΣ(U), λ ⊆ [U ], λ 6= ∅, where {A+p(λ) |
p ∈ P} is monochromatic, or

Statement II: There are points A1, . . . , Ar, A
′ ∈ SΣ(U), and λ1, . . . , λr ⊆

[U ] with each λi 6= ∅ so that each set {Ai+p(λi) | p ∈ P, p 6= p0} is monochro-
matic, each with its own color, and each different from A′. Additionally,
A′ = Ai + p0(λi) as points for each i ≤ r. We call A′ the completion point of
the sequences.

Proof: By induction on r:

Base case (r = 1) — Recall that P − {p0} has lower type than P . Thus,
Poly HJ holds for P−{p0}. Let U = HJ(Σ, P−{p0}, c). Take any c-coloring
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of SΣ(U). By the definition of this number, there is some A1 = A ∈ SΣ(U),
and λ1 = λ ⊆ [U ] with λ 6= ∅ so that {A1 + p(λ1) | p ∈ P − {p0}} is
monochromatic. If the completion point is the same color, then Statement I
holds. If not, Statement II holds.

Inductive case — Assume the lemma holds for r. We show that U(Σ, P, c, r+
1) exists by giving an upper bound. In particular,

U(Σ, P, c, r + 1) ≤ U +HJ = U(Σ, P, c, r) +HJ(Σ′, Q,X)

where Q will be given shortly, and X = c|SΣ(U)| is the number of c-colorings
of SΣ(U). How convenient. By Proposition 10.3.1, SΣ(U + HJ) ∼= SΣ(U)×
SΣ′(HJ), for some list of finite alphabets Σ′ independent of the value of HJ .
Then let

Q = {p|λ ∈ Σ′[γ] : p ∈ P − {p0}, λ ⊆ [U ]}

where the free choice of entries is prescribed by p0. This will ensure that

(A+ p(λ), B + p|λ(κ)) = (A,B) + p(λ ∪ κ)

for any choice of p, λ, κ.

Claim: Q has type (nd, . . . , nk, n
′
k−1, . . . , n

′
1) for some choice of n′k−1, . . . , n

′
1.

Proof: By Proposition 10.2.5, P − {p0} has lower type than P , at-
tained by some p1 of degree k relative to p0. Thus P − {p0} has type
(nd, . . . , nk,m

′
k−1, . . . ,m

′
1) for some choice of m′k−1, . . . ,m

′
1. We will use this

to show that the type of Q relative to p1|∅ is low enough. In particular, we
will show two things:

1. If p has degree ` ≥ k relative to p1, then p|λ has degree ` relative to
p1|∅ for every λ.

2. If p and q both have degree ` ≥ k relative to p1, and they have the same
leading coefficient, then p|λ and q|κ have the same leading coefficient,
for all λ and κ.

The two things together will guarantee that the number of distinct leading
coefficients in Q will agree with the number in P −{p0}, for all degrees ≥ k,
which is exactly what we want.

To see (1), write p(γ) = adγ
d + · · · + a1γ, p1(γ) = bdγ

d + · · · + b1γ,
and p0(γ) = cdγ

d + · · · + c1γ. Since p1 has degree k relative to p0, the two



10.4. THE PROOF 149

polynomials agree on bd, . . . , bk+1. Similarly, since p has degree ` ≥ k relative
to p1, we get that ad = bd = cd, . . . , a`+1 = b`+1 = c`+1. By Note 10.3.2, we

see that the jth coefficient of p|λ and p1|∅ are given by (aj, f(ad, . . . , aj+1))
and (bj, f(bd, . . . , bj+1)) when j ≥ `. Since these are identical when j > `,
and different when j = `, we see that p|λ has degree ` relative to p1|∅.

To see (2), let p and q have the same degree ` ≥ k relative to p1 (and
thus relative to p0), and also the same leading coefficient. Let p(γ) = adγ

d +
· · · + a1γ, q(γ) = bdγ

d + · · · + b1γ, and p0(γ) = cdγ
d + · · · + c1γ. As before,

we see that ad = bd = cd, . . . , a`+1 = b`+1 = c`+1. Fixing λ, κ ⊆ [U ], consider

p|λ and q|κ. By Note 10.3.2, for j ≥ `, the jth coefficient of these are given
by (a`, f(ad, . . . , a`+1)) and (b`, f(bd, . . . , b`+1)) respectively. Since aj = bj for
j ≥ `, these coefficients are identical. Thus, the two polynomials share a
common leading coefficient relative to p1|∅.

This gives Q a lower type than P , which will allow us to use POLY HJ as
assumed.

Now, Let χ:SΣ(U+HJ)→ [c] be a c-coloring. Then we view χ as a c-coloring
of SΣ(U)× SΣ′(HJ). As such, for each σ ∈ SΣ′(HJ), define χ∗(σ):SΣ′ → [c]
as the coloring of SΣ(U) induced by χ — for τ ∈ SΣ(U), the map is defined
so that χ∗(σ)(τ) = χ(τ, σ). This makes χ∗ a map from SΣ′ to the c-colorings
of SΣ(U).

The crucial observation here is there are X possible c-colorings of SΣ(U),
so χ∗ serves as an X-coloring of SΣ′(HJ). Thus, by choice of HJ , there is
some point B ∈ SΣ′(HJ), and Λ ⊆ [HJ ] with Λ 6= ∅ so that

{B + q(Λ) | q ∈ Q} = {B + p|λ(Λ) | p ∈ P − {p0}, λ ⊆ [U ]}

is monochromatic. This means that each point induces the same coloring χ
on SΣ(U).

Now χ is a c-coloring of SΣ(U), so the choice of U allows us to use the
inductive hypothesis on χ. Thus, either Statement I or II hold.

Case 1: There is a point A ∈ SΣ(U), λ ⊆ [U ], λ 6= ∅, so that {A+ p(λ) | p ∈
P} is monochromatic under χ. Then fix any q ∈ Q. Define C = B + q(Λ).
Since C induces the coloring χ on SΣ(U), we see that {(A+p(λ), C) | p ∈ P}
is monochromatic under χ. Moreover, viewing λ as a subset of [U + HJ ],
these points are actually (A+ C) + p(λ), so we satisfy Statement I.
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Case 2: There is are points A1, . . . , Ar, A
′ ∈ SΣ(U), λ1, . . . , λr ⊆ [U ] with

each λi 6= ∅ with the following properties:

{A1 + p(λ1) | p ∈ P − {p0}} is monochromatic under χ

...

{Ar + p(λr) | p ∈ P − {p0}} is monochromatic under χ

and each of these sets has a different color, all different from χ(A′). We also
have A′ = Ai + p(λi) for all i ≤ r

Since eachB+q(Λ) induces χ on SΣ(U), this gives us very many monochro-
matic points. For each i, this set is monochromatic under χ:

{(Ai + p(λi), B + q) | p ∈ P − {p0}, q ∈ Q}

In particular, the following r sets of points are monochromatic, so that each
set has its own color:

{(A1+p(λ1), B+p|λ1(Λ)) | p ∈ P−{p0}} = {(A1, B)+p(λ1∪Λ) | p ∈ P−{p0}}

...

{(Ar+p(λr), B+p|λr(Λ)) | p ∈ P−{p0}} = {(Ar, B)+p(λr∪Λ) | p ∈ P−{p0}}

Let B′ = B+p0|∅. Then we see that the final point of each of these sequences
is given by

(Ai + p0(λi), B + p0|λi(Λ)) = (A′, B′) + p0(Λ)

This realization gives us the following choice for the (r + 1)st sequence:

{(A′, B′ + p|∅(Λ)) | p ∈ P − {p0}} = {(A′, B′) + p(Λ) | p ∈ P − {p0}}

Since each B′+p|∅(Λ) induces χ on SΣ(U), each of these has the color χ(A′),
so this set is monochromatic. It is also immediate that its completion point
is the same as the other r: (A′, B′) + p0(Λ).

If the completion point has the same color as the ith sequence, then that
sequence with its completion satisfies Statement I. If not, then Statement II
holds. Either way, we have the goal.
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Theorem 10.4.2 Polynomial Hales-Jewett Theorem
For every c, every list of finite alphabets Σ = (Σd, . . . ,Σ1), and every collec-
tion P ⊆ Σ[γ], there is a number N = HJ(Σ, P, c) with the following prop-
erty. For any c-coloring χ:SΣ(N)→ [c], there is a point A ∈ SΣ(N), λ ⊆ [N ]
with λ 6= ∅, such that the set {A+ p(λ) | p ∈ P} is monochromatic.

Proof: By induction on the type of P . Note that, as in the proof of the
POLYVDW, types are well-ordered, so induction is a correct approach.

Base case: Let P have type (0, . . . , 0), so that P = {p} is a single polynomial
(p has degree 0 relative to itself). Set N = 1, and let χ:SΣ(1) → [c] be any
c-coloring. Then, for any A ∈ SΣ(1), we have {A+ p({1})} monochromatic,
since it is just one point.

Inductive case: Suppose we know POLY HJ(nd, . . . , nk, ω, . . . , ω). Let
P have type (nd, . . . , nk+1, 0, . . . , 0). Let N = U(Σ, P, c, c) as guaranteed by
the lemma above. Let χ:SΣ(U) → [c] be a c-coloring. Statement II cannot
hold, since it requires c+ 1 different colors. Thus, Statement I holds, which
was the goal.

10.5 Bounds on the Polynomial Hales-Jewett

numbers

10.5.1 Upper Bounds

10.5.2 Lower Bounds
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Chapter 11

Applications of Polynomial
Hales-Jewett Theorem

11.1 The Polynomial van der Waerden The-

orem

11.2 The Poly van der Waerden Theorem Over

a Commutative Ring

11.3 The Multidim Poly van der Waerden

Theorem
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Chapter 12

Advanced Topics*

12.1 Every Set of Positive Upper Density has

a 3-AP

12.1.1 Combinatorial Proof

Consider the following statement:
If A ⊆ [n] and |A| is ‘big’ then A must have a 3-AP.

This statement, made rigorous, is true. In particular, the following is true
and easy:

Let n ≥ 3. If A ⊆ [n] and |A| ≥ 0.7n then A must have a 3-AP.

Can we lower the constant 0.7? We can lower it as far as we like if we
allow n to start later:

Roth [36, 71, 72] proved the following using analytic means.
(∀λ > 0)(∃n0 ∈ N)(∀n ≥ n0)(∀A ⊆ [n])[|A| ≥ λn =⇒ A has a 3-AP].

The analogous theorem for 4-APs was later proven by Szemeredi [36, 83]
by a combinatorial proof. Szemeredi [84] later (with a much harder proof)
generalized from 4 to any k.

We prove the k = 3 case using the combinatorial techniques of Szemeredi.
Our proof is essentially the same as in the book Ramsey Theory by Graham,
Rothschild, and Spencer [36].

More is known. A summary of what else is known will be presented in
the next section.

155



156 CHAPTER 12. ADVANCED TOPICS*

Def 12.1.1 Let sz(n) be the least number such that, for all A ⊆ [n], if
|A| ≥ sz(n) then A has a 3-AP. Note that if A ⊆ [a, a+n−1] and |A| ≥ sz(n)
then A has a 3-AP. Note also that if A ⊆ {a, 2a, 3a, . . . , na} and |A| ≥ sz(n)
then A has a 3-AP. More generally, if A is a subset of any equally spaced
set of size n, and |A| ≥ sz(n), then A has a 3-AP.

