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Abstract

We develop stochastic variational inference, a scalalglerdhm for approximating posterior dis-
tributions. We develop this technique for a large class obpbilistic models and we demonstrate
it with two probabilistic topic models, latent Dirichletlatation and the hierarchical Dirichlet pro-
cess topic model. Using stochastic variational inferema analyze several large collections of
documents: 300K articles fromature 1.8M articles fromThe New York Timesand 3.8M arti-
cles fromWikipedia Stochastic inference can easily handle data sets of #ésasid outperforms
traditional variational inference, which can only handlenaaller subset. (We also show that the
Bayesian nonparametric topic model outperforms its patdo@unterpart.) Stochastic variational
inference lets us apply complex Bayesian models to masaizesgts.

Keywords: Bayesian inference, Variational inference, Stochastittndpation, topic models,
Bayesian nonparametrics

1. Introduction

Modern data analysis requires computation with massive data. As exangpiegler the following.
(1) We have an archive of the raw text of two million books, scanned smmddonline. We want
to discover the themes in the texts, organize the books by subject, and baldgator for users
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to explore our collection. (2) We have data from an online shopping wedisitining millions of
users’ purchase histories as well as descriptions of each item in thegcatédovant to recommend
items to users based on this information. (3) We are continuously collectingrdataan online
feed of photographs. We want to build a classifier from these data. €4)axke measured the gene
sequences of millions of people. We want to make hypotheses abouttiomseetween observed
genes and other traits.

These problems illustrate some of the challenges to modern data analysisat@are com-
plex and high-dimensional; we have assumptions to make—from science, mtuitiother data
analyses—that involve structures we believe exist in the data but thatrwetcdirectly observe;
and finally our data sets are large, possibly even arriving in a netingatream.

Statistical machine learning research has addressed some of thesegesatigleveloping the
field of probabilistic modeling, a field that provides an elegant approacémelobing new methods
for analyzing data (Pearl, 1988; Jordan, 1999; Bishop, 2006; KafidrFriedman, 2009; Murphy,
2012). In particularprobabilistic graphical modelgiive us a visual language for expressing as-
sumptions about data and its hidden structure. The correspopdstgrior inference algorithms
let us analyze data under those assumptions, inferring the hidden strtlwatibest explains our
observations.

In descriptive tasks, like problems #1 and #4 above, graphical modpls$iexplore the data—
the organization of books or the connections between genes and traitsthevitidden structure
probabilistically “filled in.” In predictive tasks, like problems #2 and #3, vee unodels to form
predictions about new observations. For example, we can make recomtioesdo users or pre-
dict the class labels of new images. With graphical models, we enjoy a pdwaite of probability
models to connect and combine; and we have general-purpose compaltstiiategies for connect-
ing models to data and estimating the quantities needed to use them.

The problem we face is scale. Inference algorithms of the 1990s add 28@d to be considered
scalable, but they cannot easily handle the amount of data that we @ebsirithe four examples
above. This is the problem we address here. We present an appooaminputing with graphical
models that is appropriate for massive data sets, data that might not fit in gnermeaen be stored
locally. Our method does not require clusters of computers or special@égvare, though it can
be further sped up with these amenities.

As an example of this approach to data analysis, consider topic models. ropiels are
probabilistic models of text used to uncover the hidden thematic structure itteatmm of docu-
ments (Blei, 2012). The main idea in a topic model is that there are a set of thpicdescribe
the collection and each document exhibits those topics with different degheea probabilistic
model, the topics and how they relate to the documents are hidden structuiteeamdin compu-
tational problem is to infer this hidden structure from an observed colleckagure 1 illustrates
the results of our algorithm on a probabilistic topic model. These are two sa&ipio, weighted
distributions over the vocabulary, found in 1.8M articles from M@~y York Timesnd 300,000
articles fromNature Topic models are motivated by applications that require analyzing massive
collections of documents like this, but traditional algorithms for topic model infesg@lo not easily
scale collections of this size.

Our algorithm builds on variational inference, a method that transformslearimference prob-
lems into high-dimensional optimization problems (Jordan et al., 1999; Wainwaigh Jordan,
2008). Traditionally, the optimization is solved with a coordinate ascent alguyriiterating be-
tween re-analyzing every data point in the data set and re-estimating itsrstideture. This



STOCHASTIC VARIATIONAL INFERENCE

The New York Times

music book art game show
band ife museum Knicks film,
songs novel show nets television
roc story exhibition points movie
album booKs artist team series
jazz man artists season says
pop stories paintings play life
song love painting games man
singer children century night character
night family works coach know
theater clinton stock restaurant budget
play ush market sauce tax
production campaign percent menu governor
show gore ~ fund food county
stage Olitical investors dishes mayor
street republican funds, street billion
broadway dole . companies dining taxes
director presidential . stocks dinner plan
musical senator investment chicken legislature
directed house trading served iscal
Nature
dna channel visual ray. glucose
sequence channels stimulus emission liver
gene receptor subjects pulsar enzyme
sequences voltage motion radio tisSue
rna currents target radiation phosphate
fragment membrane stimuli star rats
cdna binding trials sources . fraction,
mrna receptors response stars incorporation
genes neurons neurons neutron_star synthesis
fragments activation spatial pulsars mgm
war stars stars tube virus
_ social star observatory wire ~ hiv
industrial disk the_sun glass infection
policy . solar star apparatus disease
economic galaxy comet orce infected
planning formation eclipse _ heat aids
men galaxies solar instrument vaccine
service galactic magnitude electric viruses
management massive photographs you viral
labour objects plane iron host

Figure 1: Posterior topics from the hierarchical Dirichlet process topicetrattwo large data sets.
These posteriors were approximated using stochastic variational iogevath 1.8M ar-
ticles from theNew York Times¢top) and 350K articles frolature (bottom). (See Sec-
tion 3.3 for the modeling details behind the hierarchical Dirichlet processSaction 4
for details about the empirical study.) Each topic is a weighted distributiontbeero-
cabulary and each topic’s plot illustrates its most frequent words.
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is inefficient for large data sets, however, because it requires adsil fhrough the data at each
iteration.

In this paper we derive a more efficient algorithm by using stochastic optiaiz@grobbins and
Monro, 1951), a technigque that follows noisy estimates of the gradienedailifective. When used
in variational inference, we show that this gives an algorithm which iteiz#egeen subsampling
the data and adjusting the hidden structure based only on the subsampis.riiiih more efficient
than traditional variational inference. We call our metistachastic variational inference

We will derive stochastic variational inference for a large class ofyjcap models. We will
study its performance on two kinds of probabilistic topic models. In particulardemonstrate
stochastic variational inference on latent Dirichlet allocation (Blei et aQ32G simple topic model,
and the hierarchical Dirichlet process topic model (Teh et al., 2006apra flexible model where
the number of discovered topics grows with the data. (This latter applicatimomsrates how
to use stochastic variational inference in a variety of Bayesian nonparamsettings.) Stochastic
variational inference can efficiently analyze massive data sets with comubabilistic models.

Technical summary. We now turn to the technical context of our method. In probabilistic
modeling, we use hidden variables to encode hidden structure in obs#atadwve articulate the
relationship between the hidden and observed variables with a factoniabdhility distribution
(i.e., a graphical model); and we use inference algorithms to estimate theigodistribution, the
conditional distribution of the hidden structure given the observations.

Consider a graphical model of hidden and observed random varifdslegich we want to
compute the posterior. For many models of interest, this posterior is not texttdaimmpute and we
must appeal to approximate methods. The two most prominent strategies in statistimachine
learning are Markov chain Monte Carlo (MCMC) sampling and variationararice. In MCMC
sampling, we construct a Markov chain over the hidden variables whasergry distribution is
the posterior of interest (Metropolis et al., 1953; Hastings, 1970; Gent@Gaman, 1984; Gelfand
and Smith, 1990; Robert and Casella, 2004). We run the chain until itHogeefully) reached
equilibrium and collect samples to approximate the posterior. In variatioreakinfe, we define a
flexible family of distributions over the hidden variables, indexed by frearpaters (Jordan et al.,
1999; Wainwright and Jordan, 2008). We then find the setting of themeas (i.e., the member
of the family) that is closest to the posterior. Thus we solve the inferera@egm by solving an
optimization problem.

Neither MCMC nor variational inference scales easily to the kinds of settlagsribed in the
first paragraph. Researchers have proposed speed-ups adjmitaches, but these usually are
tailored to specific models or compromise the correctness of the algorithnoi{lay. bHere, we
develop a general variational method that scales.

As we mentioned above, the main idea in this work is to use stochastic optimizatibbifRo
and Monro, 1951; Spall, 2003). In stochastic optimization, we find the maxiwfuem objective
function by following noisy (but unbiased) estimates of its gradient. Underitfht conditions,
stochastic optimization algorithms provably converge to an optimum of the olgecdiochastic
optimization is particularly attractive when the objective (and therefore itdigmg is a sum of
many terms that can be computed independently. In that setting, we carycbeaypute noisy
gradients by subsampling only a few of these terms.

Variational inference is amenable to stochastic optimization because the veiailjective
decomposes into a sum of terms, one for each data point in the analysisanVéheaply obtain
noisy estimates of the gradient by subsampling the data and computing a scaléhgon the
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subsample. If we sample independently then the expectation of this noisiemrés equal to
the true gradient. With one more detail—the idea of a natural gradient (An®&8)3+-stochastic
variational inference has an attractive form:

1. Subsample one or more data points from the data.

2. Analyze the subsample using the current variational parameters.
3. Implement a closed-form update of the variational parameters.
4. Repeat.

While traditional algorithms require repeatedly analyzing the whole data $atebepdating the
variational parameters, this algorithm only requires that we analyze magdampled subsets. We
will show how to use this algorithm for a large class of graphical models.

Related work. Variational inference for probabilistic models was pioneered in the mid-<.990
In Michael Jordan’s lab, the seminal papers of Saul et al. (1996)t &= Jordan (1996) and
Jaakkola (1997) grew out of reading the statistical physics literatuter@®® and Anderson, 1987;
Parisi, 1988). In parallel, the mean-field methods explained in Neal andrH{h899) (originally
published in 1993) and Hinton and Van Camp (1993) led to variational algwsifbr mixtures of
experts (Waterhouse et al., 1996).

In subsequent years, researchers began to understand the pdteniariational inference
in more general settings and developed generic algorithms for conjugaaeextial-family mod-
els (Attias, 1999, 2000; Wiegerinck, 2000; Ghahramani and Beal,;2001 et al., 2003). These
innovations led to automated variational inference, allowing a practitionerite down a model
and immediately use variational inference to estimate its posterior (Bishop et@3). Z8or good
reviews of variational inference see Jordan et al. (1999) and Wightnand Jordan (2008).

In this paper, we develop scalable methods for generic Bayesian inéebgnsolving the vari-
ational inference problem with stochastic optimization (Robbins and Mo®#il)1 Our algorithm
builds on the earlier approach of Sato (2001), whose algorithm only apolithe limited set of
models that can be fit with the EM algorithm (Dempster et al., 1977). Specifiead\generalize
his approach to the much wider set of probabilistic models that are amenakldsed-¢orm coordi-
nate ascent inference. Further, in the sense that EM itself is a mean-figlddr{®leal and Hinton,
1999), our algorithm builds on the stochastic optimization approach to EMpé&apd Moulines,
2009). Finally, we note that stochastic optimization was also used with varibitibe@nce in Platt
et al. (2008) for fast approximate inference in a specific model of welice activity.

