
The Mathematics of

Algorithm Design

Jon Kleinberg

Cornell University, Ithaca NY USA.

1 The Goals of Algorithm Design

When computer science began to emerge as a sub-
ject at universities in the 1960s and 1970s, it drew
some amount of puzzlement from the practitioners
of more established fields. Indeed, it is not initially
clear why computer science should be viewed as a
distinct academic discipline. The world abounds
with novel technologies, but we don’t generally
create a separate field around each one; rather,
we tend to view them as by-products of existing
branches of science and engineering. What is spe-
cial about computers?

Viewed in retrospect, such debates highlighted
an important issue: computer science is not so
much about the computer as a specific piece of
technology as it is about the more general phe-
nomenon of computation itself, the design of pro-
cesses that represent and manipulate information.
Such processes turn out to obey their own inherent
laws, and they are performed not only by comput-
ers but by people, by organizations, and by sys-
tems that arise in nature. We will refer to these
computational processes as algorithms. For the
purposes of our discussion in this article, one can
think of an algorithm informally as a step-by-step
sequence of instructions, expressed in a stylized
language, for solving a problem.

This view of algorithms is general enough to cap-
ture both the way a computer processes data and
the way a person performs calculations by hand.
For example, the rules for adding and multiplying
numbers that we learn as children are algorithms;
the rules used by an airline company for schedul-
ing flights constitute an algorithm; and the rules
used by a search engine like Google for ranking
Web pages constitute an algorithm. It is also fair
to say that the rules used by the human brain to
identify objects in the visual field constitute a kind
of algorithm, though we are currently a long way
from understanding what this algorithm looks like
or how it is implemented on our neural hardware.

A common theme here is that one can reason

about all these algorithms without recourse to spe-
cific computing devices or computer programming
languages, instead expressing them using the lan-
guage of mathematics. In fact, the notion of an
algorithm as we now think of it was formalized
in large part by the work of mathematical logi-
cians in the 1930s, and algorithmic reasoning is
implicit in the past several millenia of mathemati-
cal activity. (For example, equation-solving meth-
ods have always tended to have a strong algorith-
mic flavor; the geometric constructions of the an-
cient Greeks were inherently algorithmic as well.)
Today, the mathematical analysis of algorithms
occupies a central position in computer science;
reasoning about algorithms independently of the
specific devices on which they run can yield in-
sight into general design principles and fundamen-
tal constraints on computation.

At the same time, computer science research
struggles to keep two diverging views in focus:
this more abstract view that formulates algorithms
mathematically, and the more applied view that
the public generally associates with the field, the
one that seeks to develop applications such as In-
ternet search engines, electronic banking systems,
medical imaging software, and the host of other
creations we have come to expect from computer
technology. The tension between these two views
means that the field’s mathematical formulations
are continually being tested against their imple-
mentation in practice; it provides novel avenues
for mathematical notions to influence widely used
applications; and it sometimes leads to new mathe-
matical problems motivated by these applications.

The goal of this short article is to illustrate this
balance between the mathematical formalism and
the motivating applications of computing. We be-
gin by building up to one of the most basic defi-
nitional questions in this vein: how should we for-
mulate the notion of efficient computation?

2 Two Representative Problems

To make the discussion of efficiency more concrete,
and to illustrate how one might think about an
issue like this, we first discuss two representative
problems — both fundamental in the study of algo-
rithms — that are similar in their formulation but
very different in their computational difficulty.

1



2

11

10

8 1212

14

24

8

10

11
22

b)a)

20

7

Figure 1: Solutions to instance of (a) the Traveling Salesman Problem and (b) the Minimum Spanning Tree

Problem, on the same set of points. The dark lines indicate the pairs of cities that are connected by the

respective optimal solutions, and the lighter lines indicate all pairs that are not connected.

The first in this pair is the Traveling Salesman

Problem (TSP), and it is defined as follows. We
imagine a salesman contemplating a map with n

cities (he is currently located in one of them). The
map gives the distance between each pair of cities,
and the salesman wishes to plan the shortest pos-
sible tour that visits all n cities and returns to the
starting point. In other words, we are seeking an
algorithm that takes as input the set of all dis-
tances among pairs of cities, and produces a tour
of minimum total length. Figure 1(a) depicts the
optimal solution to a small instance of the TSP;
the circles represent the cities, the dark line seg-
ments (with lengths labeling them) connect cities
that the salesman visits consecutively on the tour,
and the light line segments connect all the other
pairs of cities, which are not visited consecutively.