We will need the following Definition and Lemma.

Def 12.1.2 Let k, e, d1, . . . , dk ∈ N. The cube on (e, d1, . . . , dk), denoted
C(e, d1, . . . , dk), is the set {e + b1d1 + · · · + bkdk | b1, . . . , bk ∈ {0, 1}}. A
k-cube is a cube with k d’s.

Lemma 12.1.3 Let I be an interval of [1, n] of length L. If |B| ⊆ I then
there is a cube (e, d1, . . . , dk) contained in B with k = Ω(log log |B|) and
(∀i)[di ≤ L].

Proof:
The following procedure produces the desired cube.

1. Let B1 = B and β1 = |B1|.

2. Let D1 be all
(
β1

2

)
positive differences of elements of B1. Since B1 ⊆ [n]

all of the differences are in [n]. Hence some difference must occur(
β1

2

)
/n ∼ β2

1/2n times. Let that difference be d1. Note that d1 ≤ L.

3. Let B2 = {x ∈ B1 : x + d1 ∈ B1}. Note that |B2| ≥ β2
1/2n. Let

|B2| = β2. Note the trivial fact that

x ∈ B1 =⇒ x+ d1 ∈ B.

4. Let D2 be all
(
β2

2

)
positive differences of elements of B2. Since B2 ⊆ [n]

all of the differences are in [n]. Hence some difference must occur(
β1

2

)
/n ∼ β2

2/2n times. Let that difference be d2. Note that d2 ≤ L.

5. Let B3 = {x ∈ B2 : x + d2 ∈ B2}. Note that |B3| ≥ β2
2/2n. Let

|B3| = β3. Note that

x ∈ B3 =⇒ x+ d2 ∈ B
x ∈ B3 =⇒ x ∈ B2 =⇒ x+ d1 ∈ B
x ∈ B3 =⇒ x+ d2 ∈ B2 =⇒ x+ d1 + d2 ∈ B
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6. Keep repeating this procedure until Bk+2 = ∅. (We leave the details of
the definition to the reader.) Note that if i ≤ k + 1 then

x ∈ Bi =⇒ x+ b1d1 + · · ·+ bi−1di−1 ∈ B for any b1, . . . , bi−1 ∈ {0, 1}.

7. Let e be any element of Bk+1. Note that we have e+b1d1+· · ·+bkdk ∈ B
for any b1, . . . , bk ∈ {0, 1}.

We leave it as an exercise to formally show that C(e, d1, . . . , dk) is con-
tained in B and that k = Ω(log log |B|).

The next lemma states that if A is ‘big’ and 3-free then it is somewhat
uniform. There cannot be sparse intervals of A. The intuition is that if A
has a sparse interval then the rest of A has to be dense to make up for it,
and it might have to be so dense that it has a 3-AP.

Lemma 12.1.4 Let n, n0 ∈ N;λ, λ0 ∈ (0, 1). Assume λ < λ0 and (∀m ≥
n0)[sz(m) ≤ λ0m]. Let A ⊆ [n] be a 3-free set such that |A| ≥ λn.

1. Let a, b be such that a < b, a > n0, and n− b > n0. Then λ0(b− a)−
n(λ0 − λ) ≤ |A ∩ [a, b]|.

2. Let a be such that n− a > n0. Then λ0a− n(λ0 − λ) ≤ |A ∩ [1, a]|.

Proof:

1) Since A is 3-free and a ≥ n0 and n − b ≥ n0 we have |A ∩ [1, a − 1]| <
λ0(a− 1) < λ0a and |A ∩ [b+ 1, n]| < λ0(n− b). Hence

λn ≤ |A| = |A ∩ [1, a− 1]|+ |A ∩ [a, b]|+ |A ∩ [b+ 1, n]|
λn ≤ λ0a+ |A ∩ [a, b]|+ λ0(n− b)

λn− λ0n+ λ0b− λ0a ≤ |A ∩ [a, b]|
λ0(b− a)− n(λ0 − λ) ≤ |A ∩ [a, b]|.

2) Since A is 3-free and n−a > n0 we have |A∩ [a+1, n]| ≤ λ0(n−a). Hence

λn ≤ |A| = |A ∩ [1, a]|+ |A ∩ [a+ 1, n]|
λn ≤ |A ∩ [1, a]|+ λ0(n− a)

λn− λ0n+ λ0a ≤ |A ∩ [1, a]|
λ0a− (λ0 − λ)n ≤ |A ∩ [1, a]|.
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Lemma 12.1.5 Let n, n0 ∈ N and λ, λ0 ∈ (0, 1). Assume that λ < λ0 and
that (∀m ≥ n0)[sz(m) ≤ λ0m]. Assume that n

2
≥ n0. Let a, L ∈ N such

that a ≤ n
2
, L < n

2
− a, and a ≥ n0. Let A ⊆ [n] be a 3-free set such that

|A| ≥ λn.

1. There is an interval I ⊆ [a, n
2
] of length ≤ L such that

|A ∩ I| ≥
⌊

2L

n− 2a
(λ0(

n

2
− a)− n(λ0 − λ))

⌋
.

2. Let α be such that 0 < α < 1
2
. If a = αn and

√
n << n

2
−αn then there

is an interval I ⊆ [a, n
2
] of length ≤ O(

√
n) such that

|A ∩ I| ≥
⌊

2
√
n

(1− 2α)
(λ0(

1

2
− (λ0 − λ)− α))

⌋
= Ω(

√
n).

Proof: By Lemma 12.1.4 with b = n
2
, |A∩ [a, n

2
]| ≥ λ0(n

2
− a− n(λ0− λ).

Divide [a, n
2
] into

⌈
n−2a

2L

⌉
intervals of size ≤ L. There must exist an interval

I such that

|A ∩ I| ≥
⌊

2L

n− 2a
(λ0(

n

2
− a)− n(λ0 − λ))

⌋
.

If L = d
√
ne and a = αn then

|A ∩ I| ≥
⌊

2L
n−2a

(λ0(n
2
− a)− n(λ0 − λ))

⌋
≥
⌊

2
√
n

n(1−2α)
(λ0(n

2
− αn)− n(λ0 − λ)))

⌋
≥
⌊

2
√
n

(1−2α)
(λ0(1

2
− α)− (λ0 − λ))

⌋
= Ω(

√
n).

Theorem 12.1.6 For all λ, 0 < λ < 1, there exists n0 ∈ N such that for all
n ≥ n0, sz(n) ≤ λn.

Proof:
Let S(λ) be the statement

there exists n0 such that, for all n ≥ n0, sz(n) ≤ λn.
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It is a trivial exercise to show that S(0.7) is true.
Let

C = {λ | S(λ)}.

C is closed upwards. Since 0.7 ∈ C we know C 6= ∅. Assume, by way of
contradiction, that C 6= (0, 1). Then there exists λ < λ0 such that λ /∈ C
and λ0 ∈ C. We can take λ0 − λ to be as small as we like. Let n0 be such
that S(λ0) is true via n0. Let n ≥ n0 and let A ⊆ [n] such that |A| ≥ λn but
A is 3-free. At the end we will fix values for the parameters that (a) allow
the proof to go through, and (b) imply |A| < λn, a contradiction.

PLAN : We will obtain a T ⊆ A that will help us. We will soon see
what properties T needs to help us. Consider the bit string in {0, 1}n that
represents T ⊆ [n]. Say its first 30 bits looks like this:

T (0)T (1)T (2)T (3) · · ·T (29) = 000111111100001110010111100000

The set A lives in the blocks of 0’s of T (henceforth 0-blocks). We will
bound |A| by looking at A on the ‘small’ and on the ‘large’ 0-blocks of T .
Assume there are t 1-blocks. Then there are t + 1 0-blocks. We call a 0-
block small if it has < n0 elements, and big otherwise. Assume there are
tsmall small 0-blocks and tbig big 0-blocks. Note that tsmall + tbig = t + 1 so
tsmall, tbig ≤ t+ 1. Let the small 0-blocks be Bsmall

1 , . . . , Bsmall
tsmall , let their union

be Bsmall, let the big 0-blocks be Bbig
1 , . . . , Bbig

tbig , and let their union be Bbig.
It is easy to see that

|A ∩Bsmall| ≤ tsmalln0 ≤ (t+ 1)n0.

Since each Bbig
i is bigger than n0 we must have, for all i, |A ∩ Bbig

i | <
λ0|Bbig

i | (else A ∩Bbig
i has a 3-AP and hence A does). It is easy to see that

|A ∩Bbig| =
tbig∑
i=1

|A ∩Bbig
i | ≤

tbig∑
i=1

λ0|Bbig
i | ≤ λ0

tbig∑
i=1

|Bbig
i | ≤ λ0(n− |T |).

Since A can only live in the (big and small) 0-blocks of T we have

|A| = |A ∩Bsmall|+ |A ∩Bbig| ≤ (t+ 1)n0 + λ0(n− |T |).

In order to use this inequality to bound |A| we will need T to be big and
t to be small, so we want T to be a big set that has few blocks.
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If only it was that simple. Actually we can now reveal the

REAL PLAN: The real plan is similar to the easy version given above.
We obtain a set T ⊆ A and a parameter d. A 1-block is a maximal AP with
difference d that is contained in T (that is, if FIRST and LAST are the first
and last elements of the 1-block then FIRST − d /∈ T and LAST + d /∈ T ).
A 0-block is a maximal AP with difference d that is contained in T . Partition
T into 1-blocks. Assume there are t of them.

Let [n] be partitioned into N0∪· · ·∪Nd−1 where Nj = {x | x ≤ n∧x ≡ j
(mod d)}.

Fix j, 0 ≤ j ≤ d−1. Consider the bit string in {0, 1}bn/dc that represents
T ∩Nj Say the first 30 bits of T ∩Nj look like

T (j)T (d+j)T (2d+j)T (3d+j) · · ·T (29d+j) = 00011111110000111001011111100

During PLAN we had an intuitive notion of what a 0-block or 1-block
was. Note that if we restrict to Nj then that intuitive notion is still valid.
For example the first block of 1’s in the above example represents T (3d+ j),
T (4d+ j), T (5d+ j), . . ., T (9d+ j) which is a 1-block as defined formally.

Each 1-block is contained in a particular Nj. Let tj be the number of

1-blocks that are contained in Nj. Note that
∑d−1

j=0 tj = t. The number of
0-blocks that are in Nj is at most tj + 1.

Let j be such that 0 ≤ j ≤ d − 1. By reasoning similar to that in the
above PLAN we obtain

|A ∩Nj| ≤ (tj + 1)n0 + λ0(Nj − |T |).
We sum both sides over all j = 0 to d− 1 to obtain

|A| ≤ (t+ d)n0 + λ0(n− |T |)
In order to use this inequality to bound |A| we need T to be big and t, d

to be small. Hence we want a big set T which when looked at mod d, for
some small d, decomposes into a small number of blocks.

What is a 1-block within Nj? For example, lets look at d = 3 and the
bits sequence for T is

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17;
0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 0 0.

Note that T looked at on N2 ∪ T has bit sequence
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2 5 8 11 14 17;
0 1 1 1 1 0.