For approximate inference, the main alternative to variational methods isoMahain Monte
Carlo (MCMC) (Robert and Casella, 2004). Despite its popularity in Bagiesfarence, relatively
little work has focused on developing MCMC algorithms that can scale to vegg ldata sets.
One exception is sequential Monte Carlo, although these typically lack stmmgrgence guaran-
tees (Doucet et al., 2001). Another is the stochastic gradient Langetimodcef Welling and Teh
(2011), which enjoys asymptotic convergence guarantees and alsathkantage of stochastic op-
timization. Finally, in topic modeling, researchers have developed seygpebdaches to parallel
MCMC (Newman et al., 2009; Smola and Narayanamurthy, 2010; Ahmed 20aR).

The organization of this paper. In Section 2, we review variational inference for graphical
models and then derive stochastic variational inference. In Section &wesv probabilistic topic
models and Bayesian nonparametric models and then derive the stochastional inference
algorithms in these settings. In Section 4, we study stochastic variationanieon several large
text data sets.
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Figure 2: A graphical model with observatiorgy, local hidden variablez . and global hidden
variablesp. The distribution of each observation only depends on its corresponding
local variablez, and the global variablds (Though not pictured, each hidden variah]e
observatiorx,, and global variabl® may be a collection of multiple random variables.)

2. Stochastic Variational I nference

We derivestochastic variational inference stochastic optimization algorithm for mean-field vari-
ational inference. Our algorithm approximates the posterior distributionppblabilistic model
with hidden variables, and can handle massive data sets of observations.

We divide this section into four parts.

1. We define the class of models to which our algorithm applies. We diefira¢ and globall
hidden variables, and requirements on the conditional distributions within tdelmo

2. We reviewmean-field variational inferencean approximate inference strategy that seeks a
tractable distribution over the hidden variables which is close to the postésioibdtion.
We derive the traditional variational inference algorithm for our clasmodels, which is a
coordinate ascent algorithm.

3. We review thenatural gradientand derive the natural gradient of the variational objective
function. The natural gradient closely relates to coordinate asceativaal inference.

4. We review stochastic optimization, a technique that uses noisy estimatesradliang to
optimize an objective function, and apply it to variational inference. Spatiifiove use
stochastic optimization with noisy estimates of the natural gradient of the vaghtibjective.
These estimates arise from repeatedly subsampling the data set. We shéehesulting
algorithm, stochastic variational inferengeasily builds on traditional variational inference
algorithms but can handle much larger data sets.

2.1 Modelswith Local and Global Hidden Variables

Our class of models involves observations, global hidden variables Hiolcken variables, and fixed
parameters. ThN observations arg = x;.N; the vector of global hidden variablesfisthe N local
hidden variables are= z;.n, each of which is a collection af variablesz, = z, 1.3; the vector of
fixed parameters ia. (Note we can easily allow to partly govern any of the random variables,
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such as fixed parts of the conditional distribution of observations. Tp kegation simple, we
assume that they only govern the global hidden variables.)
The joint distribution factorizes into a global term and a product of locatser

N

p(x,z,Bla) = p(B|a) [] P(Xn, zn[B). 1)

n=1

Figure 2 illustrates the graphical model. Our goal is to approximate the posiestiobution of the
hidden variables given the observatiop§3, z| x).

The distinction between local and global hidden variables is determined lmptititional de-
pendencies. In particular, thegh observationx, and thenth local variablez, are conditionally
independent, given global variablgsof all other observations and local hidden variables,

p(XnaZn|an7Ln,Baa) = p(XnaZn ‘ Baa)'

The notatiorx_, andz_,, refers to the set of variables except tiib.

This kind of model frequently arises in Bayesian statistics. The globalblag@ are parameters
endowed with a priop(B) and each local variablg contains the hidden structure that governs the
nth observation. For example, consider a Bayesian mixture of Gaussibegldbal variables are
the mixture proportions and the means and variances of the mixture compdhentzxal variable
Zy is the hidden cluster label for thgh observationx,.

We have described the independence assumptions of the hidden varidfdemake further
assumptions about tikemplete conditionali; the model. A complete conditional is the conditional
distribution of a hidden variable given the other hidden variables and theradtions. We assume
that these distributions are in the exponential family,

p(B ‘ X, Z,(X) = h(B) eXp{rlg(Xa Z, G)Tt(B) - ag(r]g(x, Z, G))}, (2)
P(znj| %, 20—}, B) = h(znj) exp{Ne(Xn, 20—, B) "t(znj) — & (Ne(Xn, 20, B))}- ®3)

The scalar functionk(-) anda(-) are respectively thbase measurandlog-normalizer the vector
functionsn(-) andt(-) are respectively theatural parameterandsufficient statistics These are
conditional distributions, so the natural parameter is a function of the Vesidat are being con-
ditioned on. (The subscripts on the natural paramgtedicate complete conditionals for local or
global variables.) For the local variablgg, the complete conditional distribution is determined by
the global variable§ and the other local variables in théh context, i.e., thath data point, and
the local variableg, _j. This follows from the factorization in Equation 1.

These assumptions on the complete conditionals imply a conjugacy relationshigebethe
global variable3 and the local context&z,, x,), and this relationship implies a specific form of
the complete conditional fg8. Specifically, the distribution of the local context given the global
variables must be in an exponential family,

P(Xn, Zn|B) = h(Xn, Zn) eXP{B " t(Xn, 21) —a¢(B) }. (4)

1. We use overloaded notation for the functidrig andt(-) so that they depend on the names of their arguments; for
example(z,j) can be thought of as a shorthand for the more formal (but more @djtentatiorh;,(z,j). This is
analogous to the standard convention of overloading the probability fungtio.
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The prior distributionp() must also be in an exponential family,

P(B) = h(B)exp{a "t(B) —ag(a)}. (5)

The sufficient statistics até¢p) = (B, —a/(B)) and thus the hyperparameteihas two components
a = (ay,02). The first componerd is a vector of the same dimensionfiighe second component
0> is a scalar.

Equations 4 and 5 imply that the complete conditional for the global variableuation 2 is in
the same exponential family as the prior with natural parameter

Ng(X,za) = (01 + N1 t(Zn, %n), a2+ N). (6)

This form will be important when we derive stochastic variational infeeeincSection 2.4. See
Bernardo and Smith (1994) for a general discussion of conjugacthanekponential family.

This family of distributions—those with local and global variables, and wiieeecomplete
conditionals are in the exponential family—contains many useful statistical Imérden the ma-
chine learning and statistics literature. Examples include Bayesian mixture n{Gdelaramani
and Beal, 2000; Attias, 2000), latent Dirichlet allocation (Blei et al., 200i8)den Markov models
(and many variants) (Rabiner, 1989; Fine et al., 1998; Fox et al., 20%isley and Carin, 2009),
Kalman filters (and many variants) (Kalman, 1960; Fox et al., 2011a) rfatioodels (Ghahramani
and Jordan, 1997), hierarchical linear regression models (Gelmatik2D07), hierarchical pro-
bit classification models (McCullagh and Nelder, 1989; Girolami and Ro@6&(6), probabilistic
factor analysis/matrix factorization models (Spearman, 1904; Tipping arthBid999; Collins
et al., 2002; Wang, 2006; Salakhutdinov and Mnih, 2008; Paisley and,2809; Hoffman et al.,
2010b), certain Bayesian nonparametric mixture models (Antoniak, 1%eépEr and West, 1995;
Teh et al., 2006a), and othefs.

Analyzing data with one of these models amounts to computing the posterior disttibéithe
hidden variables given the observations,

P(x,z,B)
PEBIX) = 700 Blazd )
We then use this posterior to explore the hidden structure of our data or ® pnadtictions about
future data. For many models however, such as the examples listed ab@dentbminator in
Equation 7 is intractable to compute. Thus we resort to approximate postdemrine, a problem
that has been a focus of modern Bayesian statistics. We now turn to migavefiational inference,
the approximation inference technique which roots our strategy for deatderence.

2.2 Mean-Fidld Variational I nference

Variational inference casts the inference problem as an optimization. V@eluae a family of dis-
tributions over the hidden variables that is indexed by a set of free ptgesnand then optimize
those parameters to find the member of the family that is closest to the posteritarest. (Close-
ness is measured with Kullback-Leibler divergence.) We use the resulstripdtion, called the
variational distribution to approximate the posterior.

2. We note that our assumptions can be relaxed to the case where trenfiitianal p(B|x, ) is not tractable, but each
partial conditionalp(Bk|x,z,f_k) associated with the global varialfigis in a tractable exponential family. The topic
models of the next section do not require this complexity, so we chosefotke derivation a little simpler.
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In this section we review mean-field variational inference, the form détianal inference that
uses a family where each hidden variable is independent. We descrilaititéonal objective func-
tion, discuss the mean-field variational family, and derive the traditionatawate ascent algorithm
for fitting the variational parameters. This algorithm is a stepping stone toasticlvariational in-
ference.

The evidence lower bound. Variational inference minimizes the Kullback-Leibler (KL) di-
vergence from the variational distribution to the posterior distribution. Itimepes theevidence
lower bound(ELBO), a lower bound on the logarithm of the marginal probability of thecoles
tions logp(x). The ELBO is equal to the negative KL divergence up to an additivetanhs

We derive the ELBO by introducing a distribution over the hidden variaifel) and using
Jensen’s inequality. (Jensen’s inequality and the concavity of the logafithction imply that
logE[f(y)] > E[log f(y)] for any random variablg.) This gives the following bound on the log
marginal,

log p(X) Iog/pszdch

(z,B)
iz
_ p(X, Z B)
~toa(=:| 5557 )
> Eqllogp(x,z B)] — Eqllogq(z,B)] (8)

£(q).

The ELBO contains two terms. The first term is the expected log jByitog p(x, z, B)]. The second
term is the entropy of the variational distributionEq[logqg(z B)]. Both of these terms depend on
q(z,B), the variational distribution of the hidden variables.

We restrictg(z, B) to be in a family that is tractable, one for which the expectations in the ELBO
can be efficiently computed. We then try to find the member of the family that maxithieéd BO.
Finally, we use the optimized distribution as a proxy for the posterior.

Solving this maximization problem is equivalent to finding the member of the familyishat
closest in KL divergence to the posterior (Jordan et al., 1999; Waihivaigd Jordan, 2008),

KL (Q(Z, B) | ’ p(Z, B’X)) = Eq “OQQ(Z, B)] - Eq [|Og p(27 B ‘ X)]
Eq[logq(z,B)] — Eq[log p(x,z B)] +log p(x)
—£(q) +const

logp(x) is replaced by a constant because it does not depeqgd on
The mean-field variational family.The simplest variational family of distributions is theean-
field family In this family, each hidden variable is independent and governed by itpavameter,

|‘| A2 | @nj)- 9

The global parametes govern the global variables; the local parametgrgovern the local vari-
ables in thenth context. The ELBO is a function of these parameters.
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Equation 9 gives the factorization of the variational family, but does rextigpits form. We set
d(B|A) andq(znj|¢nj) to be in the same exponential family as the complete conditional distributions
P(B|x,2) and p(zaj|Xn, Zn—j,B), from Equations 2 and 3. The variational paramedessid @, are
the natural parameters to those families,

q(BIN) = h(B)exp{A"t(B) —ag(A)}, (10)
0(Znj | @nj) = N(znj) €XP{@njt (z0}) — @c(hj)}- (11)

These forms of the variational distributions lead to an easy coordinatetadgerithm. Further, the
optimal mean-field distribution, without regard to its particular functional fdras, factors in these
families (Bishop, 2006).