A second problem is the Minimum Spanning

Tree Problem (MST). Here we imagine a construc-
tion firm with access to the same map of n cities,
but with a different goal in mind. They wish to
build a set of roads connecting certain pairs of the
cities on the map, so that after these roads are
built there is a route from each of the n cities to
each other. (A key point here is that each road
must go directly from one city to another.) Their
goal is to build such a road network as cheaply as
possible — in other words, using as little total road
material as possible. Figure 1(b) depicts the op-
timal solution to the instance of the MST defined
by the same set of cities used for part (a).

Both of these problems have a wide range of
practical applications. The TSP is a basic problem
concerned with sequencing a given set of objects

in a “good” order; it has been used for problems
that run from planning the motion of robotic arms
drilling holes on printed circuit boards (where the
“cities” are the locations where the holes must be
drilled) to ordering genetic markers on a chromo-
some in a linear sequence (with the markers con-
stituting the cities, and the distances derived from
probabilistic estimates of proximity). The MST is
a basic issue in the design of efficient communi-
cation networks; this follows the motivation given
above, with fiber-optic cable acting in the role of
“roads.” The MST also plays an important role in
the problem of clustering data into natural group-
ings. Note for example how the points on the left
side of Figure 1(b) are joined to the points on the
right side by a relatively long link; in clustering ap-
plications, this can be taken as evidence that the
left and right points form natural groupings.

It is not hard to come up with an algorithm for
solving the TSP. We first list every possible way
of ordering the cities (other than the starting city,
which is fixed in advance). Each ordering defines
a tour – the salesman could visit the cities in this
order and then return to the start – and for each
ordering we could compute the total length of the
tour, by traversing the cities in this order and sum-
ming the distances from each city to the next. As
we perform this calculation for all possible orders,
we keep track of the order that yields the smallest
total distance, and at the end of the process we
return this tour as the optimal solution.

While this algorithm does solve the problem, it
is extremely inefficient. There are n−1 cities other
than the starting point, and any possible sequence



3. COMPUTATIONAL EFFICIENCY 3

of them defines a tour, so we need to consider
(n− 1)(n− 2)(n− 3) · · · (3)(2)(1) = (n− 1)! possi-
ble tours. Even for n = 30 cities, this is an astro-
nomically large quantity; on the fastest computers
we have today, running this algorithm to comple-
tion would take longer than the life expectancy
of the Earth. The difficulty is that the algorithm
we have just described is performing brute-force

search: the “search space” of possible solutions to
the TSP is very large, and the algorithm is doing
nothing more than plowing its way through this
entire space, considering every possible solution.

For most problems, there is a comparably inef-
ficient algorithm that simply performs brute-force
search. Things tend to get interesting when one
finds a way to improve significantly over this brute-
force approach.

The Minimum Spanning Tree Problem provides
a nice example of how such an improvement can
happen. Rather than considering all possible road
networks on the given set of cities, suppose we try
the following myopic, “greedy” approach to the
MST. We sort all the pairs of cities in order of in-
creasing distance, and then work through the pairs
in this order. When we get to a pair of cities, say
A and B, we test if there is already a way to travel
from A to B in the collection of roads constructed
thus far. If there is, then it would be superfluous
to build a direct road from A to B — our goal,
remember, is just to make sure every pair is con-
nected by some sequence of roads, and A and B are
already connected in this case. But if there is no
way to get from A to B using what’s already been
built, then we construct the direct road from A

to B. (As an example of this reasoning, note that
the potential road of length 14 in Figure 1(a) would
not get built by this MST algorithm; by the time
this direct route is considered, its endpoints are al-
ready joined by the sequence of two shorter roads
of length 7 and 11 as depicted in Figure 1(b).)

It is not at all obvious that the resulting road
network should have the minimum possible cost,
but in fact this is true. In other words, one can
prove a theorem that says, essentially, “On every
input, the algorithm just described produces an
optimal solution.” The payoff from this theorem
is that we now have a way to compute an optimal
road network by an algorithm that is much, much
more efficient than brute-force search: it simply

needs to sort the pairs of cities by their distances,
and then make a single pass through this sorted
list to decide which roads to build.

