GTKWave 3.3 Wave Analyzer User's Guide

GTKWave 3.3 Wave Analyzer User's Guide 1

GTKWave 3.3 Wave Analyzer User's Guide 2

User's Guide

GTKWave

GTKWave 3.3 Wave Analyzer User's Guide 3

Updated Nov 7, 2025.
This manual supports GTKWave 3.3.126 and higher versions.

Copyright (c) 1998-2026 BSI
[=]:z4 [=]
1
1

[=]

Portions of GTKWave are Copyright (c) 1999-2026 Udi Finkelstein.

Context support is Copyright (c) 2007-2026 Kermin Elliott Fleming.

Trace group support is Copyright (c) 2009-2026 Donald Baltus.

GHW and additional GUI support is Copyright (c) 2005-2026 Tristan Gingold.
Analog support is Copyright (c) 2005-2026 Thomas Sailer.

External DnD support is Copyright (¢) 2008-2026 Concept Engineering GmbH.
FastLZ is Copyright (c) 2005-2026 Ariya Hidyat.

LZ4 is Copyright (c) 2011-2026 Yann Collet.

GTKWave is free software. See http://www.gnu.org for more information on the
GNU GPL General Public License version 2. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

The information in this document is subject to change without notice.

GTKWave 3.3 Wave Analyzer User's Guide 4

http://gnu.org/

Contents

Using This Manual.........................'.............'.........................9
Printing CONVENTIONS.ciuiiiiiiii ettt e e e e e e e eae e 9

Compiling and Installing GTKWave........c.ccccoetiiviiniinncccnncennneas 11

Unix and Linux Operating SyStems.......cc.ciuiiiiiiiiiiiiiiie e 11
Microsoft Windows Operating SyStemS.......c.ccuviuiiiiiiiiiiiiiiiiceiee e aeaes 13
Apple Macintosh Operating SyStems.........cceuviiiiiiiiiiiiiiiieeceee e, 14
L 500w o0 X0 1 Uod 1 [0) o DR Ifo
GTRKWAVE OVEIVIEW....iuniiiiiiitiitiie et e et et e et et et et et et et en st ensaneneananenaanas 15
WHhY USE GTKWAVE?.......iiiiiiiiieiiei ettt et e e e e e e et e e e e ene e eaneans 16
WHhat IS GTKWAVE?. ... cuiniiiiiieie ettt e e e e e e eanens 18

GTKWave User INterfacCe....ccceeeeeeiieeeereseeecccoeccssssssccssscsssssssccssse 19

G N A A TPt 19
MaAIN WINAOW ettt e e e eenes 19
ToolbUtton INEETTACE.....eeieieieii e 23
Signal SUDWINAOW ... e 24
Wave SUDWINAOWuiiiiii e eens 26
Navigation and Status Panel............cooooiiiiiiiii e 27
LY Y R0 = 1 N 28

R0 N T 29

|24 5 o0} T - T PPN 30

Ergonomic EXEIas. ..ot 33
SCIOLL WIS ... 33
The Primary MarKer.......cou i e e e 33
INEETACTIVE VICD ..o et aeas 33

| 21 TP 35
| 2o L T 37
S AT C . e e 42
B 0 1 PR 44

GTKWave 3.3 Wave Analyzer User's Guide 5

VB W ettt ettt et e e et e et e et e e aa e eans 47
| =] o T PPN 50
QUICK Start...ccciiiiiiiiiiiiietiiieneteeeceenccccccesscccccesssccccsssscccccssssccce D1
ST Na0) o] (SR D I=TS] (o 1 U URPSPRNt 51
Launching GTEKWAVE.cuuiiuiiiiieei et e et e e e e e et e e et eaeeae e eeneanen 52
Displaying WavefOrmS.cuuiiiiiiiiiieie e e e e e e e e e e 54
SIgNal SEATCR.....ceiiiii e 54
Hierarchy SearCh........c.oiiiiiiiiii e e 55
TrEE SEATCH....ccuiiiiiiii e e 55
Signal SAve FilesS. ... 56
Pattern SEarCh........coov i 56
Alias Files and Attaching External Disassemblers...........c.ccooovviiiiiniiniinennenn. 57
Debugging the Source Code.........ccouuiiiiiiiiiiiiieei e 62
Appendix A: Command Line Options Reference....................63
[0 L2 1Y PP 63
1] WAV ol o PP P PP PTPPUPPRR 68
A7 o]0 12) PP RPRRPRRN 69
EVCAZVCA. ittt ettt ettt e e et et e et e e e et e e e e eaneeaaaen 70
EWIIIWAVE. ...ttt ettt et e e e eaens 71
A 11011 1= PR 72
AT o] o F PP 73
i H o) 40)0 £ T PPN 74
AT 016 1 -« PPN 74
VCOAZIXEZ oottt e e et e et et e e e e e e 76
7010 WAV A PP 77
A WA V4ol o F PP 78
VZEINUITIOT . e ettt ettt et et e e et et e e et e e e aeaas 79
SRIMIACAT. e et 80
1) 0011 0 <) PP 81
b€ 001 B AS] =Y 4 J PPN 82

Appendix B: .gtkwaverc Variable Reference..........c.c.ccce00eee... 83

Appendix C: VCD Recoding.....c.cccccveiiiniiinncinnccnncssccscssccocsscccees 97

VList ReCoding Strategy......cccoiiiiiiiiiiiiiiiiii e e e e 97
B0 0 R N o Lo oY I Yo PPN 98
Single-bit ENCOAING....c.uiuniiiiiiie e e e e e 98
MUulti-Dit ENCOAING...iuiiiiiiiiiiiiiie et e e 99
Reals and String ENCOding.........cooiiiiiiiiiiiiiieee et 100
Final Notes on VCD ReCOAING......c..ciuiiiiiiiiiiiiiie et e e 100

GTKWave 3.3 Wave Analyzer User's Guide 6

Appendix D: LXT File Format......cccccceiiiiiiiiiiiieiiieiieneccecnnccnns 103

| I 4 B = 1 00 2 o PR 103
LXT SeCtion POINEETS.....cuiiiiiiiiie e e 103
LXT Section Definitions.....cc.ciuiiiiiiii et e ae 106
The IXt WTIEE AP ..ottt e e e e ees 114
Appendix E: Tcl CommandsS......cccccceieiiieiiieiiiercinscescescossccscens 117
Appendix F: Implementation of FST......ccccciiiiiiiiiniiiiinniiinncens 137
| 1310 () P 147
THUSEration INAEX.....cuiiniiii e e et e e e e 147
Alphabetical INAEX......couiiiniiii e aae 147

GTKWave 3.3 Wave Analyzer User's Guide 7

GTKWave 3.3 Wave Analyzer User's Guide 8

Using This Manual

Printing Conventions

Text printed in the font courier reflects messages that will be seen on screen at
a command prompt or as program output.

Text printed in courier bold is to be entered by the user.

Text printed in smaller monospace is help available either as a manual page or as a
program help option.

Text printed in italics is a pathname in the file system or is the name of an
application program.

GTKWave 3.3 Wave Analyzer User's Guide 9

GTKWave 3.3 Wave Analyzer User's Guide 10

Compiling and Installing GTKWave

Unix and Linux Operating Systems

Compiling GTKWave on Unix or Linux operating systems should be a relatively
straightforward process as GTKWave was developed under both Linux and AIX.
External software packages required are GTK (http://www.gtk.org) with versions
1.3 or 2.x (3.x not yet supported), and gperf (for RTLBrowse) which can be
downloaded from the GNU website (http://www.gnu.org). The compression
libraries libz (zlib) and libbz2 (bzipZ2) are not required to be installed on a target
system as their source code is already included in the GTKWave tarball, however
the system ones will be used if located.

Compiling and Installing

Un-tar the source code into any temporary directory then change directory into
it. After doing this, invoke the configure script. Note that if you wish to change
the install point, use the double dash --prefix option to point to the absolute

pathname. For example, to install in /usr, type ./configure —--prefix=/usr.
1 :/tmp/gtkwave-3.1.3> ./configure

Use the --help flag to see which options are available. Typically, outside of
--prefix, no flags are needed.

2 :/tmp/gtkwave-3.1.3> make

Wait for the compile to finish. This will take some amount of time. Then log on
as the superuser.

3 :/tmp/gtkwave-3.1.3> su
Password:
[root@localhost gtkwave-3.1.3]# make install

GTKWave 3.3 Wave Analyzer User's Guide 11

http://www.gnu.org/
http://www.gtk.org/

Wait for the install to finish. It should proceed relatively quickly. When finished,
exit as superuser.

[root@localhost gtkwave-3.1.3]1# exit
exit

GTKWave is now installed on your Unix or Linux system. To use it, make sure
that the bin/ directory off the install point is in your path. For example, if the
install point is /usr/local, ensure that /usr/local/bin is in your path. How to do
this will vary from shell to shell.

GTKWave - des.vzt

File Edit Search Time Markers View Help

S B & e 6 |€a] <4 ® | From:[0sec |To:[704sec || 2 | Marker: 10 sec | Cursor: 6 sec
~ SST Signals
B top [~] | Time
B des H clk=
fp ct[l:64]=
Lp i[31:0] =
| | key[1:64] =
Cron ptlios -
+ round 3 "’ ct[1:64]=
- i[31:0]=
Signals = clk=
c0x[1:28] =
c1x[1:28]
c2x[1:28] 3
c3x[1:28]
c4x[1:28]
c5x[1:28]
c6x[1:28]
c7x[1:28]
c8x[1:28]
c9x[1:28] E
£10wi1.7101)
Filter: | |

Append | | Insert | | Replace

(< [[>]

=

Figure 1: GTKWave running under Linux.

GTKWave 3.3 Wave Analyzer User's Guide 12

Microsoft Windows Operating Systems
Cygwin

The best way to run GTKWave under Windows is to compile it to run under
Cygwin. This will provide the same functionality as compared to the Unix/Linux
version and better graphical performance than the native binary version. Follow
the directions for Unix compiles in the preceding section. Note that launching
RTLBrowse requires Cygserver to be enabled. Please see the Cygwin
documentation for information on how to enable Cygserver for your version of
Cygwin. (http://www.cygwin.com/cygwin-ug-net/using-cygserver.html)

MinGW versus VC++ for Native Binaries

It is recommended that Windows compiles and installs are done in the MinGW
environment in order to mimic the Unix shell environment as well as produce
binaries that are natively usable on Windows. Producing native binaries with
VisualC++ has not been attempted for some time so it is currently untested.

MinGW with GTK-1.2

If you are missing a working version of gtk-config, you will need a fake gtk-config
file in order to compile under GTK-1.2. It will look like this with the include and
linker search directories modified accordingly:

#!/bin/sh

if ["$1" == "--1libs" 1]

then

echo -L/home/bybell/libs -1gck -1gdk-1.3 -1gimp-1.2 -1lgimpi -lgimpui-1.2
-1glib-1.3 -1gmodule-1.3 -1gnu-intl -1lgobject-1.3 -1lgthr
ead-1.3 -1gtk-1.3 -liconv-1.3 -1ljpeg -llibgplugin a -1libgplugin b -1png
-lpthread32 -1tiff-lzw -l1tiff-nolzw -1tiff

fi

if ["$1" == "--cflags"]

then

echo " -mms-bitfields -I/home/bybell/src/glib -I/home/bybell/src/gtk+/gtk
-I/home/bybell/src/gtk+/gdk -I/home/bybell/src/gtk+ "

fi

Compiling as under Unix/Linux is the same.