Note that assuming that these exponential families are the same as theipaodiag condi-
tionals means that-) andh(-) in Equation 10 are the same functiong@g andh(-) in Equation 2.
Likewise,t(-) andh(-) in Equation 11 are the same as in Equation 3. We will sometimes suppress
the explicit dependence apandA, substitutingd(z,j) for q(zaj|@nj) andq(B) for q(B|A).

The mean-field family has several computational advantages. For orenttbpy term decom-

poses,
N J

—Eq[logq(z B)] = —Ex [loga(B)] — Zl ZlE%i [loga(znj)],
n=1]=

whereE, [-] denotes an expectation with respecita,j| ¢,j) andE,[-] denotes an expectation
with respect tay(B|A). Its other computational advantages will emerge as we derive the gradients
of the variational objective and the coordinate ascent algorithm.

The gradient of the ELBO and coordinate ascent inferencé/e have defined the objective
function in Equation 8 and the variational family in Equations 9, 10 and 11.gQalris to optimize
the objective with respect to the variational parameters.

In traditional mean-field variational inference, we optimize Equation 8 withrdinate ascent.
We iteratively optimize each variational parameter, holding the other paranfeted. With the
assumptions that we have made about the model and variational distributidreatheconditional
is in an exponential family and that the corresponding variational distribigionthe same expo-
nential family—we can optimize each coordinate in closed form.

We first derive the coordinate update for the paramgttr the variational distribution of the
global variableg)(B|A). As a function ofA, we can rewrite the objective as

£(N) =Eqllogp(B|x,2)] — Eqlogq(B)] + const. (12)

The first two terms are expectations that invoBye¢he third term is constant with respecttoThe
constant absorbs quantities that depend only on the other hidden vari@btese quantities do not
depend org(B|A) because all variables are independent in the mean-field family.

Equation 12 reproduces the full ELBO in Equation 8. The second terngoétion 12 is the
entropy of the global variational distribution. The first term derivesnfrine expected log joint
likelihood, where we use the chain rule to separate terms that depend aarididgef3 from terms
that do not,

Eq[logp(x,z,B)] = Eq[log p(x, 2)] + Eq[log p(B| X, 2)]-
The constant absorli%[log p(x, z)], leaving the expected log conditiorigd[log p(B|x,z)].

10
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Finally, we substitute the form af(B|A) in Equation 10 to obtain the final expression for the
ELBO as a function oA,

L (A) =Eqlng(x,z.a)] ' Drag(A) — A" Drag(A) +ag(A) + const (13)

In the first and second terms on the right side, we used the exponentibl fdentity that the expec-
tation of the sufficient statistics is the gradient of the log normalizgit(B)] = Oyag(A). The con-
stant has further absorbed the expected log normalizer of the condistrddution—Eq[ag(ng(x,z,a))],
which does not depend aip).

Equation 13 simplifies the ELBO as a function of the global variational param&bederive
the coordinate ascent update, we take the gradient,

Onz = Ofag(M) (Eqlng(x. 2 0)] —A). (14)
We can set this gradient to zero by setting
A= EQ[”Q(Xv Z, G)] (15)

This sets the global variational parameter equal to the expected nattmedgiar of its complete
conditional distribution. Implementing this update, holding all other variationedpeters fixed,
optimizes the ELBO ovek. Notice that the mean-field assumption plays an important role. The
update is the expected conditional paramEigng(x,z, )], which is an expectation of a function of
the other random variables and observations. Thanks to the mean-fefd@son, this expectation
is only a function of the local variational parameters and does not degrexnd

We now turn to the local parameteps;. The gradient is nearly identical to the global case,

Ogny £ = Og,,2¢(@0) (Eq[Ne (X0, 20, B)] — @h))-

It equals zero when
®hj = Eq[Ne(Xn, 20—, B)]- (16)

Mirroring the global update, this expectation does not depenghpnHowever, while the global
update in Equation 15 depends on all the local variational parametersnetmdhere is a set of
local parameters for each of tie observations—the local update in Equation 16 only depends
on the global parameters and the other parameters associated with ttentext. The computa-
tional difference between local and global updates will be important inchklsle algorithm of
Section 2.4.

The updates in Equations 15 and 16 form the algorithm for coordinatatasmgational infer-
ence, iterating between updating each local parameter and the globalgpars. The full algorithm
is in Figure 3, which is guaranteed to find a local optimum of the ELBO. Compthi@gxpecta-
tions at each step is easy for directed graphical models with tractable cormpheligionals, and in
Section 3 we show that these updates are tractable for many topic modelg Figuhe “classical’
variational inference algorithm, used in many settings.

As an aside, these updates reveal a connection between mean-fietbnatimference and
Gibbs sampling (Gelfand and Smith, 1990). In Gibbs sampling, we iterativatplsafrom each
complete conditional. In variational inference, we take variational expecateof the natural param-
eters of the same distributions. The updates also show a connection to éotagigm-maximization
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1: Initialize A© randomly.

2: repeat

3:  for each local variational parametgy; do
4 Updategn), @) = Eqi[ne,j (%, Z0—j,B))-

5. end for

6:  Update the global variational parametex$) = E [Ng(z1n, X1n)]-
7. until the ELBO converges

Figure 3: Coordinate ascent mean-field variational inference.

(EM) algorithm (Dempster et al., 1977)—Equation 16 corresponds to thepk and Equation 15
corresponds to the M step (Neal and Hinton, 1999).

We mentioned that the local steps (Steps 3 and 4 in Figure 3) only requireutatiop with
the global parameters and théh local context. Thus, the data can be distributed across many
machines and the local variational updates can be implemented in paralleé fEsetts can then
be aggregated in Step 6 to find the new global variational parameters.

However, the local steps also reveal an inefficiency in the algorithm. THoeithm begins by
initializing the global parametepsrandomly—the initial value ok does not reflect any regularity
in the data. But before completing even one iteration, the algorithm must anahgzy data point
using these initial (random) values. This is wasteful, especially if we expattwe can learn
something about the global variational parameters from only a subset dath.

We solve this problem with stochastic optimization. This leads to stochastic vaabiider-
ence, an efficient algorithm that continually improves its estimate of the glaraheters as it
analyzes more observations. Though the derivation requires some ,detalgve now described
all of the computational components of the algorithm. (See Figure 4.) At eaelidle we sam-
ple a data point from the data set and compute its optimal local variationahptaes; we form
intermediate global parameterssing classical coordinate ascent updates where the sampled data
point is repeatedll times; finally, we set the new global parameters to a weighted average dfithe o
estimate and the intermediate parameters.

The algorithm is efficient because it need not analyze the whole datafse€bmproving the
global variational parameters, and the per-iteration steps only requimgutation about a single lo-
cal context. Furthermore, it only uses calculations from classical cwtslinference. Any existing
implementation of variational inference can be easily configured to this sealibrnative.

We now show how stochastic inference arises by applying stochastic ogtonizathe natural
gradients of the variational objective. We first discuss natural gresléemd their relationship to the
coordinate updates in mean-field variational inference.

2.3 The Natural Gradient of the ELBO

The natural gradient of a function accounts for the information geométitg @arameter space,
using a Riemannian metric to adjust the direction of the traditional gradient. Ar¢88) discusses
natural gradients for maximume-likelihood estimation, which give faster cgevere than standard
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gradients. In this section we describe Riemannian metrics for probability distrils and the
natural gradient of the ELBO.

Gradients and probability distributions.The classical gradient method for maximization tries
to find a maximum of a functiorfi(A) by taking steps of sizp in the direction of the gradient,

A = \U 4o, F(AY).

The gradient (when it exists) points in the direction of steepest asceat.isTthe gradienit, f (A)
points in the same direction as the solution to

argmaxf (A+d)\) subject tg|dA[|? < €2 (17)

for sufficiently smalle. Equation 17 implies that if we could only move a tiny distargcaway
from A then we should move in the direction of the gradient. Initially this seems redsoai
there is a complication. The gradient direction implicitly depends on the EucliisEance metric
associated with the space in whighlives. However, the Euclidean metric might not capture a
meaningful notion of distance between settinga.of

The problem with Euclidean distance is especially clear in our setting, wherarevtrying
to optimize an objective with respect to a parameterized probability distribati®m). When
optimizing over a probability distribution, the Euclidean distance between twanpaer vectors
A and)’ is often a poor measure of the dissimilarity of the distributiq(f$|A) andq(|\’). For
example, supposg(p) is a univariate normal andl is the mearu and scales. The distributions
AC(0,210000 and« (10,10000 are almost indistinguishable, and the Euclidean distance between
their parameter vectors is 10. In contrast, the distributign®,0.01) and A( (0.1,0.01) barely
overlap, but this is not reflected in the Euclidean distance between thaimptar vectors, which
is only 0.1. Thenatural gradientcorrects for this issue by redefining the basic definition of the
gradient (Amari, 1998).

Natural gradients and probability distributions. A natural measure of dissimilarity between
probability distributions is the symmetrized KL divergence

aBIA) a(B[A)

Symmetrized KL depends on the distributions themselves, rather than on hparthparameter-
ized; it is invariant to parameter transformations.

With distances defined using symmetrized KL, we find the direction of steapestit in the
same way as for gradient methods,

DY) = [log W)} [log a(B|A >} (18)

arg Tfucf (A4dA)  subject toDRM(A, A +dA) < €. (19)

As e — 0, the solution to this problem points in the same direction aralgral gradient While the
Euclidean gradient points in the direction of steepest ascent in Eucligaaa,ghe natural gradient
points in the direction of steepest ascent in the Riemannian space, i.e.,¢tkevdmae local distance
is defined by KL divergence rather than tienorm.

We manage the more complicated constraint in Equation 19 with a Riemannian @gtjic
(Do Carmo, 1992). This metric defines linear transformations ahder which the squared Eu-
clidean distance betweénand a nearby vectar+ dA is the KL betweerg(B|A) andq(B|A + dA),

dATG(A)dA = DR\, A +dA), (20)
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and note that the transformation can be a functioh. Amari (1998) showed that we can compute
the natural gradient by premultiplying the gradient by the inverse of the RieiaametricG(A\)~1,

Dhf(A) 2G0T,
whereG is the Fisher information matrix af(A) (Amari, 1982; Kullback and Leibler, 1951),

G(A) = Ex | (TDhloga(B|\)) (D loga(B|1)) 7] (21)

We can show that Equation 21 satisfies Equation 20 by approximatirgipéogd + dA) using the
first-order Taylor approximations abolt

logq(B[A +dA) = O(dA?) +logq(B|A) +dA " Dy logq(B[A),
A(BIA+d) = O(dA?) +q(BIA) + q(B[A)dA " Oy loga(BIA),
and plugging the result into Equation 18:

DRI A+ dA) = /B(Q(BP\ +dA) —q(B[A))(loga(B|A + dA) —loga(B[A))dB

= O(A\*) + [ alBIA) (@A Chloga(BA))*d
= O(dA®) +Eq[(dA "0y logq(B|A))?] = O(dA®) + dA "G(A)dA.