This discussion has provided us with a fair
amount of insight into the nature of the TSP
and MST problems. Rather than experimenting
with actual computer programs, we described al-
gorithms in words, and made claims about their
performance that could be stated and proved as
mathematical theorems. But what can we abstract
from these examples, if we want to talk about com-
putational efficiency in general?

3 Computational Efficiency

Most interesting computational problems share the
following feature with the TSP and the MST: an
input of size n implicitly defines a search space of
possible solutions whose size grows exponentially
with n. One can appreciate this explosive growth
rate as follows: if we simply add one to the size
of the input, the time required to search the entire
space increases by a multiplicative factor. We’d
prefer algorithms to scale more reasonably: their
running times should only increase by a multiplica-
tive factor when the input itself increases by a mul-
tiplicative factor. Running times that are bounded
by a polynomial function of the input size — in
other words, proportional to n raised to some fixed
power — exhibit this property. For example, if an
algorithm requires at most n2 steps on an input of
size n, then it requires at most (2n)2 = 4n2 steps
on an input twice as large.

In part because of arguments like this, computer
scientists in the 1960s adopted polynomial time as
a working definition of efficiency: an algorithm is
deemed to be efficient if the number of steps it re-
quires on an input of size n grows like n raised
to a fixed power. Using the concrete notion of
polynomial time as a surrogate for the fuzzier con-
cept of efficiency is the kind of modeling decision
that ultimately succeeds or fails based on its util-
ity in guiding the development of real algorithms.
And in this regard, polynomial time has turned out
to be a definition of surprising power in practice:
problems for which one can develop a polynomial-
time algorithm have turned out in general to be
highly tractable, while those for which we lack
polynomial-time algorithms tend to pose serious



4

challenges even for modest input sizes.

A concrete mathematical formulation of effi-
ciency provides a further benefit: it becomes pos-
sible to pose, in a precise way, the conjecture that
certain problems cannot be solved by efficient algo-
rithms. The Traveling Salesman Problem is a nat-
ural candidate for such a conjecture; after decades
of failed attempts to find an efficient algorithm
for the TSP, one would like to be able to prove
a theorem that says, “There is no polynomial-
time algorithm that finds an optimal solution to
every instance of the TSP.” A theory known as
NP-completeness provides a unifying framework
for thinking about such questions; it shows that a
large class of computational problems, containing
literally thousands of naturally arising problems
(including the TSP), are equivalent with respect
to polynomial-time solvability. There is an efficient
algorithm for one if and only if there is an efficient
algorithm for all. It is a major open problem to de-
cide whether or not these problems have efficient
algorithms; the deeply held sense that that they do
not has become the “P 6= NP” conjecture, which
has begun to appear on lists of the most prominent
problems in mathematics.

Like any attempt to make an intuitive notion
mathematically precise, polynomial time as a defi-
nition of efficiency in practice begins to break down
around its boundaries. There are algorithms for
which one can prove a polynomial bound on the
running time, but which are hopelessly inefficient
in practice. Conversely, there are well-known al-
gorithms (such as the standard simplex method
for linear programming) that require exponential
running time on certain pathological instances, but
which run quickly on almost all inputs encountered
in real life. And for computing applications that
work with massive datasets, an algorithm with
a polynomial running time may not be efficient
enough; if the input is a trillion bytes long (as
can easily occur when dealing with snapshots of
the Web, for example) even an algorithm whose
running time depends quadratically on the input
would be unusable in practice. For such applica-
tions, one generally needs algorithms that scale lin-
early in the size of the input — or, more strongly,
that operate by “streaming” through the input in
one or two passes, solving the problem as they go.
The theory of such streaming algorithms is an ac-

tive topic of research, drawing on techniques from
information theory, Fourier analysis, and other ar-
eas. None of this says that polynomial time is
losing its relevance to algorithm design; it is still
the standard benchmark for efficiency. But new
computing applications tend to push the limits of
current definitions, and in the process raise new
mathematical problems.

4 Algorithms for Computationally

Intractable Problems

In the previous section we discussed how re-
searchers have identified a large class of natu-
ral problems, including the TSP, for which it is
strongly believed that no efficient algorithm exists.
While this explains our difficulties in solving these
problems optimally, it leaves open a natural ques-
tion: what should we do when actually confronted
by such a problem in practice?