The numbers 5, 8, 11, 14 are all in T and form a 1-block in the N2 part.
Note that they also from an arithmetic progression with spacing d = 3. Also
note that this is a maximal arithmetic progression with spacing d = 3 since
0 /∈ T and 17 /∈ T . More generally 1-blocks of T within Nj are maximal
arithmetic progressions with spacing d. With that in mind we can restate
the kind of set T that we want.

We want a set T ⊆ A and a parameter d such that

1. T is big (so that λ0(n− |T |) is small),

2. d is small (see next item), and

3. the number of maximal arithmetic progressions of length d within T ,
which is the parameter t above, is small (so that (t+ d)n0 is small).

How do we obtain a big subset of A? We will obtain many pairs x, y ∈ A
such that 2y− x ≤ n. Note that since x, y, 2y− x is a 3-AP and x, y ∈ A we
must have 2y − x ∈ A.

Let α, 0 < α < 1
2
, be a parameter to be determined later. (For those

keeping track, the parameters to be determined later are now λ0, λ, n, and
α. The parameter n0 depends on λ0 so is not included in this list.)

We want to apply Lemma 12.1.5.2.b to n, n0, a = αn. Hence we need the
following conditions.

αn ≥ n0
n
2
≥ n0

n
2
− αn ≥

√
n

Assuming these conditions hold, we proceed. By Lemma 12.1.5.b there
is an interval I ⊆ [αn, n

2
] of length O(

√
n) such that

|A ∩ I| ≥
⌊

2
√
n

(1− 2α)
(λ0(

1

2
− α)− (λ0 − λ))

⌋
= Ω(

√
n).

By Lemma 12.1.3 there is a cube C(e, d1, . . . , dk) contained in |A∩I| with
k = Ω(log log |A ∩ I|) = Ω(log log

√
n) = Ω(log log n) and d ≥

√
n.

For i such that 1 ≤ i ≤ k we define the following.
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1. Define C0 = {e} and, for 1 ≤ i ≤ k, define Ci = C(e, d1, . . . , di).

2. Ti is the third terms of AP’s with the first term in A∩ [1, e−1] and the
second term in Ci. Formally Ti = {2m−x | x ∈ A∩ [1, e−1]∧m ∈ Ci}.

Note that, for all i, Ti ∩A = ∅. Hence we look for a large Ti that can be
decomposed into a small number of blocks. We will end up using d = 2di+1.

Note that T0 ⊆ T1 ⊆ T2 ⊆ · · · ⊆ Tk. Hence to obtain a large Ti it suffices
to show that T0 is large and then any of the Ti will be large (though not
necessarily consist of a small number of blocks).

Since C0 = {e} we have
T0 = {2m−x | x ∈ A∩ [1, e−1]∧m ∈ C0} = {2e−x | x ∈ A∩ [1, e−1]}.
Clearly there is a bijection from A ∩ [1, e − 1] to T0, hence |T0| = |A ∩

[1, e− 1]|. Since e ∈ [αn, n
2
] we have |A ∩ [1, e]| ≥ |A ∩ [1, αn]|.

We want to use Lemma 12.1.4.2 on A ∩ [1, αn]. Hence we need the con-
dition

n− αn ≥ n0.

By Lemma 12.1.4

|T0| ≥ |A ∩ [1, αn]| ≥ λ0αn− n(λ0 − λ) = n(λ0α− (λ0 − λ)).

In order for this to be useful we need the following condition

λ− λ0 + λ0α > 0
λ0α > λ0 − λ

We now show that some Ti has a small number of blocks. Since |Tk| ≤ n
(a rather generous estimate) there must exist an i such that |Ti+1 − Ti| ≤ n

k
.

Let t = n
k

(t will end up bounding the number of 1-blocks).
Partition Ti into maximal AP’s with difference 2di+1. We call these max-

imal AP’s 1-blocks. We will show that there are ≤ t 1-blocks by showing a
bijection between the blocks and Ti+1 − Ti.

If z ∈ Ti then z = 2m− x where x ∈ A ∩ [1, αn− 1] and m ∈ Ci. By the
definitions of Ci and Ci+1 we know m+di+1 ∈ Ci+1. Hence 2(m+di+1)−x ∈
Ti+1. Note that 2(m+ di+1)− x = z + 2di+1. In short we have

z ∈ Ti =⇒ z + 2di+1 ∈ Ti+1.

NEED PICTURE
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We can now state the bijection. Let z1, . . . , zm be a block in Ti. We know
that zm + 2di+1 /∈ Ti since if it was the block would have been extended
to include it. However, since zm ∈ Ti we know zm + 2di+1 ∈ Ti+1. Hence
zm + 2di+1 ∈ Ti+1 − Ti. This is the bijection: map a block to what would be
the next element if it was extended. This is clearly a bijection. Hence the
number of 1-blocks is at most t = |Ti+1 − Ti| ≤ n/k.

To recap, we have

|A| ≤ (t+ d)n0 + λ0(n− |T |)
with t ≤ n

k
= O( n

log logn
), d = O(

√
n), and |T | ≥ n(λ0α− (λ0−λ)). Hence

we have

|A| ≤ O((
n

log log n
+
√
n)n0) + nλ0(1− λ+ λ0 − λ0α).

We want this to be < λn. The term O(( n
log logn

+
√
n)n0) can be ignored

since for n large enough this is less than any fraction of n. For the second
term we need

λ0(1− λ+ λ0 − λ0α) < λ

We now gather together all of the conditions and see how to satisfy them
all at the same time.

αn ≥ n0
n
2
≥ n0

n
2
− αn ≥

√
n

n− αn ≥ n0

λ0α > λ0 − λ
λ0(1− λ+ λ0 − λ0α) < λ

We first choose λ and λ0 such that λ0 − λ < 10−1λ2
0. This is possible

by first picking an initial (λ′, λ′0) pair and then picking (λ, λ0) such that
λ′ < λ < λ0 < λ′0 and λ0 − λ < 10−1(λ′)2 < 10−1λ2

0. The choice of λ0

determines n0. We then chose α = 10−1. The last two conditions are satisfied:
λ0α > λ0 − λ becomes

10−1λ0 > 10−1λ2
0

1 > λ0

which is clearly true.
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λ0(1− λ+ λ0 − λ0α) < λ becomes

λ0(1− 10−1λ2
0 − 10−1λ0) < λ

λ0 − 10−1λ3
0 − 10−1λ2

0 < λ
λ0 − λ− 10−1λ3

0 − 10−1λ2
0 < 0

10−1λ2
0 − 10−1λ3

0 − 10−1λ2
0 < 0

−10−1λ3
0 < 0

which is clearly true.
Once λ, λ0, n0 are picked, you can easily pick n large enough to make the

other inequalities hold.

12.1.2 Analytic Proof

Consider the following statement:
If A ⊆ [n] and #(A) is ‘big’ then A must have a 3-AP.

This statement, made rigorous, is true. In particular, the following is true
and easy:

Let n ≥ 3. If A ⊆ [n] and #(A) ≥ 0.7n then A must have a 3-AP.

Can we lower the constant 0.7? We can lower it as far as we like if we
allow n to start later:

Roth [36, 71, 72] proved the following using analytic means.
(∀λ > 0)(∃n0 ∈ N)(∀n ≥ n0)(∀A ⊆ [n])[#(A) ≥ λn =⇒ A has a 3-AP].

The analogous theorem for 4-APs was later proven by Szemeredi [36, 83]
by a combinatorial proof. Szemeredi [84] later (with a much harder proof)
generalized from 4 to any k.

We prove the k = 3 case using the analytic techniques of Roth; however,
we rely heavily on Gowers [35, 34]

Def 12.1.7 Let sz(n) be the least number such that, for all A ⊆ [n], if
#(A) ≥ sz(n) then A has a 3-AP. Note that if A ⊆ [a, a + n − 1] and
#(A) ≥ sz(n) then A has a 3-AP. Note also that if A ⊆ {a, 2a, 3a, . . . , na}
and #(A) ≥ sz(n) then A has a 3-AP. More generally, if A is a subset of
any equally spaced set of size n, and #(A) ≥ sz(n), then A has a 3-AP.

Throughout this section the following hold.
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1. n ∈ N is a fixed large prime.

2. Zn = {1, . . . , n} with modular arithmetic.

3. ω = e2πi/n.

4. If a is a complex number then |a| is its length.

5. If A is a set then |A| is its cardinality.

Counting 3-AP’s

Lemma 12.1.8 Let A,B,C ⊆ [n]. The number of (x, y, z) ∈ A × B × C
such that x+ z ≡ 2y (mod n) is

1

n

∑
x,y,z∈[n]

A(x)B(y)C(z)
n∑
r=1

ω−r(x−2y+z).

Proof:
We break the sum into two parts:

Part 1:

1

n

∑
x,y,z∈[n],x+z≡2y (mod n)

A(x)B(y)C(z)
n∑
r=1

ω−r(x−2y+z).

Note that we can replace ω−r(x−2y+z) with ω0 = 1. We can then replace∑n
r=1 1 with n. Hence we have

1

n

∑
x,y,z∈[n],x+z≡2y (mod n)

A(x)B(y)C(z)n =
∑

x,y,z∈[n],x+z≡2y (mod n)

A(x)B(y)C(z)

This is the number of (x, y, z) ∈ A×B×C such that x+z ≡ 2y (mod n).
Part 2:

1

n

∑
x,y,z∈[n],x+z 6≡2y (mod n)

A(x)B(y)C(z)
n∑
r=1

ω−r(x−2y+z).

We break this sum up depending on what the (nonzero) value of w =
x+ z − 2y (mod n). Let
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Su =
∑

x,y,z∈[n],x−2y+z=2

A(x)B(y)C(z)
n∑
r=1

ω−ru.

Since u 6= 0,
∑n

r=1 ω
−ru =

∑n
r=1 ω

−r = 0. Hence Su = 0.
Note that

1

n

∑
x,y,z∈[n],x+z 6≡2y (mod n)

A(x)B(y)C(z)
n∑
r=1

ω−r(x−2y+z) =
1

n

n−1∑
u=1

Su = 0

The lemma follows from Part 1 and Part 2.

Lemma 12.1.9 Let A ⊆ [n]. Let B = C = A ∩ [n/3, 2n/3]. The number of
(x, y, z) ∈ A×B × C such that x, y, z forms a 3-AP is at least

1

2n

∑
x,y,z∈[n]

A(x)B(y)C(z)
n∑
r=1

ω−r(x−2y+z) −O(n).

Proof: By Lemma 12.1.8

1

n

∑
x,y,z∈[n]

A(x)B(y)C(z)
n∑
r=1

ω−r(x−2y+z)

is the number of (x, y, z) ∈ A× B × C such that x+ z ≡ 2y (mod n). This
counts three types of triples:

• Those that have x = y = z. There are n/3 of them.

• Those that have x+ z = 2y + n. There are O(1) of them.

• Those that have x 6= y, y 6= z, x 6= z, and x+ z = 2y.

Hence

#({(x, y, z) : (x+z = 2y)∧x 6= y∧y 6= z∧x 6= z}) =
1

n

∑
x,y,z∈[n]

A(x)B(y)C(z)
n∑
r=1

ω−r(x−2y+z)−O(n).
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We are not done yet. Note that (5, 10, 15) may show up as (15, 10, 5).
Every triple appears at most twice. Hence

#({(x, y, z) : (x+ z = 2y) ∧ x 6= y ∧ y 6= z ∧ x 6= z})
≤ 2#({(x, y, z) : (x < y < z)∧(x+z = 2y)∧x 6= y∧y 6= z∧x 6= z}).
Therefore

1

2n

∑
x,y,z∈[n]

A(x)B(y)C(z)
n∑
r=1

ω−r(x−2y+z)−O(n) ≤ the number of 3-AP’s with x ∈ A, y ∈ B, z ∈ C .