For small enougldA we can ignore th@(dA®) term.
Whenq(B|A) is in the exponential family (Equation 10) the metric is the second derivative of
the log normalizer,

G(A) = E, (D logp(B| 1)) (Chlog p(B|A)) |
—E) |(t(B) ~ EAlt(B))) (t(B) ~ EALt(B)))]

= O3ag(A).

This follows from the exponential family identity that the Hessian of the log nbezerafunctiona
with respect to the natural parameieis the covariance matrix of the sufficient statistic ved{@).
Natural gradients and mean field variational inference.We now return to variational in-
ference and compute the natural gradient of the ELBO with respect tcatigtional parameters.
Researchers have used the natural gradient in variational infef@nonenlinear state space mod-
els (Honkela et al., 2008) and Bayesian mixtures (Sato, 2001).
Consider the global variational parameder The gradient of the ELBO with respect dois
in Equation 14. Since@ is a natural parameter to an exponential family distribution, the Fisher
metric defined byy(B) is O2aq(A). Note that the Fisher metric is the first term in Equation 14. We
premultiply the gradient by the inverse Fisher information to find the natusaligmt. This reveals
that the natural gradient has the following simple form,

|j)\L = Em[ng(x’ z,a)] —A. (22)

3. Our work here—using the natural gradient in a stochastic optimizatiamiddgn—is closest to that of Sato (2001),
though we develop the algorithm via a different path and Sato does n@tssddodels for which the joint conditional
P(zn|B, %n) is not tractable.
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An analogous computation goes through for the local variational parasneter

Ogn £ = En g,_; [Ne(Xn, 20—, B)] — nj-

The natural gradients are closely related to the coordinate ascent sipfl&quation 15 or Equa-
tion 16. Consider a full set of variational parameteand@. We can compute the natural gradient
by computing the coordinate updates in parallel and subtracting the csetéing of the parameters.
The classical coordinate ascent algorithm can thus be interpreted agetgd natural gradient al-
gorithm (Sato, 2001). Updating a parameter by taking a natural gradigmto$ length one is
equivalent to performing a coordinate update.

We motivated natural gradients by mathematical reasoning around the ggofiibie parame-
ter space. More importantly, however, natural gradients are easienmpute than classical gradi-
ents. They are easier to compute because premultiplying by the Fisher ititormmeatrix—which
we must do to compute the classical gradient in Equation 14 but which disagpipem the natural
gradient in Equation 22—is prohibitively expensive for variational peeters with many compo-
nents. In the next section we will see that efficiently computing the natuadient lets us develop
scalable variational inference algorithms.

2.4 Stochastic Variational I nference

The coordinate ascent algorithm in Figure 3 is inefficient for large ddsabeezause we must opti-
mize the local variational parameters for each data point before re-estjnagiglobal variational
parameters. Stochastic variational inference uses stochastic optimizatidheagliobal variational
parameters. We repeatedly subsample the data to form noisy estimates dtitaégradient of the
ELBO, and we follow these estimates with a decreasing step-size.

We have reviewed mean-field variational inference in models with expohttidy condition-
als and showed that the natural gradient of the variational objectietifuns easy to compute. We
now discuss stochastic optimization, which uses a series of noisy estimateggoathent, and use
it with noisy natural gradients to derive stochastic variational inference.

Stochastic optimization. Stochastic optimization algorithms follow noisy estimates of the
gradient with a decreasing step size. Noisy estimates of a gradient anechétaper to compute
than the true gradient, and following such estimates can allow algorithms toeesicaltow local
optima of complex objective functions. In statistical estimation problems, includkmnigtional
inference of the global parameters, the gradient can be written as afsiemms (one for each
data point) and we can compute a fast noisy approximation by subsamplingtthedith certain
conditions on the step-size schedule, these algorithms provably coreesigeoptimum (Robbins
and Monro, 1951). Spall (2003) gives an overview of stochastic opditioiz; Bottou (2003) gives
an overview of its role in machine learning.

Consider an objective functiof(A) and a random functioB(A) that has expectation equal
to the gradient so thdty[B(A)] = 0\ f(A). The stochastic gradient algorithm, which is a type of
stochastic optimization, optimize$A) by iteratively following realizations oB(A). At iterationt,
the update foh is

AU = A 4 oy (M),

whereby is an independent draw from the noisy gradiBntf the sequence of step sizpssatisfies
Ypt=0; Ypf<oo (23)
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thenA®) will converge to the optimak* (if f is convex) or a local optimum of (if not convex)?
The same results apply if we premultiply the noisy gradidintsy a sequence of positive-definite
matricesG; ! (whose eigenvalues are bounded) (Bottou, 1998). The resultingthlyds

AL =\t pth—lb[()\(t—l)).

As our notation suggests, we will use the Fisher metricdgreplacing stochastic Euclidean gradi-
ents with stochastic natural gradients.

Stochastic variational inferenceWe use stochastic optimization with noisy natural gradients to
optimize the variational objective function. The resulting algorithm is in Figurkt£ach iteration
we have a current setting of the global variational parameters. Wetitheefallowing steps:

1. Sample a data point from the set; optimize its local variational parameters.

2. Form intermediate global variational parameters, as though we wermguriassical coordi-
nate ascent and the sampled data point were repb#tieaes to form the collection.

3. Update the global variational parameters to be a weighted averageiatfehreediate param-
eters and their current setting.

We show that this algorithm is stochastic natural gradient ascent on thal gknational parame-
ters.

Our goal is to find a setting of the global variational parameketisat maximizes the ELBO.
Writing £ as a function of the global and local variational parameters, Let theifumg(A) return
a local optimum of the local variational parameters so that

OeL (A, @A) =0.
Define thelocally maximized ELBQ (A) to be the ELBO when is held fixed and the local varia-
tional parameterg are set to a local optimum(A),

L) £ LN QA)).

We can compute the (natural) gradientzafA) by first finding the corresponding optimal local pa-
rametersp(A) and then computing the (natural) gradientzdi, @(A)), holding@(A) fixed. The rea-
son is that the gradient af(A) is the same as the gradient of the two-parameter ELBR @(A)),

De) = Dieh o))+ (Cre)) ' Do (A, @(A)) (24)
= D)\L(}\,(PO\)), (25)

whered,@(A) is the Jacobian of(A) and we use the fact that the gradientzaf\, @) with respect
to @is zero atp(A).

Stochastic variational inference optimizes the maximized ELB®) by subsampling the data
to form noisy estimates of the natural gradient. First, we decomp@sginto a global term and a
sum of local terms,

N
£(N) = Eqg[logp(B)] — Eqlogq(B)] + ZlmgKEq[log P(Xn,Zn |B)] — Eq[logd(zn)]). (26)

4. To find a local optimumf must be three-times differentiable and meet a few mild technical regeireniBottou,
1998). The variational objective satisfies these criteria.
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Now consider a variable that chooses an index of the data uniformlyagamah ~ Unif(1,...,N).
Define, (M) to be the following random function of the variational parameters,

£i(N) £ Eqllog p(B)] — Eqllogq(B)] +N mQaX(Eq[Iog p(xi,z |B) —Eqlloga(z)]).  (27)

The expectation of| is equal to the objective in Equation 26. Therefore, the natural gradient
with respect to each global variational parametés a noisy but unbiased estimate of the natural
gradient of the variational objective. This process—sampling a data puinthen computing the
natural gradient of.,—will provide cheaply computed noisy gradients for stochastic optimization.

We now compute the noisy gradient. Suppose we have sampléth thata point. Notice that
Equation 27 is equivalent to the full objective of Equation 26 wheretthdata point is observed
times. Thus the natural gradient of Equation 27—which is a noisy natuadlemnt of the ELBO—
can be found using Equation 22,

O = Eq [r]g (xi(N),zi(N),O()] —A,

where{xi(N),zi(N)} are a data set formed Wy replicates of observatiog, and hidden variables,.

We compute this expression in more detail. Recall the complete conditigalz,a) from
Equation 6. From this equation, we can compute the conditional naturahpteafor the global
parameter givel replicates ok,

ng(X".4",0) = e+ N- (€0, 20), ).
Using this in the natural gradient of Equation 22 gives a noisy naturdleymg
OhLi = o +N- (Eq[t(%,2)],1) — A,

where@ (M) gives the elements @f(A) associated with thizh local context. While the full natural
gradient would use the local variational parameters for the whole dataseipisy natural gradient
only considers the local parameters for one randomly sampled data po@se Thisy gradients are
cheaper to compute.

Finally, we use the noisy natural gradients in a Robbins-Monro algorithmpttmize the ELBO.
We sample a data point at each iteration. Define the intermediate global parametey be the
estimate of\ that we would obtain if the sampled data point was repliciteiines,

5\t La+ NEQ()\)[(t(Xiazi)’l)]'

This comprises the first two terms of the noisy natural gradient. At eachigienae use the noisy
gradient (with step sizp;) to update the global variational parameter. The update is

A = AEDyp <}\t,)\(t—l))
= (1-p)A"Y 4 .

This is a weighted average of the previous estimatearid the estimate of that we would obtain
if the sampled data point was replicatddimes.
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- Initialize A9 randomly.

. Set the step-size schedyeappropriately.

repeat
Sample a data point uniformly from the data set.
Compute its local variational parameter,

akr wnR

o=Eycy[ngx",2")].
6: Compute intermediate global parameters as thogghreplicatedN times,
2 N) _(N
A =Eqglng(x",2")].
7:  Update the current estimate of the global variational parameters,
AU = (21— p)AD 4+ peA.

8: until forever

Figure 4: Stochastic variational inference.

Figure 4 presents the full algorithm. At each iteration, the algorithm hadiamess of the global
variational parametex(t-1), It samples a single data point from the data and cheaply computes the
intermediate global parametay, i.e., the next value ok if the data set containe replicates of
the sampled point. It then sets the new estimate of the global parameter to behtedv@igerage of
the previous estimate and the intermediate parameter.

We set the step-size at iteratibas follows,

pr=(t+1)7" (28)

This satisfies the conditions in Equation 23. Ttwgetting ratex € (0.5, 1] controls how quickly old
information is forgotten; thdelayt > 0 down-weights early iterations. In Section 4 we fix the delay
to be one and explore a variety of forgetting rates. Note that this is just apéonparameterize the
learning rate. As long as the step size conditions in Equation 23 are satisiédterative algorithm
converges to a local optimum of the ELBO.

2.5 Extensions

We now describe two extensions of the basic stochastic inference alganithigure 4: the use of
multiple samples (“minibatches”) to improve the algorithm’s stability, and empiricaéBayethods
for hyperparameter estimation.