MinGW with GTK-2.0

You do not need to do anything special except ensure that pkg-config is pointed
to by your PATH environment variable. Proceed as with GTK-1.2. Pre-made
binaries can be found at the http://www.dspia.com/gtkwave.html website.

GTKWave 3.3 Wave Analyzer User's Guide 13

http://www.dspia.com/gtkwave.html
http://www.cygwin.com/cygwin-ug-net/using-cygserver.html

Apple Macintosh Operating Systems
OSX / Macports

All functionality of the Linux/UNIX version is present in the OSX version when
GDK/GTK is compiled for X11. If GDK/GTK is compiled for Quartz (i.e.,
/opt/local/etc/macports/variants.conf has a line of the form +no x11 +quartz)
and the package gtk-osx-application is also installed, GTKWave will behave more
like a Mac application with native menus, an icon on the dock, etc. as shown
below.

Machine View Devices Help

_ @& TR File Edit Search Time Markers View Help D A 4 Wed1121PM Q
M O Services > | GTKWave - test.fst
e l Hide 4 3H }/‘\,:I ELU \:ZI E’v From:|0 sec To:|445542500 ns @ Marker: -=- | Cursor: 1 us ‘
< sst | Hide Others ~43H [Waves
—E—' ne 160 us 208 us 308 us 480 us 508 us 600 us
B Quit %Q ADCE
& omp TIRE ADCED
ADIPAR
WAV ADI[6:@]
ADOE
ADR[13:@] XX 00 X+ 0000
ADTODB
Type |sig naI5‘ “““ j AD[31:8] XXXXXXXX
. AZPWRCYC
wire ADCE BADR
wire ADCED] BAR[? . @]
wire ADIPAR BCLK |:
wire ADI[6:0] ; BDB[31:0] | [Erereres
wire ADOE BRADR
wire ADR[13:0] BSOUT[31:0] XHHXHXHHKN PORBDOOD
wire ADTODB C4BYTA[1:0@]
wire AD[31:0] CADR
wire AZPWRCYC CDRNB[5:@]
wire BADR —
_ CFGWRCYC
wire BAR[7:0] CHAT[8:8]
wire_BCLK = CHKPARCYC
Filter:| CLK
Append| Insert | Replace | | [+] ﬂ_l ﬂ

GTKWAVE | Hier Grouping On.
GTKWAVE | Autocoalesce On.

OB |/

-g"’"ﬁk‘xﬂ? m e T

ﬁ@ @nghtcm
Figure 2: Demonstrating application integration with Mac OSX / Quartz

Note that if running GTKWave on the command line out of a precompiled bundle
gtkwave.app, it is required that the Perl script
gtkwave.app/Contents/Resources/bin/gtkwave is invoked to start the program.
Please see the gtkwave(1) man page for more information.

GTKWave 3.3 Wave Analyzer User's Guide 14

Introduction

GTKWave Overview

GTKWave is an analysis tool used to perform debugging on Verilog or VHDL
simulation models. With the exception of interactive VCD viewing, it is not
intended to be run interactively with simulation, but instead relies on a post-
mortem approach through the use of dumpfiles. Various dumpfile formats are
supported:

VCD: Value Change Dump. This is an industry standard file format
generated by most Verilog simulators and is specified in IEEE-1364. This
is the slowest of the formats for the viewer to process and requires the
most memory, however the format is ubiquitous and almost all tools
support it, which is why native support remains. Note that recent versions
of the viewer default to dynamic VCD recoding in memory through some
interesting tricks with zlib compressed VLists. (See Appendix C: VCD
Recoding on page 97.) This greatly reduces the amount of memory
required to store a large, full (non-interactive) VCD trace in memory such
that in many cases, less memory is required than the actual size of the
trace itself. Nevertheless, using one of the database formats will almost
always be more efficient for larger traces, especially if they are to be
viewed repeatedly. (i.e., the speed hit for converting a trace to a database
format is offset by the repeated cost of recoding VCD every time the trace
is viewed.) The more physical memory that is available on a machine being
used to view VCD, the better.

LXT: InterLaced eXtensible Trace. This is an optimized format utilizing
interleaved back pointers and value changes. Processing LXT files is faster
than VCD. It was created specifically for use with GTKWave, however some
other simulators (notably, Icarus Verilog) support it natively.

LXT2: InterLaced eXtensible Trace Version 2. This is a block-based variant
of LXT that allows for greater compression and access speeds than can be
achieved with LXT. It allows random-access at the block level and also
optionally allows partial loading of blocks for even faster operation. Icarus
Verilog also supports LXT2 natively.

GTKWave 3.3 Wave Analyzer User's Guide 15

VZT: Verilog Zipped Trace. This is an outgrowth of LXT?2 as it is also block
based, however it employs a different heuristic for compression that allows
for file sizes much smaller than most other dumpfile formats including
commercial ones. VZT file write performance is the slowest of all the
formats, however reading them can be extremely fast on multiprocessor
machines as the file format has been designed such that the reader was
able to be parallelized.

GHW: GHDL Wave file. This is a nine state (“01XZHUWL-") file format
written by the VHDL simulator GHDL.

AET2: All Events Trace Version 2. This is a format used by various IBM
EDA tools. File size is very small and access is extremely fast. Support for
it is determined at compile time. If the AET2 reader API libraries are not
found, it is disabled. Users of IBM tool sets can set the environment
variable SIMARAMA BASE to point to the libaeZ2rw.a and/or libaeZ2rw.so
files in order to enable this feature.

IDX: VCD Recoder Index File. This format is written by GTKWave when
instructed to generate fastload files.

FST: Fast Signal Trace. This format is a block-based variant of IDX which
is designed for very fast sequential and random access.

VPD: VCD Plus Dump. This is generated by Synopsys VCS. In order to
read these files, the executable vpd2vcd must be in your $PATH during
configure and gtkwave must be invoked with the -o option.

WLF: Wave Log File. This is generated by ModelSim. In order to read
these files, the executable wif2vcd must be in your $PATH during configure
and gtkwave must be invoked with the -o option.

FSDB: Fast Signal Database. Reading these files generally requires that
the executables fsdb2vcd and fsdbdebug are in your $PATH during
configure and gtkwave must be invoked with the -o option. FSDB files can
also be read without conversion with a processing speed similar to FST if
the FsdbReader libraries nffr and nsys are found during configure, pointed
to by the environment variable FSDBREADER LIBS. Headers are pointed
to by FSDBREADER HDRS.

Converter helper applications are packaged with the viewer in order to convert
VCD files into LXT, LXT?2, VZT, or FST files. Conversion from LXT2, VZT, and FST
back into VCD is possible. Wholesale conversion from LXT is not currently
possible, however it is possible to save the traces visible in the main GTKWave
window as VCD so conversion to LXT is not strictly irreversible.

Why Use GTKWave?

GTKWave has been developed to perform debug tasks on large systems on a chip

GTKWave 3.3 Wave Analyzer User's Guide 16

and has been used in this capacity as an offline replacement for third-party
debug tools. It is 64-bit clean and is ready for the largest of designs given that it
is run on a workstation with a sufficient amount of physical memory. The file
formats LXT2 and VZT have been specifically designed to cope with large, real-
world designs, and AET2 (available to IBM EDA tool users only) and FST have
been designed to handle extremely large designs efficiently.

For Verilog, GTKWave allows users to debug simulation results at both the net
level by providing a bird's eye view of multiple signal values over varying periods
of time and also at the RTL level through annotation of signal values back into
the RTL for a given timestep. The RTL browser frees up users from needing to
be concerned with the actual location of where a given module resides in the
RTL as the view provided by the RTL browser defaults to the module level. This
provides quick access to modules in the RTL as navigation has been reduced
simply to moving up and down in a tree structure that represents the actual
design.

Source code annotation is currently not available for VHDL, however all of

GTKWave's other debug features are readily accessible. VHDL support is
planned for a future release.

GTKWave 3.3 Wave Analyzer User's Guide 17

What Is GTKWave?

GTKWave as a collection of binaries is comprised of two interlocking tools: the
gtkwave viewer application and rtlbrowse. In addition, a collection of helper
applications are used to facilitate such tasks as file conversions and simulation
data mining. They are intended to function together in a cohesive system
although their modular design allows each to function independently of the
others if need be.

gtkwave is the waveform analyzer and is the primary tool used for visualization.
It provides a method for viewing simulation results for both analog and digital
data, allows for various search operations and temporal manipulations, can save
partial results (i.e., “signals of interest”) extracted from a full simulation dump,
and finally can generate PostScript and FrameMaker output for hard copy.

rtlbrowse is used to view and navigate through RTL source code that has been
parsed and processed into a stems file by the helper application xml2stems. It
allows for viewing of RTL at both the file and module level and when invoked by
gtkwave, allows for source code annotation.

The helper applications perform various specialized tasks such as file conversion,

RTL parsing, and other data manipulation operations considered outside of the
scope of what a visualization tool needs to perform.

GTKWave 3.3 Wave Analyzer User's Guide 18

GTKWave User Interface

GTKWave

Main Window

The GTKWave visualization tool main window is comprised of a menu bar section,
a status window, several groups of buttons, a time status section, and signal and
wave value sections. New with GTKWave 3.0 is the inclusion of an embedded
Signal Search Tree (SST) expander to the left of the signal section. The viewer
typically appears as below when the embedded SST is disabled.

GTKWave - thpll.ghw [_ O] x|
File Edit Search Time Markers ¥iew Help

GHW loaded successfully. Zoom Page |/ Fetch |/ Disc | Shift

[286] facilities found.
Qe

[652851] regions found.

Marker Time

4: 4: 4: Fram:| 0 sec 12218 ns e

Q, @ . -
SisinEe o
1fucl= "|'|||. ..,1‘-..:".._"J“”Jh 'nj'] ML
H|| ||| |i]|]| |||||1|||1| i| i|| ||-1\|1||.|| e s
1fuc2= —
1fuci=
pll_diwvelk=
[z OlEza !

Figure 3: The GTKWave main window

GTKWave 3.3 Wave Analyzer User's Guide 19

To the extreme left in a frame marked “Signals” is the signal section. Signal
names can be left or right aligned (left aligned being useful for detection of
hierarchy differences) and the number of levels of hierarchy (as counting from
the rightmost side of a signal name) displayed can be set by the user.

To the right of the signal section is the wave section in a frame marked “Waves”.
The top line is used as a timescale and all other lines are used to render trace
value data with respect the timescale. The vertical blue lines in the trace value
data section are not normally present. In this case they are the result of keying
on the rising edge of the digital signal “pll divclk”. Analog traces of varying
heights can be seen as well. Analog traces can dynamically be made as tall or
short as desired in order to make the viewing of them easier, however the size is
limited to integer multiples of the height of one digital trace.