We will need to re-express this sum. For that we will use Fourier Analysis.

Fourier Analysis

Def 12.1.10 If f:Zn → N then f̂:Zn → C is

f̂(r) =
∑
s∈[n]

f(s)ω−rs.

f̂ is called the Fourier Transform of f .

What does f̂ tell us? We look at the case where f is the characteristic
function of a set A ⊆ [n]. Henceforth we will use A(x) instead of f(x).

We will need the following facts.

Lemma 12.1.11 Let A ⊆ {1, . . . , n}.

1. Â(n) = #(A).

2. maxr∈[n] |Â(r)| = #(A).

3. A(s) = 1
n

∑n
r=1 Â(r)ω−rs. DO WE NEED THIS?

4.
∑n

r=1 |Â(r)|2 = n#(A).

5.
∑n

s=1A(s) = 1
n

∑n
r=1 Â(r).
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Proof:
Note that ωn = 1. Hence

Â(n) =
∑
s∈[n]

A(s)ω−ns =
∑
s∈[n]

A(s) = #(A).

Also note that

|Â(r)| = |
∑
s∈[n]

A(s)ω−rs| ≤
∑
s∈[n]

|A(s)ω−rs| ≤
∑
s∈[n]

|A(s)||ω−rs| ≤
∑
s∈[n]

|A(s)| = #(A).

Informal Claim: If Â(r) is large then there is an arithmetic progression
P with difference r−1 (mod n) such that #(A ∩ P ) is large.

We need a lemma before we can proof the claim.

Lemma 12.1.12 Let n,m ∈ N, s1, . . . , sm, and 0 < λ, α, ε < 1 be given
(no order on λ, α, ε is implied). Assume that (λ − m−1

m
(λ + ε)) ≥ 0. Let

f(x1, . . . , xm) = |
∑m

j=1 xjω
sj |. The maximum value that f(x1, . . . , xm) can

achieve subject to the following two constraints (1)
∑m

j=1 xj ≥ λn, and (2)
(∀j)[0 ≤ xi ≤ (λ+ ε) n

m
] is bounded above by εmn+ (λ+ ε) n

m
|
∑m

j=1 ω
sj |

Proof:
Assume that the maximum value of f , subject to the constraints, is

achieved at (x1, . . . , xm). Let MIN be the minimum value that any vari-
able xi takes on (there may be several variables that take this value). What
is the smallest that MIN could be? By the constraints this would occur
when all but one of the variables is (λ+ ε) n

m
and the remaining variable has

value MIN . Since
∑

xi
≥ λn we have

MIN + (m− 1)(λ+ ε) n
m
≥ λn

MIN + m−1
m

(λ+ ε)n ≥ λn
MIN ≥ λn− m−1

m
(λ+ ε)n

MIN ≥ (λ− m−1
m

(λ+ ε))n
Hence note that, for all j,
xj −MIN ≤ xj − (λ− m−1

m
(λ+ ε))n

Using the bound on xj from constraint (2) we obtain

xj −MIN ≤ (λ+ ε) n
m
− (λ− m−1

m
(λ+ ε))n

≤ ((λ+ ε) 1
m
− (λ− m−1

m
(λ+ ε)))n

≤ ((λ+ ε) 1
m
− λ+ m−1

m
(λ+ ε))n

≤ εn
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Note that

|
∑m

j=1 xjω
sj | = |

∑m
j=1(xj −MIN)ωsj +

∑m
j=1MINωsj |

≤ |
∑m

j=1(xj −MIN)ωsj |+ |
∑m

j=1MINωsj |
≤

∑m
j=1 |(xj −MIN)||ωsj |+MIN |

∑m
j=1 ω

sj |
≤

∑m
j=1 εn+MIN |

∑m
j=1 ω

sj |
≤ εmn+MIN |

∑m
j=1 ω

sj |
≤ εmn+ (λ+ ε) n

m
|
∑m

j=1 ω
sj |

Lemma 12.1.13 Let A ⊆ [n], r ∈ [n], and 0 < α < 1. If |Â(r)| ≥ αn and
|A| ≥ λn then there exists m ∈ N, 0 < ε < 1, and an arithmetic progression
P within Zn, of length n

m
± O(1) such that #(A ∩ P ) ≥ (λ + ε) n

m
. The

parameters ε and m will depend on λ and α but not n.

Proof: Let m and ε be parameters to be picked later. We will note
constraints on them as we go along. (Note that ε will not be used for a
while.)

Let 1 = a1 < a2 < · · · < am+1 = n be picked so that
a2− a1 = a3− a2 = · · · = am− am−1 and am+1− am is as close to a2− a1

as possible.
For 1 ≤ j ≤ m let

Pj = {s ∈ [n] : aj ≤ rs (mod n) < aj+1}.

Let us look at the elements of Pj. Let r−1 be the inverse of r mod n.

1. s such that aj ≡ rs (mod n), that is, s ≡ ajr
−1 (mod n).

2. s such that aj + 1 ≡ rs (mod n), that is s ≡ (aj + 1)r−1 ≡ ajr
−1 + r−1

(mod n).

3. s such that aj +2 ≡ rs (mod n), that is s ≡ (aj +2)r−1 ≡ ajr
−1 +2r−1

(mod n).

4.
....
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Hence Pj is an arithmetic progression within Zn which has difference r−1.
Also note that P1, . . . , Pm form a partition of Zn into m parts of size n

m
+O(1)

each.
Recall that

Â(r) =
∑
s∈[n]

A(s)ω−rs.

Lets look at s ∈ Pj. We have that aj ≤ rs (mod n) < aj+1. Therefore
the values of {ωrs : s ∈ Pj} are all very close together. We will pick sj ∈ Pj
carefully. In particular we will constrain m so that it is possible to pick
sj ∈ Pj such that

∑m
j=1 ω

−rsj = 0. For s ∈ Pj we will approximate ω−rs by
ω−rsj . We skip the details of how good the approximation is.

We break up the sum over s via Pj.

Â(r) =
∑

s∈[n]A(s)ω−rs

=
∑m

j=1

∑
s∈Pj A(s)ω−rs

∼
∑m

j=1

∑
s∈Pj A(s)ω−rsj

=
∑m

j=1 ω
−rsj

∑
s∈Pj A(s)

=
∑m

j=1 ω
−rsj#(A ∩ Pj)

=
∑m

j=1 #(A ∩ Pj)ω−rsj
αn ≤ |Â(r)| = |

∑m
j=1 #(A ∩ Pj)ω−rsj |

We will not use ε. We intend to use Lemma 12.1.12; therefore we have
the constraint (λ− m−1

m
(λ+ ε)) ≥ 0.

Assume, by way of contradiction, that (∀j)[|A∩Pj| ≤ (λ+ε) n
m

. Applying
Lemma 12.1.12 we obtain

|
m∑
j=1

#(A ∩ Pj)ω−rsj | ≤ εmn+ (λ+ ε)
n

m
|
m∑
j=1

ω−rsj | = εmn.

Hence we have
αn ≤ εmn
α ≤ εm.
In order to get a contradiction we pick ε and m such that α > εm.
Having done that we now have that (∃j)[|A ∩ Pj| ≥ (λ+ ε) n

m
].

We now list all of the constraints introduced and say how to satisfy them.

1. m is such that there exists s1 ∈ P1, . . ., sm ∈ Pm such that
∑m

j=1 ω
−rsj =

0, and
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2. (λ− m−1
m

(λ+ ε)) ≥ 0.

3. εm < α.

First pick m to satisfy item 1. Then pick ε small enough to satisfy items
2,3.

Lemma 12.1.14 Let A,B,C ⊆ [n]. The number of 3-AP’s (x, y, z) ∈ A ×
B × C is bounded below by

1

2n

n∑
r=1

Â(r)B̂(−2r)Ĉ(r)−O(n).

Proof:
The number of 3-AP’s is bounded below by

1

2n

∑
x,y,z∈[n]

A(x)B(y)C(z)
n∑
r=1

ω−r(x−2y+z) −O(n) =

We look at the inner sum.

∑
x,y,z∈[n]

A(x)B(y)C(z)
n∑
r=1

ω−r(x−2y+z) =

n∑
r=1

∑
x,y,z∈[n]

A(x)ω−rxB(y)ω2yrC(z)ω−rz =

n∑
r=1

∑
x∈[n]

A(x)ω−rx
∑
y∈[n]

B(y)ω2yr
∑
z∈Zr

C(z)ω−rz =

n∑
r=1

Â(r)B̂(−2r)Ĉ(r).

The Lemma follows.

Main Theorem

Theorem 12.1.15 For all λ, 0 < λ < 1, there exists n0 ∈ N such that for
all n ≥ n0, sz(n) ≤ λn.
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Proof:
Let S(λ) be the statement

there exists n0 such that, for all n ≥ n0, sz(n) ≤ λn.

It is a trivial exercise to show that S(0.7) is true.
Let

C = {λ : S(λ)}.

C is closed upwards. Since 0.7 ∈ C we know C 6= ∅. Assume, by way of
contradiction, that C 6= (0, 1). Then there exists λ < λ0 such that λ /∈ C
and λ0 ∈ C. We can take λ0 − λ to be as small as we like. Let n0 be such
that S(λ0) is true via n0. Let n ≥ n0 and let A ⊆ [n] such that #(A) ≥ λn
but A is 3-free.

Let B = C = A ∩ [n/3, 2n/3].
By Lemma 12.1.14 the number of 3-AP’s of A is bounded below by

1

2n

n∑
r=1

Â(r)B̂(−2r)Ĉ(r)−O(n).

We will show that either this is positive or there exists a set P ⊆ [n] that
is an AP of length XXX and has density larger than λ. Hence P will have a
3-AP.

By Lemma 12.1.11 we have Â(n) = #(A), B̂(n) = #(B), and Ĉ(n) =
#(C). Hence

1

2n
Â(n)B̂(n)Ĉ(n) +

1

2n

n−1∑
r=1

Â(r)B̂(−2r)Ĉ(r)−O(n) =

1

2n
#(A)#(B)#(C) +

1

2n

n−1∑
r=1

Â(r)B̂(−2r)Ĉ(r)−O(n).

By Lemma 12.1.5 we can take #(B),#(C) ≥ nλ/4. We already have
#(A) ≥ λn. This makes the lead term Ω(n3); hence we can omit the O(n)
term. More precisely we have that the number of 3-AP’s in A is bounded
below by

λ3n2

32
+

1

2n

n−1∑
r=1

Â(r)B̂(−2r)Ĉ(r)).
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We are assuming that this quantity is ≤ 0.

λ3n2

32
+

1

2n

n−1∑
r=1

Â(r)B̂(−2r)Ĉ(r)) < 0.

λ3n2

16
+

1

n

n−1∑
r=1

Â(r)B̂(−2r)Ĉ(r)) < 0.

λ3n2

16
< − 1

n

n−1∑
r=1

Â(r)B̂(−2r)Ĉ(r)).