Minibatches. So far, we have considered stochastic variational inference algorithrasew
only one observatior is sampled at a time. Many stochastic optimization algorithms benefit from
“minibatches,” i.e., several examples at a time (Bottou and Bousquet, 2083y ket al., 2009;
Mairal et al., 2010). In stochastic variational inference, we can samgi¢ @S examples at each
iterationx; 1.s (with or without replacement), compute the local variational parametex§ ) for
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each data point, compute the intermediate global paranﬁéos each data points, and finally
average th@g variables in the update

AL — (1—pa D 4 & Z)\s

The stochastic natural gradients associated with each poimave expected value equal to the
gradient. Therefore, the average of these stochastic natural gatdenthe same expectation and
the algorithm remains valid.

There are two reasons to use minibatches. The first reason is to amostizeraputational
expenses associated with updating the global parameters across maoeidestafor example, if
the expected sufficient statisticsare expensive to compute, using minibatches allows us to incur
that expense less frequently. The second reason is that it may help ¢highafgto find better local
optima. Stochastic variational inference is guaranteed to converge tolafmraum but taking
large steps on the basis of very few data points may lead to a poor one. Wil wee in Section 4,
using more of the data per update can help the algorithm.

Empirical Bayes estimation of hyperparameterf some cases we may want to both estimate
the posterior of the hidden random variabiesndz and obtain a point estimate of the values of the
hyperparameterg. One approach to fitting is to try to maximize the marginal likelihood of the
datap(x|a), which is also known as empirical Bayes (Maritz and Lwin, 1989) estimatimteSve
cannot comput@(x| a) exactly, an approximate approach is to maximize the fitted variational lower
bound. overa. In the non-stochastic setting,can be optimized by interleaving the coordinate
ascent updates in Figure 3 with an updateddhat increases the ELBO. This is called variational
expectation-maximization.

In the stochastic setting, we updatsimultaneously with\. We can take a step in the direction
of the gradient of the noisy ELB@; (Equation 27) with respect o, scaled by the step-sizg,

a® = a4 pOg e A, o),

Here A~V are the global parameters from the previous iteration @ude the optimized local
parameters for the currently sampled data point. We can also replace tt@rdtBuclidean gradient
with a natural gradient or Newton step.

3. Stochastic Variational Inferencein Topic M odels

We derived stochastic variational inference, a scalable inferencethlgahat can be applied to
a large class of hierarchical Bayesian models. In this section we showtdhose the general
algorithm of Section 2 to derive stochastic variational inference for twbalilistic topic models:
latent Dirichlet allocation (LDA) (Blei et al., 2003) and its Bayesian nhonpeataic counterpart, the
hierarchical Dirichlet process (HDP) topic model (Teh et al., 2006a).

Topic models are probabilistic models of document collections that use lateaibles to en-
code recurring patterns of word use (Blei, 2012). Topic modeling algosthre inference algo-
rithms; they uncover a set of patterns that pervade a collection andsegpreach document ac-
cording to how it exhibits them. These patterns tend to be thematically cohereict) i8 why
the models are called “topic models.” Topic models are used for both degeriptiks, such as to
build thematic navigators of large collections of documents, and for pregli@gks, such as to aid
document classification. Topic models have been extended and appliedyirdoraains.
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Topic models assume that the words of each document arise from a mixtoreltdfomials.
Across a collection, the documents share the same mixture components {(@pits)d Each doc-
ument, however, is associated with its own mixture proportions (c&digid proportion. In this
way, topic models represent documents heterogeneously—the docuimanetshe same set of top-
ics, but each exhibits them to a different degree. For example, a dotaimeut sports and health
will be associated with the sports and health topics; a document about apdrisisiness will be
associated with the sports and business topics. They both share tha@piortbut each combines
sports with a different topic. More generally, this is callatked membershifErosheva, 2003).

The central computational problem in topic modeling is posterior infereniv&en@ collection
of documents, what are the topics that it exhibits and how does each dotaridbit them? In
practical applications of topic models, scale is important—these models promiseapervised
approach to organizing large collections of text (and, with simple adaptatioages, sound, and
other data). Thus they are a good testbed for stochastic variationainnger

More broadly, this section illustrates how to use the results from Section 2 étogesigorithms
for specific models. We will derive the algorithms in several steps: (1)peeify the model assump-
tions; (2) we derive the complete conditional distributions of the latent V@sak3) we form the
mean-field variational family; (4) we derive the corresponding stochagBcence algorithm. In
Section 4, we will report our empirical study of stochastic variational arfee with these models.

3.1 Notation
We follow the notation of Blei et al. (2003).

e Observations are/ords organized into documents. Thih word in thedth document isvgp.
Each word is an element in a fixed vocabularyaerms.

e A topic [} is a distribution over the vocabulary. Each topic is a point orMhel-simplex, a
positive vector of lengtV that sums to one. We denote téh entry in thekth topic asBxw.
In LDA there areK topics; in the HDP topic model there are an infinite number of topics.

e Each document in the collection is associated with a vectdomt proportionsBy, which
is a distribution over topics. In LDAy is a point on theK — 1-simplex. In the HDP topic
model,By is a point on the infinite simplex. (We give details about this below in Section 3.3.)
We denote théth entry of the topic proportion vect@; asg.

e Each word in each document is assumed to have been drawn from a spigleTtbetopic
assignmentg, indexes the topic from whichyg, is drawn.

The only observed variables are the words of the documents. The tagiasproportions, and
topic assignments are latent variables.

3.2 Latent Dirichlet Allocation

LDA is the simplest topic model. It assumes that each document exKikitpics with different
proportions. The generative process is

1. Draw topicg3 ~ Dirichlet(n,...,n) fork e {1,...,K}.
2. For each documente {1,...,D}:

20



STOCHASTIC VARIATIONAL INFERENCE
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Figure 5: (Top) The graphical model representation of Latent Diricillecation. Note that in practice each documdnnay not have
the same number of word$. (Bottom) In LDA: hidden variables, complete conditionals, variational mpatars, and expected
sufficient statistics.
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(a) Draw topic proportion8 ~ Dirichlet(a,...,q).
(b) For each worave {1,...,N}:

i. Draw topic assignmergy, ~ Multinomial(8y).
ii. Draw wordwgn ~ Multinomial(B,,).

Figure 5 illustrates LDA as a graphical model.

In LDA, each document exhibits the same shared topics but with differepoptions. LDA
assumes Dirichlet priors fddx and8y. Dirichlet distributions over th®-simplex takeD + 1 pa-
rameters, but for simplicity we assume exchangeable Dirichlet priors; thaeigequire that all of
these parameters are set to the same value. (The prigy bas parameter; the prior on8y has
parameten.). We note that Blei et al. (2003) and Wallach et al. (2009) found imgt@repirical
performance with non-exchangeable priors.

LDA models an observed collection of documewnts- w;-p, where eachvy is a collection of
wordswg 1.n. Analyzing the documents amounts to posterior infereng® 0, z| w). Conditioned
on the documents, the posterior distribution captures the topics that dethaibe3 = B1«), the
degree to which each document exhibits those tofies§;.p), and which topics each word was as-
signed to ¢= z1.p,1:n). We can use the posterior to explore large collections of documents. Higure
illustrates posterior topics found with stochastic variational inference.

The posterior is intractable to compute (Blei et al., 2003). Approximating tetegor in LDA
is a central computational problem for topic modeling. Researchers lesetogped many methods,
including Markov chain Monte Carlo methods (Griffiths and Steyvers, R0€«pectation propa-
gation (Minka and Lafferty, 2002), and variational inference (Blealet2003; Teh et al., 2006b;
Asuncion et al., 2009). Here we use the results of Section 2 to develdastarinference for LDA.
This scales the original variational algorithm for LDA to massive collectiordostiments.

Figure 7 illustrates the performance of 100-topic LDA on three large collestidature con-
tains 350K documentdjew York Timegontains 1.8M documents, amiikipediacontains 3.8M
documents. (Section 4 describes the complete study, including the detailspefrfbenance mea-
sure and corpora.) We compare two inference algorithms for LDA: sstichiaference on the full
collection and batch inference on a subset of 100,000 documents. (Ttnéssize of collection that
batch inference can handle.) We see that stochastic variational indecengerges faster and to a
better model. It is both more efficient and lets us handle the full data set.

Indicator vectors and Dirichlet distributions. Before deriving the algorithm, we discuss two
mathematical details. These will be useful both here and in the next section.

First, we represent categorical variables like the topic assignmgyasid observed wordsy,
with indicator vectors An indicator vector is a binary vector with a single one. For example, the
topic assignmerty, can take on one df values (one for each topic). Thus, it is represented as a
K-vector with a one in the component corresponding to the value of the l&iriﬁdén = 1thenthe
nth word in documentl is assigned to thkth topic. Likewisew, = 1 implies that theath word in
document is v. In a slight abuse of notation, we will sometimes ugg andzy, as indices—for
example, ifZ5, = 1, thenp,,, refers to thekth topic B.

Second, we review the Dirichlet distribution. As we described aboledanmensional Dirichlet
is a distribution on th& — 1-simplex, i.e., positive vectors ovBrelements that sum to one. Itis

5. The algorithm we present was originally developed in Hoffman et@L@a), which is a special case of the stochastic
variational inference algorithm we developed in Section 2.

22



STOCHASTIC VARIATIONAL INFERENCE

parameterized by a positive-vectory,

r(ZiKzlyi) K -1
2= mgn-l
Mar (v) il:l

whererl (-) is the Gamma function, which is a real-valued generalization of the factonatiéun.
The expectation of the Dirichlet is its normalized parameter,

Dirichlet(8;y) =

Yk
EB« |y = :
PIERY
The expectation of its log us&(-), which is the first derivative of the log Gamma function,
Ellog8k|y] = W(yk) —W (31v)- (29)

This can be derived by putting the Dirichlet in exponential family form, notitivag logp is the vec-
tor of sufficient statistics, and computing its expectation by taking the graoli#ime log-normalizer
with respect to the natural parameter vegtor

Complete conditionals and variational distributiondie specify the global and local variables
of LDA to place it in the stochastic variational inference setting of Sectiom2opic modeling,
the local context is a documedt The local observations are its observed wokgdsn. The local
hidden variables are the topic proportiddsand the topic assignmeritg .. The global hidden
variables are the topid®i « .

Recall from Section 2 that the complete conditional is the conditional distribatian vari-
able given all of the other variables, hidden and observed. In meansfgational inference, the
variational distributions of each variable are in the same family as the compledéiooal.

We begin with the topic assignment,. The complete conditional of the topic assignment is a
multinomial,

P(zdn = K| B4, B1:x; Wan) 0 exp{logBgk+ 109 Bk wy, }- (30)

Thus its variational distribution is a multinomia{zgn) = Multinomial(qun), where the variational
parameteiy, is a point on theK — 1-simplex. Per the mean-field approximation, each observed
word is endowed with a different variational distribution for its topic assigmadlowing different
words to be associated with different topics.

The complete conditional of the topic proportions is a Dirichlet,

p(Bq | z4) = Dirichlet (o + $N_; Zgn) - (31)

Sincezyy is an indicator vector, thith element of the parameter to this Dirichlet is the sum of the
hyperparametest and the number of words assigned to tdpio documend. Note that, although
we have assumed an exchangeable Dirichlet prior, when we conditiptherconditionalp(6q4|Zq)

is a non-exchangeable Dirichlet.

With this conditional, the variational distribution of the topic proportions is alsbietq(6q) =
Dirichlet(yq), whereyy is aK-vector Dirichlet parameter. There is a different variational Dirichlet
parameter for each document, allowing different documents to be assbwittialifferent topics in
different proportions.