With GTK versions greater than or equal to 2.4, an embedded SST is available.
Drag and Drop of signals from the “Signals” pane inside the SST into the
“Signals” pane outside of the SST is a convenient way to import signals into the
viewer.

GTKWave - des.vcd =] B3
File Edit Search Time Markers View Help
LXTZ loaded successfully, 2l-Zoom Page | Fetch | Disc | Shift Marker Time
[3824] facilities found. T
Regions loaded on demand, Sl Q? 4] 4] 4] From:|0 sec 62 sec
s EP EP E"\v To: |704 sec Current Time
o GD‘ 46 sec

EASSTH Signals

[(7359E2163E4EDCSS ||

Signals | = k7x[1:48]1= | [T
Ik k8x[1:48]1= OO
I k9x[1:48]1= OO
! . k10x[1:48]= .| CCCCCIIIT]
k1x[1:48] I k11x[1:48]= :| (UGN
k2x[1:48] Y k12x[1:48]= ~ QIIIIIOITITT]
k3x[1:48] lexH: :g}:j 000000000000
kl4x[1: B4l 000000000000
it k15x[1:48]= OO
kSx[1:48] kl16x[1:48]= @ OO]
kbx[1:48] key[1:64]= | (UL |
K7x[1:48] 1ox[1:32]= (TN somes jeerowr 00000000
k8x[1:48] 11x[1:32]=) | (ICTTASESEES 0000000 ||| [T[T [TTTTTT T T frenaromal [111111 00000000
’ 12x[1:32]1= DED8DEBC ||| (27272443 | DODCDE3E FakIcscd ZFADDO4Z DEDEDEBC
albe) = kidxilia2 e 18c51280 ‘[av2awers | | AGOA1630 | praciend
Filter: | 14x[1:32]= A4053459 eEESEIFL | /4cBTAERE |

15x[1:32]= L BE45E257 |A1BAIDAS

Append| Insert | Replace | < [+]

Figure 4: The main window with an embedded SST

The main window size and position can be saved between sessions as well as the
current viewer state. (i.e., which signals are visible, any attributes set for those

GTKWave 3.3 Wave Analyzer User's Guide 20

signals such as alignment and inversion, where the markers are set, and what
pattern marking is active.)

Depending on the capabilities of the file format loaded into GTKWave, the SST
frame/window may also depict the type of hierarchy being shown. The figures
below are representative of FST.

~ 55T

- .= a_module

-8 b task

- 224 ¢_function

- d_begin

- e fork

- @ f_generate
-0 g _struct

~ &% h_union

- ok i_class

- _interface
—k_package
-[11_program

Figure 5: Verilog hierarchy type icons in SST frame

=~ 55T

- ..=a_architecture

- i b _procedure

- 0% ¢_function

-(2d _record

-G € process

-CAf block

- @ g_for_generate

- 38 h_if_generate

- i i_generate

Figure 6: VHDL (not GHDL) hierarchy type icons in SST frame

In addition, signal direction and type information may be displayed in the lower
portion of the SST frame/window as shown. To filter based on I/O port direction,
prefix the search regular expression with case-insensitive +I+ for input, +10+
for input/output, +O+ for output, +L+ for linkage (VHDL), and +B+ for buffer
(VHDL).

GTKWave 3.3 Wave Analyzer User's Guide 21

Dir Type | Signals

I wire SSE

I wire clk

| wire d[15:0]
reg dff g[15:0]

O wire g[15:0]

Filter: [l

|:Append:| | Insert | | Replace |

Figure 7: Verilog I/O and type information in SST frame

GTKWave 3.3 Wave Analyzer User's Guide 22

Toolbutton Interface

The use toolbutton interface rc variable controls how the user interface appears.

Recent versions of the viewer have this variable set to “on” which modifies the
viewer to use GTK themes and a more compact button layout as shown below.

GTEWave - . Jexamples/des vt -8

File Edit Search Time Markers View Help

E} t Qh @h Qg "7.'9 ﬂ ﬂ ; ¢ From:|0 sec To: 704 sec IE;IJ Marker: B+96 sec | Base: 448 sec
= 88T Cigrals Wy s
Ertop T ime
B des elk=
IL p cb[1:6d]=
ip ifi1:0]= 1 I
keysched e R N SR 000+ rrr+ 3 111+ 01+ 111+ - rep+ Teas D13+ 07a+ B84+ M+ D11- 007+ 422+ D7A+ 046+ 370+ 1rd- Ba+ DES+
m_ Ft [1:64] HO0+ FTT 188 TILITTILLG T2+ Ble WLE s DA HEn a4 S 75 TEZe TNDG ZESe WG4 SR D04
Ernurdz blx[1:6]= [D TEE T Ma Bl dw A0 38 (35
LU E] = b2x[1:6]= ET T ia TR)
hix[1l:6]= n: wd a9 B e w41 e
Sgriald hdx[1:6]= 98 37 im) 07 iz 53
hSx[1:6]= 1 2® O he TR 12
bax[1:6]= 21 , 43 TR 1.
bhTx[1:6]= L 1 = s am |E i
hﬂ}ﬁ[liﬁ]-‘ 1s na 14 5 [

il

clk

PRE BT 11

Aiter

Append Insert Replace

Figure 8: The main window using the toolbutton interface

For those who wish to use the old interface, the rc variable must be set to “off.”
In future versions of the viewer, it will be possible for the layout of the
Toolbutton bar to be specified by a user's configuration.

GTKWave 3.3 Wave Analyzer User's Guide 23

Signal Subwindow

The signal subwindow is nothing more than a list
of signals, optional comments, and optional blank
lines. The following is a sample view of the

Signals

Tine

signal subwindow showing a highlighted trace
£%% Nonclock Traces ®&% (“clk”) and a comment trace, “Non-clock Traces
Open Group { ***” In between the two is a blank trace
ct[1:64]= inserted by the user. Note that the h1ghllght1ng
i[31:0]= of a trace can be accomplished by clicking the
key[1:64]= left mouse button on an entry in the signal
pt[1:64]= subwindow. (Use ctrl-click to deselect.)
} Open Group
Col lapsed Group {} You will notice that the scrollbar along the
bottom of the subwindow in Figure 10 indicates
4] |] that there is a hidden section to the right. This

: : ; hidden area contains the values of the signals
Figure 9: Signal subwindow
with scrollbar and an “open” shown. The scrollbar can be manually moved to
collapsible trace show this area or the pane to the right of the
signal subwindow can be enlarged in order to
allow full viewing of the subwindow.

Expanding the size of the subwindow by
increasing the width of the pane is illustrated in
Figure 11. No area is hidden

Signals as reflected by the scrollbar
Time which is completely filled in
from left to right along its
length. In addition, the signal
*** Non-clock traces *** values which are present can
ct[1:64]=3CC2BAB82DB65228 be read. Any time the primary
i[31:0]1=0000000cC marker is nailed down, there

key[1:64]1=584023641ABAG176 will be an equals (“=") sign
pt[1:64]1=004BDGEF09176062 indicating that signal values
are present.

[¢] [+]

Figure 10: Signal subwindow with no hidden area from
left to right

GTKWave 3.3 Wave Analyzer User's Guide 24

As seen in both Figure 10 and

Signals
Figure 11, the signal names Tgme
are right justified and are clk =0

flush against the equals signs.
This is only a matter of
personal preference, and if

x&x Hon-clock traces *#*#

_ €, al ct[1:64] =5920D88D503BBC 1B
desired, as shown in Figure i[31:0] =00000004
12, the signals can be left key[1:64] =0123456789ABCDEF
justified against the left pt[1:64] =1111111111111111

margin of the signal

subwindow by pressing the

key combination of Shift-

Home. This is useful when

looking at signals if one is

attempting to determine L+] [+]
where hierarchies for
different net names differ.
Press Shift-End to right justify
the signal names. (Right
justification is the default behavior). Regardless of the state of signal name
justification, the signal values are left justified against the equals sign and
cannot be moved.

Figure 11: Signal subwindow with left justified signal
names

Note that the signal subwindow supports a form of self-contained Drag and Drop
such that the right mouse button can be used to harvest all the highlighted
traces in the window. By holding the right button and moving the mouse up and
down, a destination for the traces can be selected. When the mouse button is
released, the traces are dropped at the trace following the one the mouse pointer
is pointing to.

Multiple traces can be selected by marking the first trace to highlight, move the
cursor to the destination trace, and Shift click with the left mouse button. All the
traces between the two will highlight or unhighlight accordingly. To highlight all
the traces in the signal subwindow, Alt-H can be pressed. To unhighlight them,
also press the Shift key in conjunction with Alt-H. (This can also be achieved by
clocking on Highlight All or Unhighlight All in the Edit menu.)

Highlighting or unhighlighting traces by entering regular expressions will be
covered in the menu section.

Note: the rc variable use standard clicking no longer has any effect. Regular
GTK semantics for this subwindow are always enabled: shift and control function
as most users expect. In addition, the scroll wheel will scroll the traces up and
down provided the signal subwindow has input focus.

GTKWave 3.3 Wave Analyzer User's Guide 25

Wave Subwindow

The wave subwindow reformats simulation data into a visual format similar to
that seen for digital storage scopes. As seen in Figure 13, the wave subwindow
contains two
maves scrollbars and a
viewing area.

&0
0000000000000
0000000000000

The scrollbar on the
right scrolls not
only the wave
subwindow, but the
signal subwindow in
lockstep as well.
The scrollbar on the
00000000 bottom is used to
scroll the simulation
0000000 0D0DNDD0D data Wlth reSpeCt tO
the timescale that is

[} 2] shown on the top
Figure 12: A typical view of the wave subwindow line of the wave

subwindow.

The simulation data itself is shown as a horizontal series of traces. Values for
multi-bit signals can be displayed in varying numeric bases such as binary, octal,
hexadecimal, decimal, and ASCII. Values for single-bit traces are shown as
“high” for zero and “low” for one, “z” (middle), and “x” (filled-in box). VHDL
values are represented in a similar fashion but with different colors. The signal
subwindow can always be used to verify the value of a value, so don't be too
concerned right now if you are not sure of what the single-bit representation of a
signal looks like or are not sure if you can remember.

Two functional markers are available: the primary marker (red, left mouse
button) which the signal window uses as its pointer for value data, and the
baseline marker (white, middle mouse button) which is used to perform time
measurements with respect to the primary marker. Twenty-six lettered markers
“A” through “Z” (dropped or collected through menu options) are provided to the
user as convenience markers for indexing various points of interest in a
simulation.

The primary marker can also be used to navigate with respect to time. It can be
dropped with the right mouse button and dragged to “open” up a region for
zooming in closer or out farther in time. It can also be used to scroll by holding
down the left mouse button and dragging the mouse outside the signal
subwindow. The simulation data outside of the window will then scroll into view
with the scrolling being in the opposite direction that the primary marker is

GTKWave 3.3 Wave Analyzer User's Guide 26

“pulling” outside of the subwindow.