Since the left hand side is positive we have

λ3n2

16
< | 1

n

∑n−1
r=1 Â(r)B̂(−2r)Ĉ(r)|

< 1
n
(max rÂ(r))

∑n−1
r=1 |B̂(−2r)||Ĉ(r)|

By the Cauchy Schwartz inequality we know that

n−1∑
i=1

|B̂(−2r)||Ĉ(r)| ≤ (
n−1∑
i=1

|B̂(−2r)|2)1/2)(
n−1∑
i=1

|Ĉ(r)|2)1/2).

Hence

λ3n2

16
< | 1

n
max

1≤r≤n−1
|Â(r)|(

n−1∑
i=1

|B̂(−2r)|2)1/2)(
n−1∑
i=1

|Ĉ(r)|2)1/2).

By Parsaval’s inequality and the definition of B and C we have

n−1∑
i=1

|B̂(−2r)|2)1/2 ≤ n#(B) =
λn2

3

and

n−1∑
i=1

|Ĉ(r)|2)1/2 ≤ n#(C) =
λn2

3

Hence

λ3n2

16
< ( max

1≤r≤n−1
|Â(r)|) 1

n

λn2

3
= ( max

1≤r≤n−1
|Â(r)|)λn

3
.

Therefore
|Â(r) ≥ 3λ2n

16
.
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12.1.3 What more is known?

The following is known.

Theorem 12.1.16 For every λ > 0 there exists n0 such that for all n ≥ n0,
sz(n) ≤ λn.

This has been improved by Heath-Brown [40] and Szemeredi [85]

Theorem 12.1.17 There exists c such that sz(n) = Ω(n 1
(logn)c

). (Szemeredi

estimates c ≤ 1/20).

Bourgain [10] improved this further to obtain the following.

Theorem 12.1.18 sz(n) = Ω(n
√

log logn
logn

).

12.2 Ergodic proofs of van der Waerden’s The-

orem

Van der Waerden [88] proved the following combinatorial theorem in a com-
binatorial way

Theorem 12.2.1 For all c ∈ N, k ∈ N, any c-coloring of Z will have a
monochromatic arithmetic progression of length k.

Fürstenberg [27] later proved it using topological methods. We give a
detailed treatment of this proof using as much intuition and as little Topology
as needed. We follow the approach of [36] who in turn followed the approach
of [28].

12.2.1 Definitions from Topology

Def 12.2.2 X is a metric space if there exists a function d:X ×X → R≥0

(called a metric) with the following properties.

1. d(x, y) = 0 iff x = y

2. d(x, y) = d(y, x),
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3. d(x, y) ≤ d(x, z) + d(z, y) (this is called the triangle inequality).

Def 12.2.3 Let X, Y be metric spaces with metrics dX and dY .

1. If x ∈ X and ε > 0 then B(x, ε) = {y | dX(x, y) < ε}. Sets of this form
are called balls.

2. Let A ⊆ X and x ∈ X. x is a limit point of A if

(∀ε > 0)(∃y ∈ A)[d(x, y) < ε].

3. If x1, x2, . . . ∈ X then limi xi = x means (∀ε > 0)(∃i)(∀j)[j ≥ i =⇒
xj ∈ B(x, ε)].

4. Let T:X → Y .

(a) T is continuous if for all x, x1, x2, . . . ∈ X

lim
i
xi = x =⇒ lim

i
T (xi) = T (x).

(b) T is uniformly continuous if

(∀ε)(∃δ)(∀x, y ∈ X)[dX(x, y) < δ =⇒ dY (T (x), T (y)) < ε].

5. T is bi-continuous if T is a bijection, T is continuous, and T− is con-
tinuous.

6. T is bi-unif-continuous if T is a bijection, T is uniformly continuous,
and T− is uniformly continuous.

7. If A ⊆ X then

(a) A′ is the set of all limit points of A.

(b) cl(A) = A ∪ A′. (This is called the closure of A).

8. A set A ⊆ X is closed under limit points if every limit point of A is in
A.
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Fact 12.2.4 If X is a metric space and A ⊆ X then cl(A) is closed under
limit points. That is, if x is a limit point of cl(A) then x ∈ cl(A). Hence
cl(cl(A)) = cl(A).

Note 12.2.5 The intention in defining the closure of a set A is to obtain
the smallest set that contains A that is also closed under limit points. In
a general topological space the closure of a set A is the intersection of all
closed sets that contain A. Alternatively one can define the closure to be
A ∪ A′ ∪ A′′ ∪ · · · . That · · · is not quite what is seems- it may need to go
into transfinite ordinals (you do not need to know what transfinite ordinals
are for this section). Fortunately we are looking at metric spaces where
cl(A) = A∪A′ suffices. More precisely, our definition agrees with the standard
one in a metric space.

Example 12.2.6

1. [0, 1] with d(x, y) = |x− y| (the usual definition of distance).

(a) If A = (1
2
, 3

4
) then cl(A) = [1

2
, 3

4
].

(b) If A = {1, 1
2
, 1

3
, 1

4
, . . .} then cl(A) = A ∪ {0}.

(c) cl(Q) = R.

(d) Fix c ∈ N. Let BISEQ be the set of all c-colorings of Z. (It is
called BISEQ since it is a bi-sequence of colors. A bi-sequence is
a sequence in two directions.) We represent elements of BISEQ
by f:Z→ [c].

2. Let d:BISEQ× BISEQ→ R≥0 be defined as follows.

d(f, g) =

{
0 if f = g,

1
1+i

if f 6= g and i is least number s.t. f(i) 6= g(i) or f(−i) 6= g(−i).
(12.1)

One can easily verify that d(f, g) is a metric. We will use this in the
future alot so the reader is urged to verify it.

3. The function T is defined by T (f) = g where g(i) = f(i+ 1). One can
easily verify that T is bi-unif-continuous. We will use this in the future
alot so the reader is urged to verify it.
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Notation 12.2.7 Let T:X → X be a bijection. Let n ∈ N.

1. T (n)(x) = T (T (· · ·T (x) · · · )) means that you apply T to x n times.

2. T (−n)(x) = T−(T−(· · ·T−(x) · · · )) means that you apply T− to x n
times.

Def 12.2.8 If X is a metric space and T:X → X then

orbit(x) = {T (i)(x) | i ∈ N}
dorbit(x) = {T (i)(x) | i ∈ Z} (dorbit stands for for double-orbit)

Def 12.2.9 Let X be a metric space, T:X → X be a bijection, and x ∈ X.

1.

CLDOT(x) = cl({. . . , T (−3)(x), T (−2)(x), . . . , T (2)(x), T (3)(x), . . .)

CLDOT(x) stands for Closure of Double-Orbit of x.

2. x is homogeneous if

(∀y ∈ CLDOT(x))[CLDOT(x) = CLDOT(y)].

3. X is limit point compact1 if every infinite subset of X has a limit point
in X.

Example 12.2.10 Let BISEQ and T be as in Example 12.2.6.2. Even
though BISEQ is formally the functions from Z to [c] we will use colors
as the co-domain.

1Munkres [60] is the first one to name this concept “limit point compact”; however, the
concept has been around for a long time under a variety of names. Originally, what we
call “limit point compact” was just called “compact”. Since then the concept we call limit
point compact has gone by a number of names: Bolzano-Weierstrass property, Frechet
Space are two of them. This short history lesson is from Munkres [60] page 178.
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1. Let f ∈ BISEQ be defined by

f(x) =

{
RED if |x| is a square;

BLUE otherwise.
(12.2)

The set {T (i)(f) | i ∈ Z} has one limit point. It is the function

(∀x ∈ Z)[g(x) = BLUE].

This is because their are arbitrarily long runs of non-squares. For any
M there is an i ∈ Z such that T (i)(f) and g agree on {−M, . . . ,M}.
Note that

d(T (i)(f), g) ≤ 1

M + 1
.

Hence

CLDOT(f) = {T (i)(f) | i ∈ Z} ∪ {g}.

2. Let f ∈ BISEQ be defined by

f(x) =

{
RED if x ≥ 0 and x is a square or x ≤ 0 and x is not a square;

BLUE otherwise.

(12.3)

The set {T (i)(f) | i ∈ Z} has two limit points. They are

(∀x ∈ Z)[g(x) = BLUE]

and

(∀x ∈ Z)[h(x) = RED].

This is because their are arbitrarily long runs of REDs and arbitrarily
long runs of BLUEs.

CLDOT(f) = {T (i)(f) | i ∈ Z} ∪ {g, h}.
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3. We now construct an example of an f such that the number of limit
points of {T (i)(f) | i ∈ Z} is infinite. Let fj ∈ BISEQ be defined by

fj(x) =

{
RED if x ≥ 0 and x is a jth power

BLUE otherwise.
(12.4)

Let Ik = {2k, . . . , 2k+1−1}. Let a1, a2, a3, . . . be a list of natural numbers
so that every single natural number occurs infinitely often. Let f ∈
BISEQ be defined as follows.

f(x) =

{
fj(x) if x ≥ 1, x ∈ Ik and j = ak;

BLUE if x ≤ 0.
(12.5)

For every j there are arbitrarily long segments of f that agree with some
translation of fj. Hence every point fj is a limit point of {T (i)f | i ∈ Z}.

Example 12.2.11 We show that BISEQ is limit point compact. Let A ⊆
BISEQ be infinite. Let f1, f2, f3, . . . ∈ A. We construct f ∈ BISEQ to be a
limit point of f1, f2, . . .. Let a1, a2, a3, . . . be an enumeration of the integers.

I0 = N
f(a1) = least color in [c] that occurs infinitely often in {fi(a1) | i ∈ I0}

I1 = {i | fi(a1) = f(a1)}

Assume that f(a1), I1, f(a2), I2, . . . , f(an−1), In−1 are all defined and that
In−1 is infinite.

f(an) = least color in [c] that occurs infinitely often in {fi(an) | i ∈ In−1}
In = {i | (∀j)[1 ≤ j ≤ n =⇒ fi(aj) = f(aj)]}

Note that In is infinite.

Note 12.2.12 The argument above that BISEQ is limit point compact is a
common technique that is often called a compactness argument.
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Lemma 12.2.13 If X is limit point compact, Y ⊆ X, and Y is closed under
limit points then Y is limit point compact.

Proof: Let A ⊆ Y be an infinite set. Since X is limit point compact A
has a limit point x ∈ X. Since Y is closed under limit points, x ∈ Y . Hence
every infinite subset of Y has a limit point in Y , so Y is limit point compact.

Def 12.2.14 Let X be a metric space and T :X → X be continuous. Let
x ∈ X.

1. The point x is recurrent for T if

(∀ε)(∃n)[d(T (n)(x), x) < ε].

Intuition: If x is recurrent for T then the orbit of x comes close to x
infinitely often. Note that this may be very irregular.

2. Let ε > 0, r ∈ N, and w ∈ X. w is (ε, r)-recurrent for T if

(∃n ∈ N)[d(T (n)(w), w) < ε∧d(T (2n)(w), w) < ε∧· · ·∧d(T (rn)(w), w) < ε.]

Intuition: If w is (ε, r)-recurrent for T then the orbit of w comes
within ε of w r times on a regular basis.

Example 12.2.15

1. If T (x) = x then all points are recurrent (this is trivial).

2. Let T:R→ R be defined by T (x) = −x. Then, for all x ∈ R, T (T (x)) =
x so all points are recurrent.

3. Let α ∈ [0, 1]. Let T:[0, 1]→ [0, 1] be defined by T (x) = x+α (mod 1).

(a) If α = 0 or α = 1 then all points are trivially recurrent.