There are a number of different strategies for ap-
proaching such computationally intractable prob-
lems. One of these is approximation: for problems
like the TSP that involve choosing an optimal so-
lution from among many possibilities, we could try
to formulate an efficient algorithm that is guaran-
teed to produce a solution almost as good as the
optimal one. The design of such approximation al-
gorithms is an active area of research; we can see
a basic example of this process by considering the
TSP. Suppose we are given an instance of the TSP,
specified by a map with distances, and we set our-
selves the task of constructing a tour whose total
length is at most twice that of the shortest tour.
At first this goal seems a bit daunting: since we
don’t know how to compute the optimal tour (or
its length), how will we guarantee that the solution
we produce is short enough? It turns out, however,
that this can be done by exploiting an interesting
connection between the TSP and MST problems,
a relationship between the respective optimal so-
lutions to each problem on the same set of cities.

Consider an optimal solution to the MST prob-
lem on the given set of cities, consisting of a net-
work of roads; recall that this is something we can
compute efficiently. Now, the salesman interested
in finding a short tour for these cities can use this
optimal road network to visit the cities as follows.
Starting at one city, he follows roads until he hits



5. MATHEMATICS AND ALGORITHM DESIGN: RECIPROCAL INFLUENCES 5

a dead end — a city with no new roads exiting
it. He then backs up, re-tracing his steps until he
gets to a junction with a road he hasn’t yet taken,
and he proceeds down this new road. For exam-
ple, starting in the upper left corner of Figure 1(b),
the salesman would follow the road of length 8 and
then choose one of the roads of length 10 or 20; if
he selects the former, then after reaching the dead-
end he would back up to this junction again and
continue the tour by following the road of length
20. A tour constructed this way traverses each
road twice (once in each direction), so if we let m

denote the total length of all roads in the optimal
MST solution, we have found a tour of length 2m.

How does this compare to t, the length of the
best possible tour? Let’s argue first that t ≥ m.
This is true because in the space of all possible so-
lutions to the MST, one option is to build roads be-
tween cities that the salesman visits consecutively
in the optimal TSP tour, for a total mileage of t;
on the other hand, m is the total length of the
shortest possible road network, and hence t cannot
be smaller than m. So we’ve concluded that the
optimal solution to the TSP has length at least m;
combined with the previous conclusion, that our
algorithm is producing a tour of length 2m, we
have an approximation to within a factor of two of
optimal, as we had wanted.

People trying to solve large instances of compu-
tationally hard problems in practice frequently use
algorithms that have been observed empirically to
give nearly optimal solutions, even when no guar-
antees on their performance have been proved. Lo-

cal search algorithms form one widely-used class
of approaches like this. A local search algorithm
starts with an initial solution and repeatedly mod-
ifies it by making some “local” change to its struc-
ture, looking for a way to improve its quality. In
the case of the TSP, a local search algorithm would
seek simple improving modifications to its current
tour; for example, it might look at sets of cities
that are visited consecutively and see if visiting
them in the opposite order would shorten the tour.
Researchers have drawn connections between local
search algorithms and phenomena in nature; for
example, just as a large molecule contorts itself in
space trying to find a minimum-energy conforma-
tion, we can imagine the TSP tour in a local search
algorithm modifying itself as it tries to reduce its

length. Determining how deeply this analogy goes
is an interesting research issue.

5 Mathematics and Algorithm De-

sign: Reciprocal Influences

Many branches of mathematics have contributed
to aspects of algorithm design, and the issues
raised by the analysis of new algorithmic problems
have in a number of cases suggested novel mathe-
matical questions.

Combinatorics and graph theory have been qual-
itatively transformed by the growth of computer
science, to the extent that algorithmic questions
have become thoroughly intertwined with the
mainstream of research in these areas. Techniques
from probability have also become fundamental to
many areas of computer science: probabilistic al-
gorithms draw power from the ability to make ran-
dom choices while they are executing, and proba-
bilistic models of the input to an algorithm allow
one to try capturing more accurately the family
of problem instances that arise in practice. This
style of analysis provides a steady source of new
questions in discrete probability.