Trace data in the signal subwindow can also be timeshifted as shown in Figure
14. In order to timeshift a trace, highlight the trace in the signal window the
move over to the wave subwindow and then hold down the left mouse button in
order to set the primary marker. Press the Ctrl key then move the primary
marker left or right. When the timeshift is as desired, release the mouse button
then release Ctrl. If you do not wish to go through with the timeshift, release the
Ctrl key before releasing the left mouse button. The trace(s) will then spring
back to their original pre-shifted position.

Signals Waves

T ime

CPH_TLAACLOCLOCK =
CPH_TLASYSTEMRESET =
CPH_TLASYSTEHRESET -100 ns'=
CPH_TLASYSTEMRESET 1 us'=

Figure 13: An example of both positively and negatively timeshifted traces

To achieve a finer level of granularity for timeshifting, menu options are available
that allow the user to set specific values for a time shift. In this way, the pixel
resolution of zoom is not the limiting factor in achieving an “exact” shift that
suits a user's needs.

Navigation and Status Panel

The navigation and status panel occupies the top part of the main window just
below the menu bar.

LAaT2 Ioadec_i_stuccessfully_ Zoom Page | Fetch | Disc Shift Marker Time
Ej;lgrl; rgcaﬂglgsnzogr;?n.and. Q @ H@ @ ‘4: 4: 4: From:| 0 sec 1791 ns
Ta:| 312300 ns Current Time
Q||| B |»||]| > e

Figure 14: The Navigation and Status Panel

The leftmost part contains a status window used for displaying various relevant
messages to the user such as the dumpfile type, the number of facilities (nets) in
a dumpfile, and any other information such as an operation that fails or
completes successfully.

The Zoom subframe contains six buttons. Three are magnifying glass icons. The
one marked with a minus (“-”) zooms out which displays a larger amount of
simulation time. The one marked with a plus (“+”) zooms in closer, displaying
less simulation time. The one with a square in it is “Zoom Full” which is used
either to zoom out to display the full range of simulation time or zooms between

the primary and baseline marker when the baseline marker is set. The

GTKWave 3.3 Wave Analyzer User's Guide 27

remaining non-magnifying glass buttons are a back arrow which is a zoom undo.
The left arrow “zooms” to the start time of simulation and the right arrow zooms
to the end time. The left and right arrows do not affect the zoom level in or out
like the plus and minus buttons do; they simply are a shortcut to keep from
having to move the scrollbar at the bottom of the wave subwindow.

The Page subframe contains left and right arrows. It scrolls the wave window
left or right the granularity of one page. It is similar to clicking to the left or
right of the “visible” gadget in a scrollbar, however, given the limited resolution
of the GTK scrollbar (floating point), for simulations that have large time values,
it might be necessary to use the page buttons rather than the scrollbar.

The Shift subframe contains similar arrows that scroll the display one pixel or
timestep (depending on what the zoom level is).

The “From” and “To” boxes indicate the start and end times for what part of the
simulation run shall be visible and can be navigated inside the wave subwindow.
Values can directly be entered into these boxes and units (e.g., ns, ps, fs) can
also be affixed to values.

The Fetch and Discard subframes modify the “From” and “To” box times.
Clicking the left Fetch arrow decreases the “From” value. Clicking the right
Fetch arrow increases the “To” value. Clicking the left Discard value increases
the “From” value and clicking the right Discard button decreases the “To” value.

The Marker Time label indicates where the primary marker is located. If it is not
present, a double-dash (“--”) is displayed. The Current Time label indicates
where the mouse is pointing. Its function is to determine the time under the
cursor without having to activate or move the primary marker. Note that when
the primary marker is being click-dragged, the Marker Time label will indicate

the delta time off the initial marker click.

When the baseline marker is set, the Marker Time and Current Time labels
change. The Marker time label indicates the delta time between the baseline
marker and the primary marker. The Current Time label is replaced with a Base
Time label that indicates the value of the baseline marker.

With some dumpfile types, a reload button can be found at the extreme right side
of the Navigation and Status Panel. It may be seen in Figure 4: The main
window with an embedded SST on page 20.

Menu Bar

There are seven submenus in the menu bar: File, Edit, Search, Time, Markers,

View, and Help. The functions of the individual items in each of those submenus
will be covered in GTKWave Menu Functions on page 35.

GTKWave 3.3 Wave Analyzer User's Guide 28

TwinWave

TwinWave is a front end to GTKWave that allows two sessions to be open at one
time in a single window. The horizontal scrolling, zoom factor, primary marker,
and secondary marker are synchronized between the two sessions.

TwinWave M=l B3

File Edit Search Time Markers View Help

WZT Inaded successfully. [»] Zoom
[554] facilities found. E

Page | Fetch [Disc Shift Marker Time

Fegions loaced on demand. Q : ﬂ<ﬁ Q? 4: 4: 4: Fram:| 0 sec 13418370150 ps
G‘l $|] :\‘ é é $ To: |24 ms Current Time
0 sec
Signals Waves
Time H
EBC_ADDR[0:25]= i
EBC_CLK = 0
EBC_DATA[0: 15]= 1
1
EBC_EHW = :
I
I
I
I
I
I
7 W |]
File Edit Search Time Markers View Help
WZT loaded successfully. Zoom Page [Fetch | Disc Shift Marker Time
[2549] facilities found.
Fegions loaded on demand. Q @ H’QJ Qj 4: 4: 4: From: 0 sec 13418370150 ps
G‘l '(:ij $|] :\‘ é é $ To: | 18333135 ns Current Time
0 sec
Signals Waves
T ime
EBC_ADDR[0:25]=
EBC_CLEK =
EBC_DATA[O: 15]=
EBC_EHW =
£1 B [«] [+]

Figure 15: TwinWave managing two GTKWave sessions in a single window

Starting a TwinWave session is easy: simply invoke twinwave with the arguments
for each gtkwave session listed fully separating them with a plus sign.

twinwave a.ved a.sav + b.ved b.sav

GTKWave 3.3 Wave Analyzer User's Guide 29

RTLBrowse

rtlbrowse is usually called as a helper application by gtkwave. In order to use
RTLBrowse, Verilog source code must first be compiled with xmi2stems in order
to generate a stems file. A stems file contains hierarchy and component
instantiation information used to navigate quickly through the source code. If
GTKWave is started with the ——stems option, the stems file is parsed and

rtlbrowse is launched.

The main window for RTLBrowse depicts the design as a tree-like structure.

(See Figure 17: Source code annotated by RTLBrowse on page 32.) Nodes in the
tree may be clicked open or closed in order to navigate through the design
hierarchy. Missing modules (unparsed, but instantiated as components) will be
marked as “[MISSING]”.

When an item is selected, another window is opened showing only the source
code the selected module. If the primary marker is set, then the source code will
be annotated with values as shown in Figure 18: The main window with viewer
state loaded from a save file on page 53. If the primary marker moves or is
deleted, then the values annotated into the source code will be updated
dynamically. The values shown are the full, wide value of the signal. RTLBrowse
currently does not perform bit extractions on multi-bit vectors. If it is desired to
see the full source code file for a module, click on the “View Full File” button at
the bottom of the window.

Note that it is possible to descend deeper into the design hierarchy by selecting
the component name in the annotated or unannotated source code.

GTKWave 3.3 Wave Analyzer User's Guide 30

RTL Design Hierarchy =] E3
=

ip
kevsched
raundl
raund2
raund3
raund4
roundS
raundé

raundll
raundl2
roundl3
r roundld
= roundl5
Fdesxarl
Fdesxor2
I~ PP
sl
=2
ms3
=4
- s5
s
ms7
=8
L wp
B raundle

Exit

Figure 16: The RTLBrowse RTL Design Hierarchy window

GTKWave 3.3 Wave Analyzer User's Guide 31

top.des.round? =] B3

ftmpiverilog-0.8.2jexamples/des.v

Cesigr unit poundfune occupies lines 991 - 1017, Kad
Marker time for ‘des wed 152" is 33536 sec.
module rowndfune (cIk[T5N], LiFEERE0S], rilfEEFOREN]. Lo[fXESFEEN], wo[CFIEFEFEN]. WIFEHINEER
input cIk[iFN]
input [1:32] Li[PI v,
input [1-48] l.g BRA7F 1§
output [1:32] lo 2on9] Y [E204237A]1H
wire [1:48]1 e[l EFEEENEELL
wire [1:6] b b2 b3 b b5 b6 b7 b8 ;
wire [1:4] =0 02 Bk L, S0 L,=0h 506 507 =08 B
wire [1:32] ppolkl b B
R RS ILE LI 2DRS IR L P08 25E95BD53 1 18
desxorl desxordie[tfliminie)], bxEL], baxED], baxEEI], b4xEH], b5SEEN], b6xEE], b?xEH], bexEM], 2
sl slic , bix] . S0 ¥
=2 s2(c ., b2x . S0 ¥;
=3 53 (e . b3xFal], so3x]
54 sd(c . bdx s ¥;
=5 shic , bExBESN] soBhxa Uil ;
=6 s6(c . bE . s0b ¥
=7 s7(c . b? . =07 ;
<8 s8¢ . b8 . sof);
pp ppselxid], so2 so3x([3], sodx[[J]. so5x([] . s08x[]], so T ET]. sodx{id], ppe[EEEEFEID:
desxor? desxox2ippo[bl; R[22 7050F 1 B [E204237A]1 1 E
assign Lo[EEEF RN i [FATEN];
endmodule
|
View Full File
Figure 17: Source code annotated by RTLBrowse
GTKWave 3.3 Wave Analyzer User's Guide

32

Ergonomic Extras

Scroll Wheels

Users with a scroll wheel mouse have some extra one-handed operations options
available which correspond to some functions found in the Navigation and Status
Panel description on page 27.

Shift Right - Ctrl + scroll wheel down
Shift Left - Ctrl + scroll wheel up
Page Right - scroll wheel down

Page Left - scroll wheel up

Zoom In - Alt + scroll wheel down
Zoom Out - Alt + scroll wheel up

Turning the scroll wheel “presses” the shift, page, and zoom options repeatedly
far faster than is possible with the navigation buttons. Zoom functions are
especially smooth this way.

The Primary Marker

The primary marker has also had function overloaded onto it for user
convenience. Besides being used as a marker, it can also be used to navigate
with respect to time. It can be dropped with the right mouse button and dragged
to “open” up a region for zooming in closer or out farther in time. It can also be
used to scroll by holding down the left mouse button and dragging the mouse
outside the signal subwindow. The simulation data outside of the window will
then scroll into view with the scrolling being in the opposite direction that the
primary marker is “pulling” outside of the subwindow.

Interactive VCD

VCD files may be viewed as they are generated provided that they are written to
a fifo (pipe) and are trampolined through shmidcat first (assume the simulator
will normally generate outfile.vcd):

mkfifo outfile.ved

cver myverilog.v &
shmidcat outfile.vcd | gtkwave -v -I myverilog.sav

You can then navigate the file as simulation is running and watch it update.

GTKWave 3.3 Wave Analyzer User's Guide 33

GTKWave 3.3 Wave Analyzer User's Guide 34

GTKWave Menu Functions

File

The File submenu contains various items related to the accessing of files,
printing, and application respawning and exiting.