(b) If α ∈ Q, α = p
q

then it is easy to show that all points are recurrent

for the trivial reason that T (q)(x) = x+ q(p
q
) (mod 1) = x.

(c) If α /∈ Q then T is recurrent. This requires a real proof.
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12.2.2 A Theorem in Topology

Def 12.2.16 Let X be a metric space and T:X → X be a bijection. (X,T )
is homogeneous if, for every x ∈ X,

X = CLDOT(x).

Example 12.2.17

Let X = [0, 1], d(x, y) = |x− y|, and T (x) = x+ α (mod 1).

1. If α ∈ Q then (X,T ) is not homogeneous.

2. If α /∈ Q then (X,T ) is homogeneous.

3. Let f, g ∈ BISEQ, so f:Z→ {1, 2} be defined by

f(x) =

{
1 if x ≡ 1 (mod 2);

2 if x ≡ 0 (mod 2)
(12.6)

and

g(x) = 3− f(x).

Let T:BISEQ→ BISEQ be defined by

T (h)(x) = h(x+ 1).

Let X = CLDOT(f). Note that

X = {f, g} = CLDOT(f) = CLDOT(g).

Hence (X,T ) is homogeneous.

4. All of the examples in Example 2.9 are not homogeneous.

The ultimate goal of this section is to show the following.

Theorem 12.2.18 Let X be a metric space and T :X → X be bi-unif-
continuous. Assume (X,T ) is homogeneous. Then for every r ∈ N, for
every ε > 0, T has an (ε, r)-recurrent point.
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Important Convention for the Rest of this Section:

1. X is a metric space.

2. T is bi-unif-continuous.

3. (X,T ) is homogeneous.

We show the following by a multiple induction.

1. Ar: (∀ε > 0)(∃x, y ∈ X,n ∈ N)

d(T (n)(x), y) < ε ∧ d(T (2n)(x), y) < ε ∧ · · · ∧ d(T (rn)(x), y) < ε.

Intuition: There exists two points x, y such that the orbit of x comes
very close to y on a regular basis r times.

2. Br: (∀ε > 0)(∀z ∈ X)(∃x ∈ X,n ∈ N)

d(T (n)(x), z) < ε ∧ d(T (2n)(x), z) < ε ∧ · · · ∧ d(T (rn)(x), z) < ε.

Intuition: For any z there is an x such that the orbit of x comes very
close to z on a regular basis r times.

3. Cr: (∀ε > 0)(∀z ∈ X)(∃x ∈ X)(∃n ∈ N)(∃ε′ > 0)

T (n)(B(x, ε′)) ⊆ B(z, ε) ∧ T (2n)(B(x, ε′)) ⊆ B(z, ε) ∧ · · · ∧ T (rn)(B(x, ε′))) ⊆
B(z, ε).

Intuition: For any z there is an x such that the orbit of a small ball
around x comes very close to z on a regular basis r times.

4. Dr: (∀ε > 0)(∃w ∈ X,n ∈ N)

d(T (n)(w), w) < ε ∧ d(T (2n)(w), w) < ε ∧ · · · ∧ d(T (rn)(w), w) < ε.

Intuition: There is a point w such that the orbit of w comes close to
w on a regular basis r times. In other words, for all ε, there is a w that
is (ε, r)-recurrent.
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Lemma 12.2.19 (∀ε > 0)(∃M ∈ N)(∀x, y ∈ X)

min{d(x, T (−M)(y)), d(x, T (−M+1)(y)), . . . , d(x, T (M)(y))} < ε

Proof:
Intuition: Since (X,T ) is homogeneous, if x, y ∈ X then x is close to some
point in the double-orbit of y (using T ).

Assume, by way of contradiction, that (∃ε > 0)(∀M ∈ N)(∃xM , yM ∈ X)

min{d(xM , T
(−M)(yM)), d(xM , T

(−M+1)(yM)), . . . , d(xM , T
(M)(yM))} ≥ ε

Let x = limM→∞ xM and y = limM→∞ yM . Since (X,T ) is homogeneous
(so it is the closure of a set) and Fact 12.2.4, x, y ∈ X. Since (X,T ) is
homogeneous

X = {T (i)(y) | i ∈ Z} ∪ {T (i)(y) | i ∈ Z}′.
Since x ∈ X

(∃∞i ∈ Z)[d(x, T (i)(y)) < ε/4].

We don’t need the ∃∞, all we need is to have one such I. Let I ∈ Z be
such that

d(x, T (I)(y)) < ε/4

Since T (I) is continuous, limM yM = y, and limM xM = x there exists
M > |I| such that

d(T (I)(y), T (I)(yM)) < ε/4 ∧ d(xM , x) < ε/4.

Hence

d(xM , T
(I)(yM)) ≤ d(xM , x)+d(x, T (I)(y))+d(T (I)(y), T (I)(yM)) ≤ ε/4+ε/4+ε/4 < ε.

Hence d(xM , T
(I)(yM)) < ε. This violates the definition of xM , yM .

Note 12.2.20 The above lemma only used that T is continuous, not that T
is bi-unif-continuous.
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Ar =⇒ Br

Lemma 12.2.21 Ar: (∀ε > 0)(∃x, y ∈ X,n ∈ N)
d(T (n)(x), y) < ε ∧ d(T (2n)(x), y) < ε∧ · · · ∧ d(T (rn)(x), y) < ε
=⇒
Br: (∀ε > 0)(∀z ∈ X)(∃x ∈ X,n ∈ N)
d(T (n)(x), z) < ε∧ d(T (2n)(x), z) < ε∧ · · · ∧ d(T (rn)(x), z) < ε.

Proof:
Intuition: By Ar there is an x, y such that the orbit of x will get close to
y regularly. Let z ∈ X. Since (X,T ) is homogeneous the orbit of y comes
close to z. Hence z is close to T (s)(y) and y is close to T (in)(x), so z is close
to T (in+s)(x) = T (in)(T (s)(x)). So z is close to T (s)(x) on a regular basis.
Note: The proof merely pins down the intuition. If you understand the
intuition you may want to skip the proof.

Let ε > 0.

1. Let M be from Lemma 12.2.19 with parameter ε/3.

2. Since T is bi-unif-continuous we have that for s ∈ Z, |s| ≤ M , T (s) is
unif-cont. Hence there exists ε′ such that

(∀a, b ∈ X)[d(a, b) < ε′ =⇒ (∀s ∈ Z, |s| ≤M)[d(T (s)(a), T (s)(b)) < ε/3].

3. Let x, y ∈ X, n ∈ N come from Ar with ε′ as parameter. Note that

d(T (in)(x), y) < ε′ for 1 ≤ i ≤ r.

Let z ∈ X. Let y be from item 3 above. By the choice of M there exists
s, |s| ≤M , such that

d(T (s)(y), z) < ε/3.

Since x, y, n satisfy Ar with ε′ we have

d(T (in)(x), y) < ε′ for 1 ≤ i ≤ r.

By the definition of ε′ we have

d(T (in+s)(x), T (s)(y)) < ε/3 for 1 ≤ i ≤ r.

Note that
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d(T (in)(T (s)(x), z)) ≤ d(T (in)(T (s)(x)), T (s)(y))+d(T (s)(y), z) ≤ ε/3+ε/3 < ε.

Br =⇒ Cr

Lemma 12.2.22 Br: (∀ε > 0)(∀z ∈ X)(∃x ∈ X,n ∈ N)
d(T (n)(x), z) < ε ∧ d(T (2n)(x), z) < ε ∧ · · · ∧ d(T (rn)(x), z) < ε
=⇒
Cr: (∀ε > 0)(∀z ∈ X)(∃x ∈ X,n ∈ N, ε′ > 0)
T (n)B(x, ε′) ⊆ B(z, ε) ∧ T (2n)(B(x, ε′) ⊆ B(z, ε) ∧ · · · ∧ T (rn)(B(x, ε′) ⊆

B(z, ε).

Proof:
Intuition: Since the orbit of x is close to z on a regular basis, balls around
the orbits of x should also be close to z on the same regular basis.

Let ε > 0 and z ∈ X be given. Use Br with ε/3 to obtain the following:

(∃x ∈ X,n ∈ N)[d(T (n)(x), z) < ε/3∧d(T (2n)(x), z) < ε/3∧· · ·∧d(T (rn)(x), z) < ε/3].

By uniform continuity of T (in) for 1 ≤ i ≤ r we obtain ε′ such that

(∀a, b ∈ X)[d(a, b) < ε′ =⇒ (∀i ≤ r)[d(T (in)(a), T (in)(b)) < ε2]

We use these values of x and ε′.
Let w ∈ T (in)(B(x, ε′)). We show that w ∈ B(z, ε) by showing d(w, z) < ε.
Since w ∈ T (in)(B(x, ε′)) we have w = T (in)(w′) for w′ ∈ B(x, ε′). Since

d(x,w′) < ε′

we have, by the definition of ε′,

d(T (in)(x), T (in)(w′)) < ε/3.

d(z, w) = d(z, T (in)(w′)) ≤ d(z, T (in)(x))+d(T (in)(x), T (in)(w′)) ≤ ε/3+ε/3 < ε.

Hence w ∈ B(zε).

Note 12.2.23 The above proof used only that T is unif-continuous, not
bi-unif-continuous. In fact, the proof does not use that T is a bijection.
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Cr =⇒ Dr

Lemma 12.2.24 Cr: (∀ε > 0)(∀z ∈ X)(∃x ∈ X,n ∈ N, ε′ > 0)
T (n)B(x, ε′) ⊆ B(z, ε) ∧ T (2n)(B(x, ε′) ⊆ B(z, ε) ∧ · · · ∧ T (rn)(B(x, ε′) ⊆

B(z, ε)
=⇒
Dr: (∀ε > 0)(∃w ∈ X,n ∈ N)
d(T (n)(w), w) < ε ∧ d(T (2n)(w), w) < ε ∧ · · · ∧ d(T (rn)(w), y) < ε.

Proof:
Intuition: We use the premise iteratively. Start with a point z0. Some z1

has a ball around its orbit close to z0. Some z2 has a ball around its orbit
close to z1. Etc. Finally there will be two zi’s that are close: in fact the a ball
around the orbit of one is close to the other. This will show the conclusion.

Let z0 ∈ X. Apply Cr with ε0 = ε/2 and z0 to obtain z1, ε1, n1 such that

T (in1)(B(z1, ε1)) ⊆ B(z0, ε0) for 1 ≤ i ≤ r.

Apply Cr with ε1 and z1 to obtain z2, ε2, n2 such that

T (in2)(B(z2, ε2)) ⊆ B(z1, ε1) for 1 ≤ i ≤ r.

Apply Cr with ε2 and z2 to obtain z3, ε3, n3 such that

T (in3)(B(z3, ε3)) ⊆ B(z2, ε2) for 1 ≤ i ≤ r.

Keep doing this to obtain z0, z1, z2, . . ..
One can easily show that, for all t < s, for all i 1 ≤ i ≤ r,

T (i(ns+ns+1+···+ns+t))(B(zs, εs)) ⊆ B(zt, εt)

Since X is closed z0, z1, . . . has a limit point. Hence

d(zs, zt) < ε0.