These are local hidden variables. The complete conditionals only depeoithier variables in
the local context (i.e., the document) and the global variables; they deepend on variables from
other documents.
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Finally, the complete conditional for the todsg is also a Dirichlet,

p(Bk|z,w) = Dirichlet(n + 331 SN 1 2 Wan) - (32)

The vth element of the parameter to the Dirichlet conditional for tdpis the sum of the hyper-
parametein and the number of times that the termwas assigned to topik. This is a global
variable—its complete conditional depends on the words and topic assignohémtsentire collec-
tion.

The variational distribution for each topic id/adimensional Dirichlet,

q(Bk) = Dirichlet(A).

As we will see in the next section, the traditional variational inference éfgorfor LDA is ineffi-
cient with large collections of documents. The root of this inefficiency is fyaate for the topic
parameteik, which (from Equation 32) requires summing over variational parametersvery
word in the collection.

Batch variational inference.

With the complete conditionals in hand, we now derive the coordinate asagational infer-
ence algorithm, i.e., the batch inference algorithm of Figure 3. We form @amidinate update by
taking the expectation of the natural parameter of the complete conditional.isTihis stepping
stone to stochastic variational inference.

The variational parameters are the global per-topic Dirichlet paramtersocal per-document
Dirichlet parametergy.p, and local per-word multinomial parametegsp 1.n. Coordinate ascent
variational inference iterates between updating all of the local variatgaraimeters (Equation 16)
and updating the global variational parameters (Equation 15).

We update each documed local variational in a local coordinate ascent routine, iterating
between updating each word’s topic assignment and the per-documienpitoportions,

&n O exp{W(yak) + Y Mkwg) — ¥ (Svh)} forne {1,...,N}, (33)
Ya = G+Zﬁ':1<9dn~ (34)

These updates derive from taking the expectations of the natural paramnéthe complete con-
ditionals in Equation 30 and Equation 31. (We then map back to the usual pgeremaon of
the multinomial.) For the update on the topic assignment, we have used the Diriqidetagions
in Equation 29. For the update on the topic proportions, we have used ¢hexpectation of an
indicator is its probabilityEq[Z,] = @,

After finding variational parameters for each document, we update tieigaal Dirichlet for
each topic,

Ae=N+ g1 3 n1 @ Wan. (35)

This update depends on the variational parameiémsm every document.

Batch inference is inefficient for large collections of documents. Befipaating the topics
A1k, we compute the local variational parameters for every document. Thigtisybarly wasteful
in the beginning of the algorithm when, before completing the first iteratiormust analyze every
document with randomly initialized topics.

Stochastic variational inference
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1: Initialize A© randomly.

2. Set the step-size schedyeappropriately.

3: repeat

Sample a documeniy uniformly from the data set.
5. Initialize ygxk =1, fork € {1,...,K}.
6: repeat

7: Forne {1,...,N} set

A

¢ 0 exp{E[logbak] + E[logBiw, )}, k € {1,...,K}.
8: Setyg = 0+ Y n @un.

9: until local parametergy, andyy converge.
10: Forke{1,...,K} setintermediate topics

A N
A=n+D% @ Wan.
n=1

11: SetA® = (1— p)At-D 4 pA.
12: until forever

Figure 6: Stochastic variational inference for LDA. The relevant etqisons for each update are
found in Figure 5.
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Stochastic variational inference provides a scalable method for appreqrosterior inference
in LDA. The global variational parameters are the topic Dirichlet paramatethe local variational
parameters are the per-document topic proportion Dirichlet paramgtearsd the per-word topic
assignment multinomial parametegs,.

We follow the general algorithm of Figure 4. L&) be the topics at iteratidn At each iteration
we sample a documendtfrom the collection. In the local phase, we compute optimal variational
parameters by iterating between updating the per-document paramefEcgiation 34) andy 1:n
(Equation 33). This is the same subroutine as in batch inference, thotglwaenly analyze one
randomly chosen document.

In the global phase we use these fitted local variational parameters taniemmediate topics,

5‘k =N+ DZ”:l(Pﬁann-

This comes from applying Equation 35 to a hypothetical corpus contalihieglicates of document
d. We then set the topics at the next iteration to be a weighted combination of tireéudliate topics
and current topics,

AT = (1 poAY + pekk.

Figure 6 gives the algorithm for stochastic variational inference for I°DA

3.3 Bayesian nonparametric topic modelswith the HDP

Stochastic inference for LDA lets us analyze large collections of documént® limitation of
LDA, however, is that the number of topics is fixed in advance. Typicaflgearchers find the
“best” number of topics with cross-validation (Blei et al., 2003). Howefa@rvery large data this
approach is not practical. We can address this issue with a Bayesiarrammbac topic model, a
model where the documents themselves determine the number of topics.

We derive stochastic variational inference for the Bayesian nonp#iamariant of LDA, the
hierarchical Dirichlet process (HDP) topic model. Like LDA, the HDP topicdelas a mixed-
membership model of text collections. However, the HDP assumes an “infiiteber of topics.
Given a collection of documents, the posterior distribution of the hiddentsteidetermines how
many topics are needed to describe them. Further, the HDP is flexible in theivi &uture data to
exhibit new and previously unseen topics.

More broadly, stochastic variational inference for the HDP topic model dstrates the pos-
sibilities of stochastic inference in the context of Bayesian nonparamettistissa Bayesian non-
parametrics gives us a collection of flexible models—mixture models, mixed-mehipenodels,
factor models, and models with more complex structure—which grow and éxpiéimdata (Hjort
et al., 2010). Flexible and expanding models are particularly important whalyzing large data
sets, where it is prohibitive to search for a specific latent structurdr @si@ number of topics or
a tree structure of components) with cross-validation. Here we demonistratéo use stochastic
inference in the context of a simple Bayesian nonparametric topic model. énwtirk, we built

6. This algorithm, as well as the algorithm for the HDP, specifies that we inditiie topics\x randomly. There are
many ways to initialize the topics. We use an exponential distribution,

Akv— N ~ Exponentia(D * 100/ (KV)).

This gives a setting of similar to the one we would get by applying Equation 35 after randomly assigvords to
topics in a corpus of sizB with 100 words per document.
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Figure 7: The per-word predictive log likelihood for a 100-topic LDA moadiekthree large corpora.
(Time is on the square root scale.) Stochastic variational inference onltltafa con-
verges faster and to a better place than batch variational inference ascably sized
subset. Section 4 gives the details gf our empirical study.
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on this algorithm to give scalable inference methods for Bayesian nanpaiia models of topic
correlation (Paisley et al., 2012b) and tree structures of topics (Patshy 2012c).

This section is organized as follows. We first give some backgroundeoDitfichlet process
and its definition via Sethuraman’s stick breaking construction, which is &distm on the infinite
simplex. We then show how to use this construction to form the HDP topic modéi@m to use
stochastic variational inference to approximate the postérior.

The stick-breaking construction of the Dirichlet procedBayesian nonparametric (BNP) meth-
ods use distributions of distributions, placing flexible priors on the shapkeofiata-generating
density function. BNP models draw a distribution from that prior and therpiedéently draw data
from that random distribution. Data analysis proceeds by evaluating #terjr distribution of the
(random) distribution from which the data were drawn. Because of thibligerior, that posterior
can potentially have mass on a wide variety of distribution shapes. For aveeofeBNP methods,
see the edited volume of Hjort et al. (2010) and the tutorial of GershmaBlan(2012).

The most common BNP prior is tHeirichlet process(DP). The Dirichlet process is parame-
terized by abase distribution @ (which may be either continuous or discrete) and a non-negative
scaling factora. These are used to form a distribution over discrete distributions, i.e. dosteir
butions that place their mass on a countably infinite set of atoms. The locafitims atoms are
independently drawn from the base distributi®m and the closeness of the probabilitiesGg is
determined by the scaling factar Whena is small, more mass is placed on fewer atoms, and
the draw will likely look very different fromGg; whena is large, the mass is spread around many
atoms, and the draw will more closely resemble the base distribution.

There are several representations of the Dirichlet process. Fampéxait is a normalized
gamma process (Ferguson, 1973), and its marginalization gives the Ené&s¢gurant process (Pit-
man, 2002). We will focus on its definition via Sethuraman’s stick breakimgtcaction (Sethura-
man, 1994). The stick-breaking construction explicitly defines the distribatidhe probabilities
that make up a random discrete distribution. It is the gateway to variatiormakimie in Bayesian
nonparametric models (Blei and Jordan, 2006).

LetG~ DP(a,Gp) be drawn from a Dirichlet process prior. Itis a discrete distribution withamas
on an infinite set of atoms. L@ be the atoms in this distribution amx be their corresponding
probabilities. We can writ& as

G= 0kbp, -
kZlkBk

The atoms are drawn independently fr@% The stick-breaking construction specifies the distribu-
tion of their probabilities.

The stick-breaking construction uses an infinite collection of beta-distdbratedom variables.
Recall that the beta is a distribution ¢f 1) and define the following collection,

vi ~Betgl,a) ie{1,23,...}.

These variables combine to form a point on the infinite simplex. Imagine a stiakibfength.
Break off the proportion of the stick given lwy, call it 01, and set it aside. From the remainder (of
length 1— g1) break off the proportion given by, call it 02, and set it aside. The remainder of

7. This algorithm first appeared in Wang et al. (2011). Here we placetlittinmore general context of Section 2 and
relate it to stochastic inference for LDA.
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the stick is now - 02 — 01 = (1—v1)(1—Vv2). Repeat this process for the infinite setvpf The
resulting stick lengths; will sum to one.

More formally, we define the functiog; to take the collection of realizeg variables and to
return the stick length of thieh component,

Gi(v) = Vi[5 (1 v)),

and note tha§;>; gi(v) = 1. We callv; theith breaking proportion
Combining these steps, we form the distributi®maccording to the following process,

B ~ Go i€{1,23,..1,
vi ~ Betgdl,a) i€{1,23...},
G = 3il16i(V)%g.

In the random distributiorG the ith atomf3; is an independent draw froi@g and it has proba-
bility given by theith stick lengtho;(v). Sethuraman (1994) showed that the distributiolsaé
DP(a, Gp).

The most important property @ is the “clustering” property. Even thoudh places mass on
a countably infinite set of atomhl, draws fromG will tend to exhibit only a small number of them.
(How many depends on the scataras we described above.) Formally, this is most easily seen
via other perspectives on the DP (Ferguson, 1973; Blackwell andQMeen, 1973; Pitman, 2002),
though it can be seen intuitively with the stick-breaking construction. Théiorus that asi gets
smaller more of the stick is absorbed in the first break locations becausectiiériy proportions
are drawn from Betd, a). Thus, those atoms associated with the first breaks of the stick will have
larger mass in the distributio@, and that in turn encourages draws from the distribution to realize
fewer individual atoms. In general, the first break locations tend to lgeddhan the later break
locations. This property is callezize biasedness

The HDP topic model. We now construct a Bayesian nonparametric topic model that has
an “infinite” number of topics. The hierarchical Dirichlet process topic etambuples a set of
document-level DPs via a single top-level DP (Teh et al., 2006a). TrediagibutionH of the
top-level DP is a symmetric Dirichlet over the vocabulary simplex—its atoms arestoy/e draw
once from this DRGg ~ DP(w,H). In the second level, we ué® as a base measure to a document-
level DP, Gy ~ DP(a,Gp). We draw the words of each documehfrom topics fromGy. The
consequence of this two-level construction is that all documents shasartiecollection of topics
but exhibit them with different proportions.