Open New Viewer will open a file requester that will ask for the name of a VCD
or AET file to view. This will fork off a new viewer process.

Open New Tab will open a file requester that will ask for the name of a VCD or
AET file to view. This will create a tabbed page.

Reload Current Waveform will reload the currently displayed waveform from a
potentially updated file. Note that this menu option will only be displayed if the
current waveform type supports reloading. (i.e., it is not sourced from standard
input or from shared memory)

Export-Write VCD File As will open a file requester that will ask for the name of a
VCD dumpfile. The contents of the dumpfile generated will be the vcd
representation of the traces onscreen that can be seen by manipulating the
signal and wavewindow scrollbars. The data saved corresponds to the trace
information needed to allow viewing when used in tandem with the
corresponding GTKWave save file.

Export-Write LXT File As will open a file requester that will ask for the name of
an LXT dumpfile. The contents of the dumpfile generated will be the vcd
representation of the traces onscreen that can be seen by manipulating the
signal and wavewindow scrollbars. The data saved corresponds to the trace
information needed to allow viewing when used in tandem with the
corresponding GTKWave save file.

Export-Write TIM File As will open a file requester that will ask for the name of a
TimingAnalyzer .tim file. The contents of the file generated will be the
representation of the traces onscreen. If the baseline and primary marker are

GTKWave 3.3 Wave Analyzer User's Guide 35

set, the time range written to the file will be between the two markers, otherwise
it will be the entire time range.

Close immediately closes the current tab if multiple tabs exist or exits GTKWave
after an additional confirmation requester is given the OK to quit.

Print To File will open up a requester that will allow you to select print options
(PS or MIF; Letter, A4, or Legal; Full or Minimal). After selecting the options you
want, a file requester will ask for the name of the output file to generate that
reflects the current main window display's contents.

Grab To File will open a file requester that will ask for the name to be used for a
PNG format image grab of the main GTKWave window. Note that if the main
window is covered by other windows or is partially offscreen, the grabbed image
might not appear properly.

Read Save File will open a file requester that will ask for the name of a GTKWave
save file. The contents of the save file will determine which traces and vectors as
well as their format (binary, decimal, hex, reverse, etc.) are to be appended to
the display. Note that the marker positional data and zoom factor present in the
save file will replace any current settings.

Write Save File will invoke Write Save File As if no save file name has been
specified previously. Otherwise it will write the save file data without prompting.

Write Save File As will open a file requester that will ask for the name of a
GTKWave save file. The contents of the save file generated will be the traces as
well as their format (binary, decimal, hex, reverse, etc.) which are currently a
part of the display. Marker positional data and the zoom factor are also a part of
the save file.

Read Lodfile will open a file requester that will ask for the name of a plaintext
simulation log. By clicking on the numbers in the logfile, the marker will jump to
the appropriate time value in the wave window.

Read Verilog Stemsfile will open a file requester that will ask for the name of a
Verilog stemsfile. This will then launch an RTL browser and allow source code
annotation based on the primary marker position. Stems files are generated by
xml2stems. Please see its manpage for syntax and more information on stems

file generation.

Read Script File will open a file requester that will ask for the name of a Tcl
script to run. This menu option itself is not callable by Tcl scripts.

Quit exits GTKWave.

GTKWave 3.3 Wave Analyzer User's Guide 36

Edit

The Edit submenu is used to perform sorts on net names, perform various utility
functions such as attaching disassemblers and other external programs to
GTKWave, and to change the data representation of values in the wave
subwindow.

Set Max Hier sets the maximum hierarchy depth (counting from the right with
bit numbers or ranges ignored) that is displayable for trace names. Zero
indicates that no truncation will be performed (default). Note that any aliased
signals (prefix of a "+") will not have truncated names.

Toggle Trace Hier toggles the maximum hierarchy depth from zero to whatever
was previously set.

Insert Blank inserts a blank trace after the last highlighted trace. If no traces are
highlighted, the blank is inserted after the last trace.

Insert Comment inserts a comment trace after the last highlighted trace. If no
traces are highlighted, the comment is inserted after the last trace.

Insert Analog Height Extension inserts a blank analog extension trace after the
last highlighted trace. If no traces are highlighted, the blank is inserted after the
last trace. This type of trace is used to increase the height of analog traces.

Alias Highlighted Trace only works when at least one trace has been highlighted.
With this function, you will be prompted for an alias name for the first
highlighted trace. After successfully aliasing a trace, the aliased trace will be
unhighlighted. Single bits will be marked with a leading "+" and vectors will
have no such designation. The purpose of this is to provide a fast method of
determining which trace names are real and which ones are aliases.

Remove Highlighted Aliases only works when at least one trace has been
highlighted. Any aliased traces will have their names restored to their original
names. As vectors get their names from aliases, vector aliases will not be
removed.

Cut removes highlighted signals from the display and places them in an offscreen
cut buffer for later Paste operations. Cut implicitly destroys the previous
contents of the cut buffer.

Copy copies highlighted signals from the display and places them in an offscreen
cut/copy buffer for later Paste operations. Copy implicitly destroys the previous
contents of the cut/copy buffer.

Paste pastes signals from an offscreen cut buffer and places them in a group

GTKWave 3.3 Wave Analyzer User's Guide 37

after the last highlighted signal, or at the end of the display if no signal is
highlighted.

Delete removes highlighted signals from the display and discards them without
affecting the previous contents of the cut/copy buffer.

Expand decomposes the highlighted signals into their individual bits. The
resulting bits are converted to traces and inserted after the last highlighted
trace. The original unexpanded traces will be placed in the cut buffer. It will
function seemingly randomly when used upon real valued single-bit traces. When
used upon multi-bit vectors that contain real valued traces, those traces will
expand to their normal "correct" values, not individual bits.

Combine Down coalesces the highlighted signals into a single vector named

"<Vector>" in a top to bottom fashion placed after the last highlighted trace.
The original traces will be placed in the cut buffer. It will function seemingly
randomly when used upon real valued single-bit traces.

Combine Up coalesces the highlighted signals into a single vector named
"<Vector>" in a bottom to top fashion placed after the last highlighted trace.
The original traces will be placed in the cut buffer. It will function seemingly
randomly when used upon real valued single-bit traces.

Data Format-Hex will step through all highlighted traces and ensure that vectors
with this qualifier will be displayed with hexadecimal values.

Data Format-Decimal will step through all highlighted traces and ensure that
vectors with this qualifier will be displayed with decimal values.

Data Format-Signed will step through all highlighted traces and ensure that
vectors with this qualifier will be displayed as sign extended decimal values.

Data Format-Binary will step through all highlighted traces and ensure that
vectors with this qualifier will be displayed with binary values.

Data Format-Octal will step through all highlighted traces and ensure that
vectors with this qualifier will be displayed with octal values.

Data Format-ASCII will step through all highlighted traces and ensure that
vectors with this qualifier will be displayed with ASCII values.

Data Format-Time will step through all highlighted traces and ensure that bits
and vectors with this qualifier will display as time values.

Data Format-Enum will step through all highlighted traces and ensure that bits
and vectors with this qualifier will display as enum values, provided such values

GTKWave 3.3 Wave Analyzer User's Guide 38

were dumped into file.

Data Format-BitsToReal will step through all highlighted traces and ensure that
vectors with this qualifier will be displayed with Real values. Note that this only
works for 64-bit values and that ones of other sizes will display as binary.

Data Format-RealToBits-On will step through all highlighted traces and ensure
that Real vectors with this qualifier will be displayed as Hex values. Note that
this only works for Real quantities and other ones will remain to be displayed as
binary. This is a pre-filter so it is possible to invert, reverse, apply Decimal, etc.
It will not be possible however to expand those values into their constituent bits.

Data Format-RealToBits-Off will step through all highlighted traces and ensure
that the RealToBits qualifier is removed from those traces.

Data Format-Right Justify-On will step through all highlighted traces and ensure
that vectors with this qualifier will be displayed right justified.

Data Format-Right Justify-Off will step through all highlighted traces and ensure
that vectors with this qualifier will not be displayed right justified.

Data Format-Invert-On will step through all highlighted traces and ensure that
bits and vectors with this qualifier will be displayed with 1's and 0's inverted.

Data Format-Invert-Off will step through all highlighted traces and ensure that
bits and vectors with this qualifier will not be displayed with 1's and 0's inverted.

Data Format-Reverse Bits-On will step through all highlighted traces and ensure
that vectors with this qualifier will be displayed in reversed bit order.

Data Format-Reverse Bits-Off will step through all highlighted traces and ensure
that vectors with this qualifier will not be displayed in reversed bit order.

Data Format-Popcnt-On will step through all highlighted traces and ensure that
bits and vectors with this qualifier will be displayed after going through a
population count conversion. This is a filter which sits before other Data Format
options such as hex, etc.

Data Format-Popcnt-Off will step through all highlighted traces and ensure that
bits and vectors with this qualifier will be displayed with normal encoding.

Data Format-Fixed Point Shift-On will step through all highlighted traces and
ensure that bits and vectors with this qualifier will be right shifted prior to being
displayed as Signed Decimal or Decimal values.

Data Format-Fixed Point Shift-Off will step through all highlighted traces and

GTKWave 3.3 Wave Analyzer User's Guide 39

ensure that bits and vectors with this qualifier will not be right shifted prior to
being displayed as Signed Decimal or Decimal values.

Data Format-Fixed Point Shift-Specify will open up a requester to specify a shift
count then will step through all highlighted traces and ensure that bits and
vectors with this qualifier will be right shifted prior to being displayed as Signed
Decimal or Decimal values.

Color Format-Normal uses normal waveform colorings for all selected traces.

Color Format-Red uses red waveform colorings for all selected traces.

Color Format-Orange uses orange waveform colorings for all selected traces.

Color Format-Yellow uses yellow waveform colorings for all selected traces.

Color Format-Green uses green waveform colorings for all selected traces.

Color Format-Blue uses blue waveform colorings for all selected traces.

Color Format-Indigo uses indigo waveform colorings for all selected traces.

Color Format-Violet uses violet waveform colorings for all selected traces.

Color Format-Cycle uses cycling waveform colorings for all selected traces.

Color Format-Keep xz Colors when enabled keeps the old non 0/1 signal value
colors when a user specifies a color override by using Edit/Color Format.

Translate Filter File Disable will remove translation filtering used to reconstruct
enums for marked traces.

Translate Filter File will enable translation on marked traces using a filter file. A
requester will appear to get the filter filename.

Translate Filter Process Disable will remove translation filtering used to
reconstruct enums for marked traces.

Translate Filter Process will enable translation on marked traces using a filter
process. A requester will appear to get the filter filename.

Transaction Filter Process will enable transaction filtering on marked traces
using a filter process. A requester will appear to get the filter filename.

Transaction Filter Process Disable will remove transaction filtering.

GTKWave 3.3 Wave Analyzer User's Guide 40

Analog Off causes the waveform data for all currently highlighted traces to be
displayed as normal.

Analog Step causes the waveform data for all currently highlighted traces to be
displayed as stepwise analog waveform.