A computational perspective is often useful
in thinking about “characterization” problems in
mathematics. For example, the general issue of
characterizing prime numbers has an obvious al-
gorithmic component: given a number n as in-
put, how efficiently can we determine whether it
is prime? (There exist algorithms that are expo-
nentially better than the approach of dividing n

by all numbers up to
√

n.) Problems in knot the-
ory such as the characterization of unknotted loops
have a similar algorithmic side. Suppose we are
given a circular loop of string in three dimensions
(described as a jointed chain of line segments), and
it wraps around itself in complicated ways. How
efficiently can we determine whether it is truly
knotted, or whether by moving it around we can
fully untangle it? One can engage in this activ-
ity with many similar mathematical issues; it is
clear that the corresponding algorithmic versions
are extremely concrete as problems, though they
may lose part of the original intent of the mathe-
maticians who posed the questions more generally.

Rather than attempting to enumerate the inter-
section of algorithmic ideas with all the different



6

branches of mathematics, we conclude this article
with two case studies that involve the design of al-
gorithms for particular applications, and the ways
in which mathematical ideas arise in each instance.

6 Web Search and Eigenvectors

As the World Wide Web grew in popular-
ity throughout the 1990s, computer science re-
searchers grappled with a difficult problem: the
Web contains a vast amount of useful informa-
tion, but its anarchic structure makes it very hard
for users, unassisted, to find the specific informa-
tion they’re looking for. Thus, early in the Web’s
history, people began to develop search engines

that would index the information on the Web,
and produce relevant Web pages in response to
user queries. But of the thousands or millions
of pages relevant to a topic on the Web, which
few should the search engine present to a user?
This is the ranking problem: how to determine
the “best” resources on a given topic. Note the
contrast with concrete problems like the Traveling
Salesman. There, the goal (the shortest tour) was
not in doubt; the difficulty was simply in comput-
ing an optimal solution efficiently. For the search
engine ranking problem, on the other hand, for-
malizing the goal is a large part of the challenge
— what do we mean by the “best” page on a topic?
In other words, an algorithm to rank Web pages is
really providing a definition of Web page quality
as well as the means to evaluate this definition.

The first search engines ranked each Web page
based purely on the text it contained. These ap-
proaches began to break down as the Web grew,
because they didn’t take into account the qual-
ity judgments encoded in the Web’s hyperlinks: in
browsing the Web, we often discover high-quality
resources because they are “endorsed” through the
links they receive from other pages. This insight
led to a second generation of search engines that
determined rankings using link analysis.

The simplest such analysis would just count the
number of links to a page: in response to the query
“newspapers,” for example, one could rank pages
by the number of incoming links they receive from
other pages containing the term — in effect, al-
lowing pages containing the term “newspapers” to
vote on the result. Such a scheme will generally do

well for the top few items, placing prominent news
sites like The New York Times and The Financial

Times at the head of the list, but will quickly be-
come noisy after this.

It is possible to make much more effective use of
the latent information in the links. Consider pages
that link to many of the sites ranked highly by this
simple voting scheme; it is natural to expect that
these are authored by people with a good sense for
where the interesting newspapers are, and so we
could run the voting again, this time giving more
voting power to these pages that selected many
of the highly-ranked sites. This revote may ele-
vate certain lesser-known newspapers, favored by
the Web pages authors who are more knowledge-
able on the topic; in response to the results of this
revote, we could further sharpen our weighting of
the voters. This “principle of repeated improve-
ment” uses the information contained in a set of
page quality estimates to produce a more refined
set of estimates. If we perform these refinements
repeatedly, will they converge to a stable solution?

In fact, this sequence of refinements can be
viewed as an algorithm to compute the principal
eigenvector of a particular matrix; this both estab-
lishes the convergence of the process and charac-
terizes the end result. To establish this connec-
tion, we introduce some notation. Each Web page
is assigned two scores: an authority weight, mea-
suring its quality as a primary source on the topic;
and a hub weight, measuring its power as a voter
for the highest-quality content. Pages may score
highly in one of these measures but not the other
— one shouldn’t expect a prominent newspaper
to simultaneously serve as a good guide to other
newspapers — but there is also nothing to prevent
a page from scoring well in both. One round of
voting can now be viewed as follows. We update
the authority weight of each page by summing the
hub weights of all pages that point to it (receiv-
ing links from highly-weighted voters makes you a
better authority); we then re-weight all the voters,
updating each page’s hub weight by summing the
authority weights of the pages it points to (linking
to high-quality content makes you a better hub).