We construct the HDP topic model using a stick-breaking constructiorchtleeel—one at the
document level and one at the corpus Iév@he generative process of the HDP topic model is as
follows.

1. Draw an infinite number of topicgx ~ Dirichlet(n) for k € {1,2,3,...}.
2. Draw corpus breaking proportiong,~ Beta1,w) fork € {1,2,3,...}.

3. For each documeunit

8. See the original HDP paper of Teh et al. (2006a) for other conginscof the HDP—the random measure con-
struction, the construction by the Chinese restaurant franchise, asiteamative stick-breaking construction. This
construction was mentioned by Fox et al. (2008). We used it for the HFaimg et al. (2011).
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(a) Draw document-level topic indicesi ~ Multinomial(o(v)) fori € {1,2,3,...}.
(b) Draw document breaking proportiong; ~ Beta1,a) fori € {1,2,3,...}.
(c) For each worah:

i. Draw topic assignmergy, ~ Multinomial(o(1y)).
ii. Draw wordwn ~ Multinomial(Bc,,, ).

Figure 8 illustrates this process as a graphical model.

In this construction, topicBk are drawn as in LDA (Step 1). Corpus-level breaking proportions
v (Step 2) define a probability distribution on these topics, which indicates #ietive prevalence
in the corpus. At the document level, breaking proportimgnsreate a set of probabilities (Step 3b)
and topic indicegy, drawn fromo(v), attach each document-level stick length to a topic (Step 3a).
This creates a document-level distribution over topics, and words arelthem as for LDA (Step
3c).

The posterior distribution of the HDP topic model gives a mixed-membershipnujgasition
of a corpus where the number of topics is unknown in advance and udeduRlowever, it is not
possible to compute the posterior. Approximate posterior inference foriBbdiiRels in general is
an active field of research (Escobar and West, 1995; Neal, 2000amieJordan, 2006; Teh et al.,
2007).

The advantage of our construction over others is that it meets the condifi@etion 2. All
the complete conditionals are in exponential families in closed form, and it neqtéyates global
variables from local variables. The global variables are topics anisdevel breaking proportions;
the local variables are document-level topic indices and breaking groper Following the same
procedure as for LDA, we now derive stochastic variational infedocthe HDP topic model.

Complete conditionals and variational distributionaNVe form the complete conditional distri-
butions of all variables in the HDP topic model. We begin with the latent indicatiablas,

P(Zsn = 1/, Bric; Wan,Ca) 0 exp{logoi () + Tic_; i 109 Bewn } (36)

p(ci = 1V, Buk,Wa, 1) O exp{logow(V) + N1 21,100 By, }- (37)
Note the interaction between the two levels of latent indicators. In LDAttheomponent of the
topic proportions points to thiéh topic. Here we must account for the topic indgy which is a

random variable that points to one of the topics.
This interaction between indicators is also seen in the conditionals for the,topics

P(Bx/z c,w) = Dirichlet (N + 351 3721 ¢ N1 23 Wan) -

The innermost sum collects the sufficient statistics for words idthelocument that are allocated
to theith local component index. However, these statistics are only kept wheththepic index
C4i points to thekth global topic.

The full conditionals for the breaking proportions follow those of a steshdick-breaking
construction (Blei and Jordan, 2006),

p(ulc) = Beta(1+ 58,510k, @+ 581501 T o0k ),

P(Tifza) = Beta(L1+ 5N 12, 0+ 3N 1 301 %) -
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The complete conditionals for all the latent variables are all in the same familyea<tire-
sponding distributions in the generative process. Accordingly, we wiitheléhe variational distri-
butions to be in the same family. However, the main difference between BNHs@vttEparametric
models is that BNP models contain an infinite number of hidden variables. Thaset be com-
pletely represented in the variational distribution as this would require optimazimgfinite number
of variational parameters. We solve this problem by truncating the variatistabution (Blei and
Jordan, 2006). At the corpus level, we truncatéKaffitting posteriors toK breaking pointsK
topics, and allowing the topic pointer variables to take on onk galues. At the document level
we truncate af, fitting T breaking proportionsl topic pointers, and letting the topic assignment
variable take on one df values. Thus the variational family is,

qB.v.z ) = <|'|qu>\|< vklak><ﬂrlch.\id. Trd.!vd.)|'| (zdncpdn)>
1i n=1

We emphasize that this is not a finite model. With truncation levels set high enthegtari-
ational posterior will use as many topics as the posterior needs, but witleuaissarily use aK
topics to explain the observations. Kfis set too small then the truncated variational distribution
will use all of the topics, but this problem can be easily diagnosed andated.) Further, a partic-
ular advantage of this two-level stick-breaking distribution is that the dontimencationT can be
much smaller thai. Though there may be hundreds of topics in a large corpus, we expett e
document will only exhibit a small subset of them.

Stochastic variational inference for HDP topic modelrom the complete conditionals, batch
variational inference proceeds by updating each variational paraosgtey the expectation of its
conditional distribution’s natural parameter. In stochastic inferencesangle a data point, update
its local parameters as for batch inference, and then update the gloidles.

To update the global topic parameters, we again form intermediate topics witdathgled
document’s optimized local parameters,

Ae=n+ Dy Eqlchi] $he1 EqlZ;,]Wan.

We then update the global variational parameters by taking a step in the direttioe stochastic
natural gradient R
A — (12— p)A® 4+ pr.

This mirrors the update for LDA.

The other global variables in the HDP are the corpus IeveI breakingopionsvg, each of
which is associated with a set of beta parametgrs (ak ak ) for its variational distribution.
Using the same randomly selected document and optimized variational pasaetdiove, first
construct the two-dimensional vector

& = <1+ Dy Eqlch], w+Dy, Zﬁ‘(:kﬂEq[Céi]) -

Then, update the parameters
(t+1)

t A
a T =(1- pt)a1(<) + Pk
Note that we use the truncatioksand T. Figure 8 summarizes the complete conditionals, vari-
ational parameters, and relevant expectations for the full algorithm. d-Bgives the stochastic
variational inference algorithm for the HDP topic model.
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Figure 8: A graphical model for the HDP topic model, and a summary of itsti@ni inference algorithm.
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1: Initialize A©© randomly. Set(© = 1 andb© = c.

2. Set the step-size schedyeappropriately.

3: repeat

4:  Sample a documenity uniformly from the data set.
5. Forie{1,...,T}initialize

25 D exp{ N, ElogBw,,)}, k€ {1,...,K}.
6: Forne {1,...,N} initialize

G O exp{ 31 L EllogBkwe, } i € {1,..., T},

7:  repeat
8: Forie {1,...,T} set
1 :
V((ji) =1+ Zr'\llzlqjdn7
) :
Véi) =a+ YY) Oy
2§ O exp{E[logo(V)] + I\_1 @ EllogBuw,) } , k€ {L,...,K}.
o Forne {1,...,N} set

@y, 0 exp{E[logai (T4)] + Tic_1 L5 EN0gBkwy, )} i € {L,..., T},
10:  until local parameters converge.
11:  Forke {1,...,K} set intermediate topics
A= N+D 3L L ShL GlyWan,
&=1+D3 L,
be=w+D3 15184

12: Set

A = (1-p)ATY 4 prd,
a¥ = (1-p)a' Y +pd,
—p)b®Y 4 o

=

I
—

[y

13: until forever

Figure 9: Stochastic variational inference for the HDP topic model. Theuselevel truncation is
K; the document-level truncation ds Relevant expectations are found in Figure 8.

33



HOFFMAN, BLEI, WANG, AND PAISLEY

Stochastic inference versus batch inference for the HBigure 10 illustrates the performance
of the HDP topic model on the same three large collections as in Figure 7. As Bithdtochastic
variational inference for the HDP converges faster and to a better model.

4. Empirical Study

In this section we study the empirical performance and effectivenesedfastic variational infer-
ence for latent Dirichlet allocation (LDA) and the hierarchical Dirichleiqgess (HDP) topic model.
With these algorithms, we can apply and compare these models with very legions of docu-
ments. We also investigate how the forgetting rand mini-batch siz&influence the algorithms.
Finally, we compare stochastic variational inference to the traditional baticatienal inference
algorithm?

Data. We evaluated our algorithms on three collections of documents. For eactticol|eve
computed a vocabulary by removing stop words, rare words, and reqydnt words. The data are
as follows.

e Nature This collection contains 350,000 documents from the jouNwture (spanning the
years 1869-2008). After processing, it contains 58M observedssoom a vocabulary of
4,200 terms.

e New York TimesThis collection contains 1.8M documents from thew York Timegspan-
ning the years 1987-2007). After processing, this data contains 46%khaed words from
a vocabulary of 8,000 terms.

e Wikipedia This collections contains 3.8M documents from Wikipedia. After proces#ing,
contains 482M observed words from a vocabulary of 7,700 terms.

For each collection, we set aside a test set 0600 documents for evaluating model fitness; these
test sets were not given to the algorithms for training.

Evaluating model fitness. We evaluate how well a model fits the data with the predictive
distribution (Geisser, 1975). We are given a corpus and estimate its tdggcthen are given part
of a test document, which we use to estimate that document’s topic propor@onshining those
topic proportions with the topics, we form a predictive distribution over treabalary. Under this
predictive distribution, a better model will assign higher probability to the belkdrords.

In more detail, we divide each test document’s wordsito a set of observed wordg,,s and
held-out wordswy,,, keeping the sets of unique wordswgps andwy disjoint. We approximate
the posterior distribution of topid3 implied by the training data, and then use that approximate
posterior to estimate the predictive distributipfWnew|Wobs, 2 ) 0f @ new held-out woravpe, from
the test document. Finally, we evaluate the log probability of the wordsdninder this distribution.

This metric was used in Teh et al. (2007) and Asuncion et al. (2009). & pli&vious methods,
like held-out perplexity (Blei et al., 2003), evaluating the predictive distiilm avoids comparing
bounds or forming approximations of the evaluation metric. It rewards d gragictive distribution,
however it is computed.

9. We implemented all algorithms in Python using the NumPy and SciPy peskatpking the implementations as
similar as possible. Links to these implementations are available on the web at
http://ww. cs. princeton. edu/ ~bl ei /topi cnodel i ng. htni .
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Figure 10: The per-word predictive log likelihood for an HDP model oréHarge corpora. (Time
is on the square root scale.) As for LDA, stochastic variational inferenche full data
converges faster and to a better place than batch variational inferareesasonably
sized subset. Section 4 gives the ggtails of our empirical study.
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Operationally, we use the training data to compute variational Dirichlet paresriet¢he topics.
We then use these parameters with the observed test wgggio compute the variational distribu-
tion of the topic proportions. Taking the inner product of the expectedsawid the expected topic
proportions gives the predictive distribution.