Analog Interpolate causes the waveform data for all currently highlighted traces
to be displayed as interpolated analog waveform.

Analog Resizing-Screen Data causes the waveform data for all currently
highlighted traces to be displayed such that the y-value scaling maximizes the
on-screen trace data so if fills the whole trace width at all times.

Analog Resizing-All Data causes the waveform data for all currently highlighted
traces to be displayed such that the y-value scaling maximizes the on-screen
trace data so if fills the whole trace width only when fully zoomed out. (i.e., the
scale used goes across all trace data)

Data Format-Range Fill With Os will step through all highlighted traces and
ensure that vectors with this qualifier will be displayed as if the bitrange of the
MSB or LSB as appropriate goes to zero. Zero bits will be filled in for the missing
bits.

Data Format-Range Fill With 1s will step through all highlighted traces and
ensure that vectors with this qualifier will be displayed as if the bitrange of the
MSB or LSB as appropriate goes to zero. One bits will be filled in for the missing
bits; this is mostly intended to be used when viewing values which are inverted
in the logic and need to be inverted in the viewer.

Data Format-Zero Range Fill Off will step through all highlighted traces and
ensure that normal bitrange displays are used.

Show-Change All Highlighted provides an easy means of changing trace
attributes en masse. Various functions are provided in a Show-Change requester.

Show-Change First Highlighted provides a means of changing trace attributes
for the first highlighted trace. Various functions are provided in a Show-Change
requester. When a function is applied, the trace will be unhighlighted.

Warp Marked offsets all highlighted traces by the amount of time entered in the
requester. (Positive values will shift traces to the right.) Attempting to shift
greater than the absolute value of total simulation time will cap the shift
magnitude at the length of simulation. Note that you can also warp traces
dynamically by holding down CTRL and dragging a group of highlighted traces to
the left or right with the left mouse button pressed. When you release the mouse

GTKWave 3.3 Wave Analyzer User's Guide 41

button, if CTRL is pressed, the drag warp commits, else it reverts to its pre-drag
condition.

Unwarp Marked removes all offsets on all highlighted traces.

Unwarp All unconditionally removes all offsets on all traces.

Exclude causes the waveform data for all currently highlighted traces to be
blanked out.

Show causes the waveform data for all currently highlighted traces to be
displayed as normal if the exclude attribute is currently set on the highlighted
traces.

Toggle Group toggles a group opened or closed. Double-clicking does the same
action as selecting this menu option.

Create Group creates a group of traces which may be opened or closed. It is
permitted for groups to be nested.

Highlight Regexp brings up a text requester that will ask for a regular
expression that may contain text with POSIX regular expressions. All traces
meeting this criterion / these criteria will be highlighted.

UnHighlight Regexp brings up a text requester that will ask for a regular
expression that may contain text with POSIX regular expressions. All traces
meeting this criterion / these criteria will be unhighlighted if they are currently
highlighted.

Highlight All simply highlights all displayed traces.

UnHighlight All simply unhighlights all displayed traces.

Alphabetize All alphabetizes all displayed traces. Blank traces are sorted to the
bottom.

Alphabetize All (Caselns) alphabetizes all displayed traces without regard to
case. Blank traces are sorted to the bottom.

Sigsort All sorts all displayed traces with the numeric parts being taken into
account. Blank traces are sorted to the bottom.

Reverse All reverses all displayed traces unconditionally.

Search

GTKWave 3.3 Wave Analyzer User's Guide 42

The Search submenu is used to perform searches on net names and values.

Pattern Search only works when at least one trace is highlighted. A requester
will appear that lists all the selected traces (maximum of 500) and allows various
criteria to be specified for each trace. Searches can go forward or backward
from the primary (unnamed) marker. If the primary marker has not been set, the
search starts at the beginning of the displayed data ("From") for a forwards
search and starts at the end of the displayed data ("To") for a backwards search.
"Mark" and "Clear" are used to modify the normal time vertical markings such
that they can be used to indicate all the times that a specific pattern search
condition is true (e.g., every upclock of a specific signal). The "Mark Count" field
indicates how many times the specific pattern search condition was encountered.
The "Marking Begins at" and "Marking Stops at" fields are used to limit the time
over which marking is applied (but they have no effect on searching).

Signal Search Regexp provides an easy means of adding traces to the display.
Various functions are provided in the Signal Search requester which allow
searching using POSIX regular expressions and bundling (coalescing individual
bits into a single vector).

Signal Search Hierarchy provides an easy means of adding traces to the display
in a text based treelike fashion.

Signal Search Tree provides an easy means of adding traces to the display.
Various functions are provided in the Signal Search Tree requester which allow
searching a treelike hierarchy and bundling (coalescing individual bits into a
single vector).

Autocoalesce when enabled allows the wave viewer to reconstruct split vectors.
Split vectors will be indicated by a "[]" prefix in the search requesters.

Autocoalesce Reversal causes split vectors to be reconstructed in reverse order
(only if autocoalesce is also active). This is necessary with some simulators. Split
vectors will be indicated by a "[]" prefix in the search requesters.

Autoname Bundles when enabled modifies the bundle up/down operations in the
hierarchy and tree searches such that a NULL bundle name is implicitly created
which informs GTKWave to create bundle and signal names based on the position
in the hierarchy. When disabled, it modifies the bundle up/down operations in the
hierarchy and tree searches such that a NULL bundle name is not implicitly
created. This informs GTKWave to create bundle and signal names based on the
position in the hierarchy only if the user enters a zero-length bundle name. This
behavior is the default.

Search Hierarchy Grouping when enabled ensures that new members added to
the " "Tree Search'" and " Hierarchy Search' widgets are added

GTKWave 3.3 Wave Analyzer User's Guide 43

alphanumerically: first hierarchy names as a group followed by signal names as a
group. This is the default and is recommended. When disabled, hierarchy names
and signal names are interleaved together in strict alphanumerical ordering.
Note that due to the caching mechanism in ~ Tree Search", dynamically
changing this flag when the widget is active may not produce immediately
obvious results. Closing the widget then opening it up again will ensure that it
follows the behavior of this flag.

Set Pattern Search Repeat Count sets the number of times that both edge and
pattern searches iterate forward or backward when marker forward/backward is
selected. Default value is one. This can be used, for example, to skip forward 10
clock edges at a time rather than a single edge.

Open Scope opens and selects the appropriate level of hierarchy in the SST for
the first selected signal. This can be used to quickly move to a level of hierarchy
in the SST frame, for example, when viewing signals across multiple units in a
design.

Open Source Definition opens and selects the appropriate level of hierarchy in
the SST for the first selected signal and also invokes $GTKWAVE EDITOR or
gedit (if found) on the appropriate source unit.

Open Source Instantiation opens and selects the appropriate level of hierarchy in
the SST for the first selected signal and also invokes $GTKWAVE EDITOR or
gedit (if found) on the appropriate source unit.

Time

The Time submenu contains a superset of the functions performed by the
Navigation and Status Panel button groups (see page 27).

Move To Time scrolls the waveform display such that the left border is the time
entered in the requester. Use one of the letters A-Z to move to a named marker.

Zoom Amount allows entry of zero or a negative value for the display zoom. Zero
is no magnification.

Zoom Base allows entry of a zoom base for the zoom (magnification per integer
step) Allowable values are 1.5 to 10.0. Default is 2.0.

Zoom In is used to increase the zoom factor. Alt + Scrollwheel Down also
performs this function.

Zoom Out is used to decrease the zoom factor. Alt + Scrollwheel Up also
performs this function.

GTKWave 3.3 Wave Analyzer User's Guide 44

Zoom Full attempts a "best fit" to get the whole trace onscreen. Note that the
trace may be more or less than a whole screen since this isn't a "perfect fit."

Zoom Best Fit attempts a "best fit" to get the whole trace onscreen. Note that
the trace may be more or less than a whole screen since this isn't a "perfect fit."
Also, if the middle button baseline marker is nailed down, the zoom instead of
getting the whole trace onscreen will use the part of the trace between the
primary marker and the baseline marker.

Zoom To Start is used to jump scroll to the trace's beginning.

Zoom To End is used to jump scroll to the trace's end.

Zoom Undo is used to revert to the previous zoom value used. Undo only works
one level deep.

Fetch Size brings up a requester which allows input of the number of ticks used
for fetch/discard operations. Default is 100.

Fetch Right increases the "To" time, which allows more of the trace to be
displayed if the "From" and "To" times do not match the actual bounds of the
trace.

Fetch Left decreases the "From" time, which allows more of the trace to be
displayed if the "From" and "To" times do not match the actual bounds of the
trace.

Discard Right decreases the "To" time, which allows less of the trace to be
displayed.

Discard Left increases the "From" time, which allows less of the trace to be
displayed.

Shift Right scrolls the display window right one tick worth of data. The net
action is that the data scrolls left a tick. Ctrl + Scrollwheel Down also performs
this function.

Shift Left scrolls the display window left one tick worth of data. The net action is
that the data scrolls right a tick. Ctrl + Scrollwheel Up also performs this
function.

Page Right scrolls the display window right one page worth of data. The net

action is that the data scrolls left a page. Scrollwheel Down also performs this
function.

GTKWave 3.3 Wave Analyzer User's Guide 45

Page Left scrolls the display window left one page worth of data. The net action
is that the data scrolls right a page. Scrollwheel Up also performs this function.

Markers

The Markers submenu is used to perform various manipulations on the markers
as well as control scrolling offscreen.

Show-Change Marker Data displays and allows the modification of the times for
all 26 named markers by filling in the leftmost entry boxes. In addition, optional
marker text rather than a generic single letter name may be specified by filling in
the rightmost entry boxes. Note that the time for each marker must be unique.

Drop Named Marker drops a named marker where the current primary
(unnamed) marker is placed. A maximum of 26 named markers are allowed and
the times for all must be different.

Collect Named Marker collects a named marker where the current primary
(unnamed) marker is placed if there is a named marker at its position.

Collect All Named Markers simply collects any and all named markers which
have been dropped.

Delete Primary Marker removes the primary marker from the display if present.

Wave Scrolling allows movement of the primary marker beyond screen
boundaries which causes the wave window to scroll when enabled. When
disabled, it disallows movement of the primary marker beyond screen
boundaries.

Alternate Wheel Mode makes the mouse wheel act how TomB expects it to.
Wheel alone will pan part of a page (so you can still see where you were).
Ctrl+Wheel will zoom around the cursor (not where the marker is), and
Alt+Wheel will edge left or right on the selected signal.

Copy Primary -> B Marker copies the primary marker position to the B marker
(handy for measuring deltas).

Lock to Lesser Named Marker locks the primary marker to a named marker. If
no named marker is currently selected, the last defined one is used, otherwise
the marker selected will be one lower in the alphabet, scrolling through to the
end of the alphabet on wrap. If no named marker exists, one is dropped down for
'A' and the primary marker is locked to it.

Lock to Greater Named Marker locks the primary marker to a named marker. If
no named marker is currently selected, the first defined one is used, otherwise

GTKWave 3.3 Wave Analyzer User's Guide 46

the marker selected will be one higher in the alphabet, scrolling through to the
beginning of the alphabet on wrap. If no named marker exists, one is dropped
down for 'A' and the primary marker is locked to it.