How do eigenvectors come into this? Suppose
we define a matrix M with one row and one col-
umn for each page under consideration; the (i, j)
entry equals 1 if page i links to page j, and



7. DISTRIBUTED ALGORITHMS 7

it equals 0 otherwise. We encode the author-
ity weights in a vector a, where the coordinate
ai is the authority weight of page i. The hub
weights can be similarly written as a vector h.
Using the definition of matrix-vector multiplica-
tion, we can now check that the updating of hub
weights in terms of authority weights is simply
the act of setting h equal to Ma; correspond-
ingly, setting a equal to MT h updates the author-
ity weights. (Here MT denotes the transpose of
the matrix M .) Running these updates n times
each from starting vectors a0 and h0, we obtain
a = (MT (M(MT (M · · · (MT (Ma0)) · · · )))) =
(MT M)na0. This is the power iteration method
for computing the principal eigenvector of MT M ,
in which we repeatedly multiply some fixed start-
ing vector by larger and larger powers of MT M .
(As we do this, we also divide all coordinates of the
vector by a scaling factor to prevent them from
growing unboundedly.) Hence this eigenvector is
the stable set of authority weights toward which
our updates are converging. By completely sym-
metric reasoning, the hub weights are converging
toward the principal eigenvector of MMT .

A related link-based measure is PageRank, de-
fined by a different procedure that is also based
on repeated refinement. Instead of drawing a dis-
tinction between the voters and the voted-on, one
posits a single kind of quality measure that as-
signs a weight to each page. A current set of page
weights is then updated by having each page dis-
tribute its weight uniformly among the pages it
links to. In other words, receiving links from high-
quality pages raises one’s own quality. This too
can be written as multiplication by a matrix, ob-
tained from MT by dividing each row’s entries by
the number of outgoing links from the correspond-
ing page; repeated updates again converge to an
eigenvector. (There is a further wrinkle here: re-
peated updating in this case tends to cause all
weight to pool at “dead-end” pages that have no
outgoing links and hence nowhere to pass their
weight. Thus, to obtain the PageRank measure
used in applications, one adds a tiny quantity ε > 0
in each iteration to the weight of each page; this is
equivalent to using a slightly modified matrix.)

PageRank is one of the main ingredients in the
search engine Google; hubs and authorities form
the basis for Ask Jeeves’ search engine Teoma, as

well as a number of other Web search tools. In
practice, current search engines (including Google
and Teoma) use highly refined versions of these
basic measures, often combining features of each;
understanding how relevance and quality measures
are related to large-scale eigenvector computations
remains an active research topic.

7 Distributed Algorithms

Thus far we have been discussing algorithms that
run on a single computer. As a concluding topic,
we briefly touch on a broad area in computer sci-
ence concerned with computations that are dis-

tributed over multiple communicating computers.
Here the problem of efficiency is compounded by
concerns over maintaining coordination and con-
sistency among the communicating processes.

As a simple example illustrating these issues,
consider a network of automatic bank teller ma-
chines (ATMs). When you withdraw an amount
of money x at one of these ATMs, it must do
two things: (1) notify a central bank computer to
deduct x from your account, and (2) emit the cor-
rect amount of money in physical bills. Now, sup-
pose that in between steps (1) and (2), the ATM
crashes so that you don’t get your money; you’d
like it to be the case that the bank doesn’t subtract
x from your account anyway. Or suppose that the
ATM executes both of steps (1) and (2), but its
message to the bank is lost; the bank would like
for x to be eventually subtracted from your ac-
count anyway. The field of distributed computing
is concerned with designing algorithms that oper-
ate correctly in the presence of such difficulties.

As a distributed system runs, certain processes
may experience long delays, some of them may fail
in mid-computation, and some of the messages be-
tween them may be lost. This leads to significant
challenges in reasoning about distributed systems,
because this pattern of failures can cause each pro-
cess to have a slightly different view of the compu-
tation. It’s easily possible for there to be two runs
of the system, with different patterns of failure,
that are “indistinguishable” from the point of view
of some process P ; in other words, P will have the
same view of each, simply because the differences
in the runs didn’t affect any of the communica-
tions that it received. This can pose a problem



8

if P ’s final output is supposed to depend on its
having noticed that the two runs were different.