To see this is a valid approximation, note the following fd€-#opic LDA model,

P(Whew| D, Wobs) = // (ZEzl ekBk,WneW) P(8|Wobs, B) p(B| 2 )d6dp

[ [ (5518B0u..) a@)aB)dodp
= Sl 1Ea[OJEq[Brwne;

whereq(B) depends on the training data and q(6) depends om() andwgps. The metric in-
dependently evaluates each held out word under this distribution. In tHe thB reasoning is
identical. The differences are that the topic proportions are computedeviavthlevel variational
stick-breaking distribution anll is the truncation level of the approximate posterior.

Setting the learning rate. Stochastic variational inference introduces several parameters in
setting the learning rate schedule (see Equation 28). The forgetting gt€.5,1] controls how
quickly old information is forgotten; the delay> 0 down-weights early iterations; and the mini-
batch sizeS is how many documents are subsampled and analyzed in each iteration. Althoug
stochastic variational inference algorithm converges to a stationaryfpoarty validk, T, andS, the
quality of this stationary point and the speed of convergence may depemalothese parameters
are set.

We sett = 1 and explored the following forgetting rates and minibatch st2es:

Q

e Forgetting rate € {0.5,0.6,0.7,0.8,0.9,1.0}
e Minibatch sizeS e {10,50, 100,500, 1000,

We periodically paused each run to compute predictive likelihoods from sheld¢a.

Results on LDA and HDP topic modeld/Ne studied LDA and the HDP. In LDA, we varied the
number of topicK to be 25, 50, 100, 200 and 300; we set the Dirichlet hyperparaneter$/K.
In the HDP, we set both concentration parameyensda equal to 1; we set the top-level truncation
K =300 and the second level truncatidr= 20. (HerelT <« K because we do not expect documents
to exhibit very many unique topics.) In both models, we set the topic Dirichleinpatem = 0.01.
Figure 1 shows example topics from the HDP {dew York TimeandNature).

Figure 11 gives the average predictive log likelihood for both models. apfert the value for
a forgetting ratex = 0.9 and a batch size of 500. Stochastic inference lets us perform a lzafge-s
comparison of these models. The HDP gives consistently better perfoemBac larger numbers
of topics, LDA overfits the data. As the modeling assumptions promise, the EYR wbust to
overfitting! That the HDP outperforms LDA regardless of how many topics LDA uses meay
due in part to the additional modeling flexibility given by the corpus breakioggrtionsy; these

10. We also explored various values of the detayut found that the algorithms were not sensitive. To make this
presentaton simpler, we fixed= 1 in our report of the empirical study.

11. Though not illustrated, we note that using the traditional measure difefd-out perplexity, doesot reveal this
overfitting (though the HDP still outperforms LDA with that metric as well). Welfthat the predictive distribution
is a better metric for model fitness.

36



STOCHASTIC VARIATIONAL INFERENCE

Nature | New York Times Wikipedia
LDA 25 -7.24 -7.73 -7.44
LDA 50 -7.23 -7.68 -7.43
LDA 100 | -7.26 -7.66 -7.41
LDA 200 | -7.50 -7.78 -7.64
LDA 300 | -7.86 -7.98 -7.74
HDP -6.97 -7.38 -7.07

Figure 11: Stochastic inference lets us compare performance onldevgeadata sets. We fixed

the forgetting rat& = 0.9 and the batch size to 500 documents. We find that LDA is sen-

sitive to the number of topics; the HDP gives consistently better predictiferpgnce.
Traditional variational inference (on subsets of each corpus) digerdorm as well as
stochastic inference.

variables give the HDP the ability to say that certain topics are a priori moiyg likeppear than
others, whereas the exchangeable Dirichlet prior used in LDA assumeslithopics are equally
common.

We now turn to the sensitivity of stochastic inference to its learning parametérst, we
consider the HDP (the algorithm presented in Figure 9). We fixed the hatctoss00 and explored
the forgetting raté? Figure 12 shows the results on all three corpora. All three fits werdtisens
to the forgetting rate; we see that a higher value (i.e., close to one) leadsviergence to a better
local optimum.

Fixing the forgetting rate to 0.9, we explored various mini-batch sizes. FiBirghows the
results on all three corpora. Batch sizes that are too small (e.g., ten datsyroagn affect perfor-
mance; larger batch sizes are preferred. That said, there was ipddference between batch
sizes of 500 and 1,000. TiNew York Timesorpus was most sensitive to batch size;\Wikipedia
corpus was least sensitive.

Figure 14 and Figure 15 illustrate LDA's sensitivity to the forgetting rate atdtbsize, respec-
tively. Again, we find that large learning rates and batch sizes perfaiin w

5. Discussion

We developed stochastic variational inference, a scalable variatioea¢inte algorithm that lets
us analyze massive data sets with complex probabilistic models. The main ideaésdmchastic
optimization to optimize the variational objective, following noisy estimates of thealajtadient
where the noise arises by repeatedly subsampling the data. We illustrateddioach with two
probabilistic topic models, latent Dirichlet allocation and the hierarchical Deighrocess topic
model. With stochastic variational inference, we can easily apply topic modeliogllections of
millions of documents. More importantly, this algorithm generalizes to many settings.

Since developing this algorithm, we have improved on stochastic inferenceninmaer of
ways. In Gopalan et al. (2012), we applied it to the mixed-membership stchdockmodel

12. We fit distributions using the entire grid of parameters describedealbdmwever, to simplify presenting results we
will hold one of the parameters fixed and vary the other.
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for uncovering overlapping communities in large social networks. Thigired sampling non-

uniformly from the data and adjusting the noisy gradient accordingly. In Mimnal. (2012),

we developed a variant of stochastic inference that combines MCMC dolottal updates with

stochastic optimization for the global updates. In topic modeling this allowsfioregit and sparse

updates. Finally, in Ranganath et al. (2013), we developed adaptivenigaates for stochastic
inference. These outperform preset learning-rate schedulesegnde less hand-tuning by the
user.

Stochastic variational inference opens the door to several promisiegrobsdirections.

We developed our algorithm with conjugate exponential family models. This ofas®dels
is expressive, but nonconjugate models—models where a richer prised at the expense of
mathematical convenience—have expanded the suite of probabilistic toals disposal. For ex-
ample, nonconjugate models can capture correlations between topicsri8leatierty, 2007) or
topics changing over time (Blei and Lafferty, 2006; Wang et al., 200&]),the general algorithm
presented here cannot be used in these settings. (In other work, yRsdisle (2012b) developed
a stochastic variational inference algorithm for a specific nonconjugayedtan nonparametric
model.) Recent research has developed general methods for njoigatenmodels (Knowles and
Minka, 2011; Gershman et al., 2012; Paisley et al., 2012a; Wang and2BE3). Can these be
scaled up with stochastic optimization?

We developed our algorithm with mean-field variational inference and alfisen coordinate
updates. Another promising direction is to use stochastic optimization to scadeemt mdvances
in variational inference, moving beyond closed form updates and fultpfezed approximate pos-
teriors. As one example, collapsed variational inference (Teh et alb2@007) marginalizes out
some of the hidden variables, trading simple closed-form updates for atimensional posterior.
As another example, structured variational distributions relax the meargfipldximation, letting
us better approximate complex posteriors such as those arising in time-sedels f@hahramani
and Jordan, 1997; Blei and Lafferty, 2006).

Finally, our algorithm lets us potentially connect innovations in stochastic optiioizi better
methods for approximate posterior inference. Wahabzada and Kergag)(and Gopalan et al.
(2012) sample from data non-uniformly to better focus on more informatte pbints. We might
also consider data whose distribution changes over time, such as wheanive®wnodel an infinite
stream of data but to “forget” data from the far past in a current estinfateeanodel. Or we can
study and try to improve our estimates of the gradient. Are there ways toeddwariance, but
maintain its unbiasedness?
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In Section 2, we assumed that we can calcufa@{x,z), the conditional distribution of the
global hidden variableB given the local hidden variablesand observed variables In this ap-
pendix, we show how to do stochastic variational inference under thkeweasumption that we
can break the global parameter vedbanto a set ofK subvectorfl;k such that each conditional
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distributionp(Bk|X, z, B_k) is in a tractable exponential family:

p(Bk|X7 Z, B*k) = h(Bk) eXp{ng(Xa Z, B*ka G)Tt(Bk) - ag(ng(x) Z, B*k’ G))}

We will assign eaclfsx an independent variational distribution so that

a(z.B) = (Mn,j A(zn,j)) Mk a(Bx)-

We choose eadl) k) to be in the same exponential family as the complete conditio(fialx, z, k),

q(Bk) = h(Br) exp{Ax t(Bk) —ag(Ak)}-

We overloadh(-), t(-), anda(-) so that, for exampley(Bx) = p(Bk|X, z, B_k) whenA =ng(X,z,B_k, a).
The natural parameteyy(x, z, B_k, 0) decomposes into two terms,

r]g(xv Z, B,k,G) = ng(Bfka G) + Z ng(xn, Zn, Bfka G).

The first depends only on the global paramefersand the hyperparametexsthe second is a sum
of N terms that depend b, o, and a single local contexk,, z,).

Proceeding as in Section 2, we will derive the natural gradient of theCElBplied by this
model and choice of variational distribution. Focusing on a partigidave can write the ELBO as

£ = Eq[log p(Bk[x,z B-k)] — Eq[loga(Bx)] + const
= (Eq[Ng(X.Z Bk, &)] — Ak) " Oz ag(Ak) + ag(Ak) + const

The gradient ofr with respect to\i is then
O£ = 03 3g(Ak) (Eq[Ng(X, Z Bk, @)] — Ak),

and the natural gradient af with respect to\y is

A~

OneL = Eq[Ng(%,2 Bk, a)] — Ak
= A+ EqNg(B-k, )] + Y Eq[Ng(Xn, 20, Bk, &)]-

Randomly sampling a local conteks;,z) yields a noisy (but unbiased) estimate of the natural
gradient,

OneZi = =Mk + Eq[Ng(B-k, )] + NEqg[Ng(%, 2, B, @)] = —Ak+ Ak

We can use this noisy natural gradient exactly as in Section 2. For edaletiwe sample a context
(%,z), optimize the local variational parametegisby repeatedly applying equation Equation 16,
and take a step of sizg = (t+1) ¥ in the direction of the noisy natural gradient:

A = (21— pA + ok (38)

Note that the update in Equation 38 depends onlyx6nt); we compute all elements af!) simul-

taneously, whereas in a batch coordinate ascent aIgoNf(leouId depend oh(ltj(fl.
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Figure 12: HDP inference: Holding the batch size fixed at 500, we vdhedorgetting ratex.
Slower forgetting rates are preferred.

46



STOCHASTIC VARIATIONAL INFERENCE

2 nature nyt wiki
% 704  pesEsE=ssc | ST49 0 ooIIT e A== | Batch Size
i APl _ i d

e /! -7.6- U 7257 f 10
=-7.24 ¥ /

o § /50

v / -78- | -750 |

> | [

5747 i , ! --100
L -8.0 -

6l | -7.754 i - - 500
a -82- | j 1000
(o)) I 1

3 [ T T [ T  —8.00 = [ 1 1

5 10 20 30 5 10 20 30 5 10 20 30
Hours
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Figure 15: 100-topic LDA inference: Holding the learning ratéxed at 0.9, we varied the batch
size. Bigger batch sizes are preferred.
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