Unlock from Named Marker unlocks the primary marker from the currently
selected named marker.

View

The View submenu is used to control various attributes dealing with the
graphical rendering of status items as well as values in the signal subwindow.

Show Grid toggles the drawing of gridlines in the waveform display.

Show Wave Highlight toggles the drawing of highlighted waveforms (instead of
gridlines) in the waveform display.

Show Mouseover toggles the dynamic tooltip for signal names and values which
follow the marker on mouse button presses in the waveform display. This is
useful for examining the values of closely packed value changes without having
to zoom outward and without having to refer to the signal name pane to the left.
Note that an encoded string will be displayed next to the signal name that
indicates what data format flags are currently active for that signal. Flags are as
follows:

+ = Signed Decimal
X = Hexadecimal

A = ASCII

D = Decimal

B = Binary

O = Octal

J = Right Justify
~ = Invert

V = Reverse

* = Analog Step+Interpolated
S = Analog Step

I = Analog Interpolated
R = Real

r = Real to Bits

= Range Fill with Os
= Range Fill with 1s
= Binary to Gray

= Gray to Binary

= File Filter

P = Process Filter

T = Transaction Filter

mQ O - O

GTKWave 3.3 Wave Analyzer User's Guide 47

p = Population Count
s = Fixed Point Shift (count)

Mouseover Copies To Clipboard toggles automatic copying to the clipboard of
mouseover values. Requires that Show Mouseover is enabled.

Show Base Symbols enables the display of leading base symbols ('$' for hex, '%'
for binary, '#' for octal if they are turned off and disables the drawing of leading
base symbols if they are turned on. Base symbols are displayed by default.

Standard Trace Select when enabled, keeps the currently selected traces from
deselecting on mouse button press. This allows drag and drop to function more
smoothly. As this behavior is not how GTK normally functions, it is by default
disabled.

Dynamic Resize allows GTKWave to dynamically resize the signal window for you
when toggled active. This can be helpful during numerous signal additions
and/or deletions. This is the default behavior.

Center Zooms when enabled configures zoom in/out operations such that all
zooms use the center of the display as the fixed zoom origin if the primary
(unnamed) marker is not present, otherwise, the primary marker is used as the
center origin. When disabled, it configures zoom in/out operations such that all
zooms use the left margin of the display as the fixed zoom origin.

Toggle Delta-Frequency allows you to switch between the delta time and
frequency display in the upper right corner of the main window when measuring
distances between markers. Default behavior is that the delta time is displayed.

Toggle Max-Marker allows you to switch between the maximum time and marker
time for display in the upper right corner of the main window. Default behavior
is that the maximum time is displayed.

Constant Marker Update when enabled, allows GTKWave to dynamically show
the changing values of the traces under the primary marker while it is being
dragged across the screen. This works best with dynamic resizing disabled.
When disabled, it restricts GTKWave to only update the trace values when the
left mouse button is initially pressed then again when it is released. This is the
default behavior.

Draw Roundcapped Vectors draws vector transitions that have sloping edges
when enabled. Draws vector transitions that have sharp edges when disabled;
this is the default.

Left Justify Signals draws signal names flushed to the left border of the signal
window.

GTKWave 3.3 Wave Analyzer User's Guide 48

Right Justify Signals draws signal names flushed to the right ("equals") side of
the signal window.

Zoom Pow10 Snap snaps time values to a power of ten boundary when active.
Fractional zooms are internally stored, but what is actually displayed will be
rounded up/down to the nearest power of 10. This only works when the ticks per
frame is greater than 100 units.

Partial VCD Dynamic Zoom Full causes the screen to be in full zoom mode while
a VCD file is loading incrementally.

Partial VCD Dynamic Zoom To End causes the screen to zoom to the end while a
VCD file is loading incrementally.

Full Precision does not round time values when the number of ticks per pixel
onscreen is greater than 10 when active. The default is that this feature is
disabled.

Define Time Ruler Marks changes the ruler markings such that the Baseline
marker defines the origin and the Primary marker distance from the Baseline
marker defines the period. If either the Baseline marker or Primary marker are
not present, the default ruler markers are used. If the Baseline marker and
Primary marker have the same value, the default ruler markers are used.

Remove Pattern Marks removes any vertical traces on the display caused by the
Mark feature in pattern search and reverts to the normal format.

Use Color draws signal names and trace data in color. This is normal operation.

Use Black and White draws signal names and trace data in black and white. This
is intended for use in black and white screen dumps.

Scale To Time Dimension: None turns off time dimension conversion.

Scale To Time Dimension: sec changes the time dimension conversion value to
seconds.

Scale To Time Dimension: ms changes the time dimension conversion value to
milliseconds.

Scale To Time Dimension: us changes the time dimension conversion value to
microseconds.

Scale To Time Dimension: ns changes the time dimension conversion value to
nanoseconds.

GTKWave 3.3 Wave Analyzer User's Guide 49

Scale To Time Dimension: ps changes the time dimension conversion value to
picoseconds.

Scale To Time Dimension: fs changes the time dimension conversion value to
femtoseconds.

LXT Clock Compress to Z reduces memory usage when active as clocks
compressed in LXT format are kept at Z in order to save memory. Traces
imported with this are permanently kept at Z.

Help

The Help submenu contains options for enabling on-line help as well as
displaying program version information.

Wave Help brings up a help window that will show the function of any menu
option when that option is selected. Closing the help window will turn off help
and return back to normal menu function.

Wave Version merely brings up a requester which indicates the current version
of this program.

GTKWave 3.3 Wave Analyzer User's Guide 50

Quick Start

Sample Design

In the examples/ directory of the source code distribition a sample Verilog design
and testbench for a DES encryptor can be found as des.v.

10 :/home/bybell/gtkwave—-3.0.0pre2l/examples> 1ls =—al
total 132

AdrwxXrwxr—x 2 bybell bybell 4096 Apr 30 14:12
drwxr—xr—x 8 bybell bybell 4096 Apr 29 22:05 ..
—IW—Irw—-r—-— 1 bybell bybell 187 Apr 29 22:09 des.sav
—IrW—r——r—-— 1 bybell bybell 47995 Apr 29 22:05 des.v
—IW—Irw—-r—-— 1 bybell bybell 68801 Apr 29 22:06 des.vzt

If you have a Verilog simulator handy, you can simulate the design to create a
VCD file. To try the example in Icarus Verilog (http://www.icarus.com), type the
following:

/tmp/gtkwave-3.0.0/examples> iverilog des.v && a.out

VCD info: dumpfile des.vcd opened for output.
/tmp/gtkwave-3.0.0/examples> 1ls -la des.vecd

—IYW—rw—r—-— 1 bybell bybell 3465481 Apr 30 13:39 des.vcd

If you do not have a simulator readily available, you can expand the des.vzt file
into des.vcd by typing the following:

/tmp/gtkwave-3.0.0/examples> vzt2ved des.vzt >des.ved
VZTLOAD | 1432 facilities

VZTLOAD | Total value bits: 22921

VZTLOAD | Read 1 block header OK

VZTLOAD | [0] start time

VZTLOAD | [704] end time

VZTLOAD |

GTKWave 3.3 Wave Analyzer User's Guide 51

http://www.icarus.com/

VZTLOAD | block [0] processing 0 / 704
/tmp/gtkwave-3.0.0/examples> 1ls —-la des.vecd
—IYW—Yrw—-r—-— 1 bybell bybell 3456247 Apr 30 13:42 des.vcd

You will notice that the generated VCD file is about fifty times larger than the
VZT file. This illustrates the compressibility of VCD files and the space saving
advantages of using the database formats that GTKWave supports. Normally we
would not want to work with VCD as GTKWave is forced to process the whole file
rather than access only the data needed, but in the next section we will show
how to invoke GTKWave such that VCD files are automatically converted into
LXT2 ones.

Next, let's create a stems file that allows us to bring up RTLBrowse.

/tmp/gtkwave-3.0.0/examples> verilator -Wno-fatal des.v —-xml-only
—-bbox-sys && xml2stems obj_dir/Vdes.xml des.stems
/tmp/gtkwave-3.0.0/examples> ls -la des.stems

—rW-—Yrw-—r—-— 1 bybell bybell 4044 Apr 30 13:50 des.stems

Stems files only need to be generated when the source code undergoes file
layout and/or hierarchy changes.

Now that we have a VCD file and a stems file, we can bring up the viewer.

Launching GTKWave

We already have a VZT file available, but to illustrate the automatic conversion of
VCD files, let's use the —o option. The -t option is used to specify the stems file.

The .sav file is a “save file” that contains GTKWave scope state.

/tmp/gtkwave-3.0.0/examples> gtkwave —-o -t des.stems des.vcd des.sav
GTKWave Analyzer v3.3.18 (w)1999-2010 BSI

FSTLOAD | Processing 1432 facs.

FSTLOAD | Built 1287 signals and 145 aliases.
FSTLOAD | Building facility hierarchy tree.
FSTLOAD | Sorting facility hierarchy tree.

In some cases, for example if the dumpfile format is LXT2, you will see two sets
of loader messages. This is normal as RTLBrowse is launched as an external
process in order to keep its operations from bogging down the viewer. After
these messages scroll by, the GTKWave main window and an RTLBrowse

GTKWave 3.3 Wave Analyzer User's Guide 52

hierarchy window will appear. We are now ready to start experimenting with

GTKWave - des.vcd [_ (O] x|

File Edit Search Time Markers View Help

LAT2 loaded successfully. Zoom Page | Fetch | Disc Shift Marker Time
[1432] facilities found.
Fiedions loaded on demand. Q @ ﬂé Q? 4: 4: 4: Fram:|0 sec 10 sec
@ g Qﬂ (B $ # # Tao: | 704 sec Current Time
23 sec
Signals Waves
Time]
clk=
ct[1l:64]= boc+ 00000000000+
i[31:0]= (IR e
key[= 54] = 0000000000 000000
ptll:6d]= 0000000000000000
=
BEza DOjRioeza

Figure 18: The main window with viewer state loaded from a save file

various features of the wave viewer and RTLBrowse.
The RTLBrowse window will come up as seen in Figure 17: Source code

annotated by RTLBrowse on page 32, however none of the tree nodes will be
opened yet.

GTKWave 3.3 Wave Analyzer User's Guide 53

Displaying Waveforms

In the preceding section, the viewer was brought up with a save file so when the
viewer did appear, the main window already had signals present as seen in
Figure 19 on page 54. All the signals in a model do not appear on their own as
this would be unwieldy for large models. Instead, it is up to the user to import
signals manually. An exception to this exists for VCD files, see the definition of
the enable_vcd_autosave .gtkwaverc variable on page Error: Reference source
not found. That said, several requesters exist for importing signals into the main
window.