A major advance in the study of such systems
came about in the 1990s, when a connection was
made to techniques from algebraic topology. Con-
sider for simplicity a system with 3 processes,
though everything we say generalizes to any num-
ber of processes. We consider the set of all possible
runs of the system; each run defines a set of three
views, one held by each process. We now imagine
the views associated with a single run as the three
corners of a triangle, and we glue these triangles
together according to the following rule: for any
two runs that are indistinguishable to some pro-
cess P , we paste the two corresponding triangles
together at their corners associated with P . This
gives us a potentially very complicated geometric
object, constructed by applying all these pasting
operations to the triangles; we call this object the
complex associated with the algorithm. (If there
were more than three processes, we would have an
object in a higher number of dimensions.) While it
is far from obvious, researchers have been able to
show that the correctness of distributed algorithms
can be closely connected with the topological prop-
erties of the complexes that they define.

This is another powerful example of the way in
which mathematical ideas can appear unexpect-
edly in the study of algorithms, and it has led
to new insights into the limits of the distributed
model of computation. Combining the analysis of
algorithms and their complexes with classical re-
sults from algebraic topology has in some cases
resolved tricky open problems in this area, estab-
lishing that certain tasks are provably impossible
to solve in a distributed system.

8 For Further Reading

Algorithm design is a standard topic in the un-
dergraduate computer science curriculum, and it
is the subject of a number of textbooks includ-
ing Cormen et al. [4] and a forthcoming book by
the author and Éva Tardos [6]. The perspective of
early computer scientists on how to formalize effi-
ciency is discussed by Sipser [10]. The Traveling
Salesman and Minimum Spanning Tree problems
are fundamental to the field of combinatorial opti-
mization; the TSP is used as a lens through which

to survey this field in a book edited by Lawler et al.
[7]. Approximation algorithms and local search al-
gorithms for computationally intractable problems
are discussed in books edited by Hochbaum [5] and
by Aarts and Lenstra [1] respectively. Web search
and the role of link analysis is covered in a book by
Chakrabarti [2]; beyond Web applications, there
are a number of other interesting connections be-
tween eigenvectors and network structures, as de-
scribed by Chung [3]. Distributed algorithms are
covered in a book by Lynch [8], and the topolog-
ical approach to analyzing distributed algorithms
is reviewed by Rajsbaum [9].

Bibliography

1. E. Aarts and J.K. Lenstra (eds.). Local Search in
Combinatorial Optimization. Wiley, 1997.

2. S. Chakrabarti. Mining the Web. Morgan Kauf-
man, 2002.

3. F.R.K. Chung, Spectral Graph Theory. AMS
Press, 1997.

4. T. Cormen, C. Leiserson, R. Rivest, C. Stein. In-
troduction to Algorithms. MIT Press, 2001.

5. D.S. Hochbaum (ed.). Approximation Algorithms
for NP-hard Problems. PWS Publishing, 1996.

6. J. Kleinberg, É. Tardos. Algorithm Design. Ad-
dison Wesley, 2005.

7. E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy
Kan, D. B. Shmoys. The Traveling Salesman
Problem: A Guided Tour of Combinatorial Op-
timization. Wiley, 1985.

8. N. Lynch. Distributed Algorithms. Morgan Kauf-
mann, 1996.

9. S. Rajsbaum. Distributed Computing Column
15. ACM SIGACT News 35:3(2004).

10. M. Sipser. The history and status of the P versus
NP question. Proc. 24th ACM Symp. on Theory
of Computing, 1992.

Biography of contributor

Jon Kleinberg received his A.B. from Cornell in
1993 and his Ph.D. in computer science from MIT
in 1996. He subsequently spent a year as a Visit-
ing Scientist at the IBM Almaden Research Cen-
ter, and is now an Associate Professor in the De-
partment of Computer Science at Cornell Univer-
sity. He has received research fellowships from
the Packard and Sloan Foundations, and he re-
ceived the 2001 U.S. National Academy of Sciences
Award for Initiatives in Research for his work on
algorithms in network analysis and Web search.