Using these s, t and letting ns + · · ·+ ns+t = n we obtain

T (in)(B(zs, εs)) ⊆ B(zt, εt)

Hence

d(T (in)(zs), zt) < εt.
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Let w = zs. Hence, for 1 ≤ i ≤ r

d(T (in)(w), w) ≤ d(T (in)(zs), zs) ≤ d(T (in)(zs), zt) + d(zt, zs) < εt + ε0 < ε.

Dr =⇒ Ar+1

Lemma 12.2.25 Dr: (∀ε > 0)(∃w ∈ X,n ∈ N)

d(T (n)(w), w) < ε ∧ d(T (2n)(w), w) < ε ∧ · · · ∧ d(T (rn)(w), y) < ε.

=⇒
Ar+1: (∀ε > 0)(∃x, y ∈ X,n ∈ N)

d(T (n)(x), y) < ε ∧ d(T (2n)(x), y) < ε∧ , . . . , d(T ((r+1)n)(x), y) < ε.

Proof:

By Dr and (∀x)[d(x, x) = 0] we have that there exists a w ∈ X and n ∈ N
such that the following hold.

d(w,w) < ε
d(T (n)(w), w) < ε
d(T (2n)(w), w) < ε

...
d(T (rn)(w), w) < ε

We rewrite the above equations.

d(T (n)(T (−n)(w)), w) < ε
d(T (2n)(T (−n)(w)), w) < ε
d(T (3n)(T (−n)(w)), w) < ε

...
d(T (rn)(T (−n)(w)), w) < ε

d(T ((r+1)n)(T (−n)(w)), w) < ε

Let x = T (−n)(w) and y = w to obtain
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d(T (n)(x), y) < ε
d(T (2n)(x), y) < ε
d(T (3n)(x), y) < ε

...
d(T (rn)(x), y) < ε

d(T ((r+1)n)(x), y) < ε

Theorem 12.2.26 Assume that

1. X is a metric space,

2. T is bi-unif-continuous.

3. (X,T ) is homogeneous.

For every r ∈ N, ε > 0, there exists w ∈ X, n ∈ N such that w is (ε, r)-
recurrent.

Proof:
Recall that A1 states

(∀ε)(∃x, y ∈ X)(∃n)[d(T (n)(x), y) < ε].

Let x ∈ X be arbitrary and y = T (y). Note that

d(T (1)(x), y) = d(T (x), T (x)) = 0 < ε.

Hence A1 is satisfied.
By Lemmas 12.2.21, 12.2.22, 12.2.24, and 12.2.25 we have (∀r ∈ N)[Dr].

This is the conclusion we seek.

12.2.3 Another Theorem in Topology

Recall the following well known theorem, called Zorn’s Lemma.

Lemma 12.2.27 Let (X,�) be a partial order. If every chain has an upper
bound then there exists a maximal element.
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Proof: See Appendix TO BE WRITTEN

Lemma 12.2.28 Let X be a metric space, T :X → X be bi-continuous, and
x ∈ X. If y ∈ CLDOT(x) then CLDOT(y) ⊆ CLDOT(x).

Proof: Let y ∈ CLDOT(x). Then there exists i1, i2, i3, . . . ∈ Z such that

T (i1)(x), T (i2)(x), T (i3)(x), . . .→ y.

Let j ∈ Z. Since T (j) is continues

T (i1+j)(x), T (i2+j)(x), T (i3+j)(x), . . .→ T (j)y.

Hence, for all j ∈ Z,

T (j)(y) ∈ cl{T (ik+j)(x) | k ∈ N} ⊆ cl{T (i)(x) | i ∈ Z} = CLDOT(x).

Therefore

{T (j)(y) | j ∈ Z} ⊆ CLDOT(x).

By taking cl of both sides we obtain

CLDOT(y) ⊆ CLDOT(x).

Theorem 12.2.29 Let X be a limit point compact metric space. Let T :
X → X be a bijection. Then there exists a homogeneous point x ∈ X.

Proof:
We define the following order on X.

x � y iff CLDOT(x) ⊇ CLDOT(y).

This is clearly a partial ordering. We show that this ordering satisfies the
premise of Zorn’s lemma.

Let C be a chain. If C is finite then clearly it has an upper bound. Hence
we assume that C is infinite. Since X is limit point compact there exists x,
a limit point of C.
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Claim 1: For every y, z ∈ C such that y � z, z ∈ CLDOT(y).
Proof: Since y � z we have CLDOT(z) ⊆ CLDOT(y). Note that

z ∈ CLDOT(z) ⊆ CLDOT(y).

End of Proof of Claim 1
Claim 2: For every y ∈ C x ∈ CLDOT(y).
Proof: Let y1, y2, y3, . . . be such that

1. y = y1,

2. y1, y2, y3, . . . ∈ C,

3. y1 � y2 � y3 � · · · , and

4. limi yi = x.

Since y ≺ y2 ≺ y3 ≺ · · · we have (∀i)[CLDOT(y) ⊇ CLDOT(yi)].
Hence (∀i)[yi ∈ CLDOT(y)]. Since limi yi = x, (∀i)[yi ∈ CLDOT(y)], and
CLDOT(y) is closed under limit points, x ∈ CLDOT(y).
End of Proof of Claim 2

By Zorn’s lemma there exists a maximal element under the ordering �.
Let this element be x.
Claim 3: x is homogeneous.
Proof: Let y ∈ CLDOT(x). We show CLDOT(y) = CLDOT(x).

Since y ∈ CLDOT(x), CLDOT(y) ⊆ CLDOT(x) by Lemma 12.2.28.
Since x is maximal CLDOT(x) ⊆ CLDOT(y).
Hence CLDOT(x) = CLDOT(y).

End of Proof of Claim 3

12.2.4 VDW Finally

Theorem 12.2.30 For all c, for all k, for every c-coloring of Z there exists
a monochromatic arithmetic progression of length k.

Proof:
Let BISEQ and T be as in Example 12.2.6.2.
Let f ∈ BISEQ. Let Y = CLDOT(f). Since BISEQ is limit point

compact and Y is closed under limit points, by Lemma 12.2.13 Y is limit
point compact. By Theorem 12.2.29 there exists g ∈ X such that CLDOT(g)
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is homogeneous. Let X = CLDOT(g). The premise of Theorem 12.2.26 is
satisfied with X and T . Hence we take the following special case.

There exists h ∈ X, n ∈ N such that h is (1
4
, k)-recurrent. Hence there

exists n such that

d(h, T (n)(h)), d(h, T (2n)(h)), . . . , d(h, T (rn)(h)) <
1

4
.

Since for all i, 1 ≤ i ≤ r, d(h, T (in)(h)) < 1
4
< 1

2
we have that

h(0) = h(n) = h(2n) = · · · = h(kn).

Hence h has an AP of length k. We need to show that f has an AP of
length k.

Let ε = 1
2(kn+1)

. Since h ∈ CLDOT(g) there exists j ∈ Z such that

d(h, T (j)(g)) < ε.

Let ε′ be such that

(∀a, b ∈ X)[d(a, b) < ε′ =⇒ d(T (j)(a), T (j)(b)) < ε].

Since g ∈ CLDOT(f) there exists i ∈ Z such that d(g, T (i)(f)) < ε′. By
the definition of ε′ we have

d(T (j)(g), T (i+j)(f)) < ε.

Hence we have

d(h, T (i+j)(f)) ≤ d(h, T (j)(g)) + d(T (j)(g), T (i+j)f) < 2ε ≤ 1

kn+ 1
.

Hence we have that h and T (i+j)(f) agree on {0, . . . , kn}. In particular
h(0) = f(i+ j).
h(n) = f(i+ j + n).
h(2n) = f(i+ j + 2n).

...
h(kn) = f(i+ j + kn).
Since

h(0) = h(n) = · · · = h(kn)
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we have

f(i+ j) = f(i+ j + n) = f(i+ j + 2n) = · · · = f(i+ j + kn).

Thus f has a monochromatic arithmetic progression of length k.

12.3 Coloring R*

(This section was co-written with Steven Fenner.)
Do you think the following is TRUE or FALSE?
For any ℵ0-coloring of the reals, χ:R→ N there exist distinct e1, e2, e3, e4

such that
χ(e1) = χ(e2) = χ(e3) = χ(e4),

e1 + e2 = e3 + e4.

It turns out that this question is equivalent to the negation of CH.
Komjáth [46] claims that Erdős proved this result. The prove we give is
due to Davies [18].

Def 12.3.1 The Continuum Hypothesis (CH) is the statement that there is
no order of infinity between that of N and R. It is known to be independent
of Zermelo-Frankel Set Theory with Choice (ZFC).

Def 12.3.2 ω1 is the first uncountable ordinal. ω2 is the second uncountable
ordinal.

Fact 12.3.3

1. If CH is true, then there is a bijection between R and ω1. This has the
following counter-intuitive consequence: there is a way to list the reals:

x0, x1, x2, . . . , xα, . . .

as α ∈ ω1 such that, for all α ∈ ω1, the set {xβ | β < α} is countable.

2. If CH is false, then there is an injection from ω2 to R. This has the
consequence that there is a list of distinct reals:

x0, x1, x2, . . . , xα, . . . , xω1 , xω1+1, . . . , xβ, . . .

where α ∈ ω1 and β ∈ [ω1, ω2).
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12.3.1 CH =⇒ FALSE

Def 12.3.4 Let X ⊆ R. Then CL(X) is the smallest set Y ⊇ X of reals
such that

a, b, c ∈ Y =⇒ a+ b− c ∈ Y.

Note 12.3.5 X ⊆ CL(X) since we can take b = c.

Lemma 12.3.6

1. If X is countable then CL(X) is countable.

2. If X1 ⊆ X2 then CL(X1) ⊆ CL(X2).

Proof:
1) Assume X is countable. CL(X) can be defined with an ω-induction (that
is, an induction just through ω).

C0 = X

Cn+1 = Cn ∪ {a+ b− c | a, b, c ∈ Cn}

One can easily show that CL(X) = ∪∞i=0Ci and that this set is countable.
2) This is an easy exercise.

Theorem 12.3.7 Assume CH is true. There exists an ℵ0-coloring of R such
that there are no distinct e1, e2, e3, e4 such that

χ(e1) = χ(e2) = χ(e3) = χ(e4),

e1 + e2 = e3 + e4.

Proof: Since we are assuming CH is true, we have, by Fact 12.3.3.1, there
is a bijection between R and ω1. If α ∈ ω1 then xα is the real associated to
it. We can picture the reals as being listed out via

x0, x1, x2, x3, . . . , xα, . . .

where α < ω1.
Note that every number has only countably many numbers less than it

in this ordering.
For α < ω1 let

Xα = {xβ | β < α}.
Note the following:
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1. For all α, Xα is countable.

2. X0 ⊂ X1 ⊂ X2 ⊂ X3 ⊂ · · · ⊂ Xα ⊂ · · ·

3.
⋃
α<ω1

Xα = R.

We define another increasing sequence of sets Yα by letting

Yα = CL(Xα).

Note the following:

1. For all α, Yα is countable. This is from Lemma 12.3.6.1.

2. Y0 ⊂ Y1 ⊂ Y2 ⊂ Y3 ⊂ · · · ⊂ Yα ⊂ · · · . This is from Lemma 12.3.6.2.

3.
⋃
α<ω1

Yα = R.

We now define our last sequence of sets:
For all α < ω1,

Zα = Yα −

(⋃
β<α

Yβ

)
.

Note the following:

1. Each Zα is finite or countable.

2. The Zα form a partition of R.

We will now define an ℵ0-coloring of R. For each Zα, which is countable,
assign colors from ω to Zα’s elements in some way so that no two elements
of Zα have the same color.

Assume, by way of contradiction, that there are distinct e1, e2, e3, e4 such
that

χ(e1) = χ(e2) = χ(e3) = χ(e4)

and
e1 + e2 = e3 + e4.

Let α1, α2, α3, α4 be such that ei ∈ Zαi . Since all of the elements in
any Zα are colored differently, all of the αi’s are different. We will assume
α1 < α2 < α3 < α4. The other cases are similar. Note that

e4 = e1 + e2 − e3.



12.3. COLORING R* 195

and
e1, e2, e3 ∈ Zα1 ∪ Zα2 ∪ Zα3 ⊆ Yα1 ∪ Yα2 ∪ Yα3 = Yα3 .

Since Yα3 = CL(Xα3) and e1, e2, e3 ∈ Yα3 , we have e4 ∈ Yα3 . Hence
e4 /∈ Zα4 . This is a contradiction.

What was it about the equation

e1 + e2 = e3 + e4

that made the proof of Theorem 12.3.7 work? Absolutely nothing:

Theorem 12.3.8 Let n ≥ 2. Let a1, . . . , an ∈ R be nonzero. Assume CH
is true. There exists an ℵ0-coloring of R such that there are no distinct
e1, . . . , en such that

χ(e1) = · · · = χ(en),

n∑
i=1

aiei = 0.

Proof sketch: Since this prove is similar to the last one we just sketch
it.

Def 12.3.9 Let X ⊆ R. CL(X) is the smallest superset of X such that the
following holds:

For all m ∈ {1, . . . , n} and for all e1, . . . , em−1, em+1, . . . , en,

e1, . . . , em−1, em+1, . . . , en ∈ CL(X) =⇒ −(1/am)
∑

i∈{1,...,n}−{m}

aiei ∈ CL(X).

Let Xα, Yα, Zα be defined as in Theorem 12.3.7 using this new definition
of CL. Let χ be defined as in Theorem 12.3.7.

Assume, by way of contradiction, that there are distinct e1, . . . , en such
that

χ(e1) = · · · = χ(en)

and
n∑
i=1

aiei = 0.
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Let α1, . . . , αn be such that ei ∈ Zαi . Since all of the elements in any Zα
are colored differently, all of the αi’s are different. We will assume α1 < α2 <
· · · < αn. The other cases are similar. Note that

en = −(1/an)
n−1∑
i=1

aiei ∈ CL(X)

and
e1, . . . , en−1 ∈ Zα1 ∪ · · · ∪ Zαn−1 ⊆ Yαn−1 .

Since Yαn−1 = CL(Xαn−1) and e1, . . . , en−1 ∈ Yαn−1 , we have en ∈ Yαn−1 .
Hence en /∈ Zαn . This is a contradiction.

BILL- FILL IN -LOOK UP PAPER THIS CAME FROM TO GET
MORE

12.3.2 ¬ CH =⇒ TRUE

Theorem 12.3.10 Assume CH is false. Let χ be an ℵ0-coloring of R. There
exist distinct e1, e2, e3, e4 such that

χ(e1) = χ(e2) = χ(e3) = χ(e4),

e1 + e2 = e3 + e4.

Proof: By Fact 12.3.3 there is an injection of ω2 into R. If α ∈ ω2, then
xα is the real associated to it.

Let χ be an ℵ0-coloring of R. We show that there exist distinct e1, e2, e3, e4

of the same color such that e1 + e2 = e3 + e4.
We define a map F from ω2 to ω1 × ω1 × ω1 × ω.

1. Let β ∈ ω2.

2. Define a map from ω1 to ω by

α 7→ χ(xα + xβ).

3. Let α1, α2, α3 ∈ ω1 be distinct elements of ω1, and i ∈ ω, such that
α1, α2, α3 all map to i. Such α1, α2, α3, i clearly exist since ℵ0 + ℵ0 =
ℵ0 < ℵ1. (There are ℵ1 many elements that map to the same element
of ω, but we do not need that.)
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4. Map β to (α1, α2, α3, i).

Since F maps a set of cardinality ℵ2 to a set of cardinality ℵ1, there exists
some element that is mapped to twice by F (actually there is an element that
is mapped to ℵ2 times, but we do not need this). Let α1, α2, α3, β, β

′, i be
such that β 6= β′ and

F (β) = F (β′) = (α1, α2, α3, i).

Choose distinct
α, α′ ∈ {α1, α2, α3}

such that
xα − xα′ /∈ {xβ − xβ′ , xβ′ − xβ}.

We can do this because there are at least two positive values for xα − xα′ .
Since F (β) = (α1, α2, α3, i), we have

χ(xα + xβ) = χ(xα′ + xβ) = i.

Since F (β′) = (α1, α2, α3, i), we have

χ(xα + xβ′) = χ(xα′ + xβ′) = i.

Let

e1 = xα + xβ

e2 = xα′ + xβ′

e3 = xα′ + xβ

e4 = xα + xβ′ .

Then
χ(e1) = χ(e2) = χ(e3) = χ(e4)

and
e1 + e2 = e3 + e4.

Since xα 6= xα′ and xβ 6= xβ′ , we have {e1, e2} ∩ {e3, e4} = ∅.
Moreover, the equation e1 = e2 is equivalent to

xα − xα′ = xβ′ − xβ,

which is ruled out by our choice of α, α′, and so e1 6= e2.
Similarly, e3 6= e4.
Thus e1, e2, e3, e4 are all distinct.
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Remark. All the results above hold practically verbatim with R replaced
by Rk, for any fixed integer k ≥ 1. In this more geometrical context,
e1, e2, e3, e4 are vectors in k-dimensional Euclidean space, and the equation
e1 + e2 = e3 + e4 says that e1, e2, e3, e4 are the vertices of a parallelogram
(whose area may be zero).

12.3.3 More is Known!

To state the generalization of this theorem we need a definition.

Def 12.3.11 An equation E(e1, . . . , en) (e.g., e1 + e2 = e3 + e4) is regular if
the following holds: for all colorings χ:R → N there exists ~e = (e1, . . . , en)
such that

χ(e1) = · · · = χ(en),

E(e1, . . . , en),

and e1, . . . , en are all distinct.

If we combine Theorems 12.3.7 and 12.3.10 we obtain the following.

Theorem 12.3.12 e1 + e2 = e3 + e4 is regular iff 2ℵ0 > ℵ1.

Jacob Fox [25] has generalized this to prove the following.

Theorem 12.3.13 Let s ∈ N. The equation

e1 + se2 = e3 + · · ·+ es+3 (12.7)

is regular iff 2ℵ0 > ℵs.

Fox’s result also holds in higher dimensional Euclidean space, where it
relates to the vertices of (s + 1)-dimensional parallelepipeds. Subtracting
(s+ 1)e2 from both sides of (12.7) and rearranging, we get

e1 − e2 = (e3 − e2) + · · ·+ (es+3 − e2),

which says that e1 and e2 are opposite corners of some (s + 1)-dimensional
parallelepiped P where e3, . . . , es+3 are the corners of P adjacent to e2. Of
course, there are other vertices of P besides these, and Fox’s proof actually
shows that if 2ℵ0 > ℵs then all the 2s+1 vertices of some such P must have
the same color.
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[13] V. Chvátal. Some unknown van der Waerden numbers. In R. G. et al,
editor, Combinatorial Structures and their applications, pages 31–33.
Gordon and Breach, 1969. Proceedings of the Calgary international
conference. Math Reviews 266891.

[14] E. Cichon. A short proof of two recently discovered independence results
using recursive theoretic methods. Proceedings of the American Math-
ematical Society, 87:704–706, 1983. http://www.jstor.org/stable/

2043364.

[15] G. Cornacchia. Sulla congruenza xn+yn+ zn ≡ 0 (mod p). Giornale di
matematiche di Battaglini, pages 219–268, 1909. http://www.cs.umd.

edu/~gasarch/res/.

[16] H. Davenport. On the distribution of quadratic residues mod p. Jour-
nal of the London Mathematical Society, 6:49–54, 1932. http://jlms.

oxfordjournals.org/. This is part 1.

[17] H. Davenport. On the distribution of quadratic residues mod p. Jour-
nal of the London Mathematical Society, 8:46–52, 1933. http://jlms.

oxfordjournals.org/. This is part 2.



BIBLIOGRAPHY 203

[18] R. O. Davies. Partioning the plane into denumerably many sets without
repeated differences. Proceedings of the Cambridge Philosophical Society,
72:179–183, 1972.

[19] L. E. Dickson. Lower limit for the number of sets of solutions of xn +
yn+zn ≡ 0 (mod p). Journal für die reine und angewandte Mathematik,
135:181–189, 1909. http://www.cs.umd.edu/~gasarch/res/.

[20] M. Dunton. Bounds for pairs of cubic residues. Proceedings of the Amer-
ican Mathematical Society, 16:330–332, 1965. Online at http://www.

jstor.org/stable/2033874 or http://www.cs.umd.edu/~gasarch/

res/.

[21] H. Edwards. Fermat’s Last Ttheorem: A genetic introduction to alge-
braic number theory. Springer, New York, 2000.
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[46] P. Komjáth. Partitions of vector spaces. Periodica Mathematica Hun-
garica, 28:187–193, 1994.

[47] J. Komlós, A. Shokoufandeh, M. Simonovits, and E. Szemerédi. The
regularity lemma and its applications to graph theory. In Theoretical
aspects of computer science, Lecture Notes in Computer Science, 2002.
http://www.springerlink.com/content/vn0t7870ctnb6man/.

[48] J. Komlós and M. Simonovits. Szemerédi’s regularity lemma and its
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[62] A. E. Pellet. Meḿorire sur la theórie algeb́rique des eq́uations. Bulletin
de la societe Mathematique de France, 15:61–103, 1887. http://www.

cs.umd.edu/~gasarch/res/.
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[73] A. Sárközy. On difference sets of sequences of integers I. Acta Math.
Sci. Hung., 31:125–149, 1977. http://www.cs.umd.edu/~gasarch/

vdw/sarkozyONE.pdf.

[74] I. Schur. Uber die kongruenz of xm + ym ≡ zm (mod p). Jahresbericht
der Deutschen Mathematiker-Vereinigung, 25:114–116, 1916.

[75] Shelah. A partition theorem. Scientiae Math Japonicae, 56:413–438,
2002. Paper 679 at the Shelah Archive: http://shelah.logic.at/

short600.html.

[76] S. Shelah. Primitive recursive bounds for van der Waerden numbers.
Journal of the American Mathematical Society, 1:683–697, 1988. http:
//www.jstor.org/view/08940347/di963031/96p0024f/0.

[77] R. Smullyan. Trees and ball games. Annals of the New York Academy
of Sciences, 321:86–90, 1979.

[78] A. Soifer. The mathematical coloring book: mathematics of coloring and
the colorful life of its creators. Springer-Verlag, New York, Heidelberg,
Berlin, 2009.

[79] A. Sperotto and M. Pelilo. Szemerédi’s regularity lemma and its applica-
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[84] E. Szeméredi. On sets of integers containing no k elements in arithmetic
progression. Acta Arith., 27:299–345, 1975. http://www.cs.umd.edu/

~gasarch/vdw/szdensity.pdf.
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