Signal Search

Signal Search _ (O] x]
The signal search requester accepts a search Signal Search Expressian
string as a POSIX regular expression. Any hax
signals found in the dumpfile that match that 0%
regular expression are listed in the Matches
box and may be individually or multiply |Matches
selected and imported into the viewer top.des.kix[1:48]
window. The regular expression can be e

p.des. kix[1:48]
modified in one of four ways: WRange, top.des ke(L:48]
WStrand, Range, and Strand. No Epjitﬁi:&ﬁ}
modification is possible with None. This mﬂjdesjk;x[lQﬁ]
optionally matches the string you enter in top.des. ki L:48]
the search string above with a Verilog format EE::E::ﬁ[jﬂd_kh[m]
range (signal[7:0]), a strand (signal.1, top.des.keysched k2«[L:48]
signal.0), or with no suffix. The “W” modifier EE:E:E:EEE:&HE
for “Range” and “Strand” explicitly matches top.des.keysched kSx(L:4g]
on word boundaries. (addr matches Epjzzt?fzz::zjtgﬁiﬁ}
unit.freezeaddr[63:0] for “Range” but only mE:desﬁkeLched:k&u{ﬁ]
unit.addr[63:0] for “WRange” since addr has top.des. keysched.k9x(1:48]
to be on a word boundary.) Note that when
“None” is selected, the search string may be
located anywhere in the signal name.

wrange ¥

Append will add the selected signals to end
of the display on the main window. | Append | | insert | | Replace | | Exit |
Insert will add selected signals after last Figure 19: The Signal Search

(regular expression search)

highlighted signal on the main window. Requester

Replace will replace highlighted signals on

GTKWave 3.3 Wave Analyzer User's Guide 54

the main window with signals selected.

Hierarchy Search
Hierarchy Search =] B3

The hierarchy search requester provides a view of Signal Hierarchy
the hierarchy in a format similar to the current top

working directory of a file in a file system on a

computer. The Signal Hierarchy box contains the | |children |
current hierarchy and the Children box contain all ..

of the signals in that immediate level of hierarchy | ‘9

and all of the component instantiation names for ct[L:64]

that level of hierarchy (denoted by a “(+)” prefix). Ej:[f{sl 4]

To navigate down a level of hierarchy, click on an [eIL64]

item with a “(+)” prefix. To move up a level of

hierarchy, click on the “..” line.

Selecting individual items allow you to import
traces singly when the Append, Insert, or Replace
buttons are clicked. Not selecting anything will do
a “deep import” such that all the child signals are
imported. Use of that feature is not recommended
for very large designs.

Note that is is possible to modify the display order
such that components and signals are intermixed |APPEHd| | Insert | | Replace | | Exit |
in this gadget rather than being separated such
that all the components for a given level of
hierarchy are listed alphabetically at the top and
all signals are listed alphabetically at the bottom.
In order to do this, toggle the Search submenu item Search Hierarchy Grouping
as described on page 43.

Figure 20: The Hierarchy
Search Requester

Tree Search

The Tree Search Requester is the requester that most users will feel comfortable
using and is also the requester that can optionally be embedded in the main
window on versions of GTK greater than or equal to 2.4. See Figure 8: The main
window using the toolbutton interface on page 23 for an example of this.

The Tree Search Requester is composed of a top tree selection box, a signals
box, and a POSIX regular expression filter. The tree selection box is used to
navigate at the hierarchy level. Click on an item in order to show the signals at
that level of hierarchy. In the figure on page 57, the “top” level of hierarchy is
selected and the signals box shows what signals are available at that level of
hierarchy. Signals may be individually or multiply selected and can be dragged
and dropped into the signal window. In addition, a POSIX filter can be specified

GTKWave 3.3 Wave Analyzer User's Guide 55

that allows the selective filtering of signal names at a level of hierarchy which is
handy for finding a specific signal at a level of hierarchy that is very large (e.qg.,
in a synthesized netlist).

Signal Search Tree [H[=] E3
g des
fp

ip
kevsched
roundl
round2

round3 IE‘

Signals |
clk

ct[L:54]

i[31:0]

key[L:64]

pt[L:54]

Filter:

|A|:lpend| | Insert | | Replace | | Exit |

Figure 21: The Signal Search
Tree Requester

Signal Save Files

The signals show in the main window can be saved to a file so they can
automatically be imported without reselection the next time the viewer is
started. In order to save signals to a save file, select the File submenu option
Write Save File (As). Save files can also be loaded at any time by selecting the
Read Save File option.

Pattern Search

Values, not only nets may be searched on and marked in the wave window. In
order to do this, select one or more nets in the signal window and then click on
the Search submenu option Pattern Search. A Pattern Search Requester will
then appear that will allow various types of search operations for the signals that

GTKWave 3.3 Wave Analyzer User's Guide 56

have been selected.
The following is an example of a Pattern Search Requester being used to mark
the rising edges for the clock signal in a simulation model.

The edges as they are

Waveform Display Search =[OIX}| marked by the
Logical ©peration AND | X configuration of the
= Requester in Figure
z Error: Reference source

Rising Edge

not found can be seen in
Figure 8: The main
window using the
toolbutton interface on
page 23.

To remove pattern
marks, either select
another pattern or select
the View submenu option
Remove Pattern Marks.
Note that pattern marks
save to the save file and
that the actual pattern
search criteria is saved,

Marking Begins at: Start of Time T not the absolute times of
the individual marks
Marking Stops at: End of Time X
themselves.

Mark Count: 352

Clear | = Search criteria for

individual nets can be
edge or value based. For
“String” searches (the
entry box to the right of the search type box which in the case above is marked
“Rising Edge”), note that is is no longer required that you must press Enter for
the string in order to commit the value to the search.

Figure 22: The Pattern Search Requester

Alias Files and Attaching External Disassemblers

The viewer supports signal aliasing through both plaintext filters and through
external program filters. Note that signal aliasing is a strict one-to-one
correspondence so the value represented in the viewer must exactly represent
what format your filter expects. (e.g., binary, hexadecimal, with leading base
markers, etc.) For your convenience, the comparisons are case insensitive.

GTKWave 3.3 Wave Analyzer User's Guide 57

For text filters, the viewer looks at an ASCII text file of the following format:

#

this is a comment
#

00 Idle

01 Advance

10 Stop

11 Reset

The first non-whitespace item is treated as a literal value that would normally be
printed by the viewer and the remaining items on the line are substitution text.
Any time this text is encountered if the filter is active, it will replace the left-hand
side text with the right-hand side. Leading and trailing whitespaces are removed
from the right-hand side item.

To turn on the filter:

1) Highlight the signals you want filtered

2) Edit->Data Format->Translate Filter File->Enable and Select
3) Add Filter to List

4) Click on filter filename

5) Select filter filename from list

6) OK

To turn off the filter:

1) Highlight the signals you want unfiltered.
2) Edit->Data Format->Translate Filter File->Disable

NOTE: Filter configurations load and save properly to and from save files.

An external process that accepts one line in from stdin and returns with
data on stdout can be used as a process filter. An example of this are
disassemblers. The following sample code would show how to interface with
a disassembler function in C:

int main(int argc, char **argv)
{
while(!feof(stdin))

{
char buf{1025], buf2[1025];

buf[0] = 0;
fscanf(stdin, "%s", buf);
if(buf[0])

{

GTKWave 3.3 Wave Analyzer User's Guide 58

int hx;
sscanf(buf, "%x", &hx);
ppc dasm one(buf2, 0, hx);
printf("%s\n", buf2);
fflush(stdout);
}

}

return(0);

}

Note that the fflush(stdout) is necessary, otherwise gtkwave will hang. Also note
that every line of input needs to generate a line of output or the viewer will hang
too.

To turn on the filter:

1) Highlight the signals you want filtered

2) Edit->Data Format->Translate Filter Process->Enable and Select
3) Add Proc Filter to List

4) Click on filter filename

5) Select filter filename from list

6) OK

To turn off the filter:
1) Highlight the signals you want unfiltered.

2) Edit->Data Format->Translate Filter Process->Disable

Note: In order to use the filter to modify the background color of a trace, you can
prefix the return string to stdout with the X11 color name surrounded by '?"
characters as follows:

?CadetBlue?isync
?red?xor r0,r0,ro
?lavender?lwz r2,0(r7)

Legal color names may be found in the rgb.c file in the source code distribution.
Transaction Filters

Either single traces or grouped vector data (created by Combine Down (F4) on
some signals) can be used to signify a transaction that can be parsed by an
external process.

GTKWave 3.3 Wave Analyzer User's Guide 59

An external process that can accept a simplified VCD file from stdin and return
with trace data on stdout can be used as a transaction filter. An example of the
VCD file received from stdin is the following:

$comment data start 0x124c0798 $end
$comment val[7:0] $end

$timescale 1ms $end

$comment min_time 0 $end

$comment max time 348927 $end
$comment max _seqn 1 $end

$scope module top $end

$comment seqn 1 top.val[7:0] $end
$var wire 8 1 val[7:0] $end
$upscope $end

$enddefinitions $end

$dumpvars

#0

b10000000 1

#1

b10000101 1

#2

b10001010 1

#348927
b110010 1
$comment data end 0x124c0798 $end

To aid in processing and parsing, some extra comments are added to the VCD
file:

data start, a value to match against data end to know that all trace data has
been received

min time, the start time of the wave data

max _time, the ending time of the wave data

max_sedn, indicates the relative ordering of the trace data being presented. This
can be used to provide “anonymous” signal name matching

seqn, gives the “flat earth” signal name

Note that the VCD identifies are numbers starting from 1. These are to be
correlated with the max seqn count.

An example of data generated on stdout after all data has been received is as
follows:

$name Decoded Data

#0

#186608 ?darkblue?sync
MA196608 Sync Mark
#196860

GTKWave 3.3 Wave Analyzer User's Guide 60

MB196864 Num Blocks
#196864 ?gray24?04
#197116

MC197120 Hdr 0
#197120 ?purple3?04
#197372

$next

$name Another Trace
#0

#10000 This is a test!
#200000

$finish

Time values with no data after them are rendered as a horizontal “z” bar.
Lines that start with M are used to place the markers A-Z.

$name indicates the name to give to the trace.

$next indicated that more trace data follows for a new trace.

$finish is used to signal to gtkwave that there is no more trace data.

The data received by gtkwave will be used to generate transaction traces in the
viewer. In order to make traces created by $next visible, insert blank lines under
the trace that the transaction filter has been added.

To turn on the filter:

1) Highlight the signals you want filtered

2) Edit->Data Format->Transaction Filter Process->Enable and Select
3) Add Transaction Filter to List

4) Click on filter filename

5) Select filter filename from list

6) OK

To turn off the filter:
1) Highlight the signals you want unfiltered.

2) Edit->Data Format->Transaction Filter Process->Disable

Note: In order to use the filter to modify the background color of a trace, you can
prefix the return string to stdout with the X11 color name surrounded by '?
characters as follows:

?CadetBlue?isync
?red?xor r0,r0,ro
?lavender?lwz r2,0(r7)

Legal color names may be found in the rgb.c file in the source code distribution.

GTKWave 3.3 Wave Analyzer User's Guide 61

Debugging the Source Code

See the description for RTLBrowse on page 30. More features are planned to be
added in future releases.

GTKWave 3.3 Wave Analyzer User's Guide 62

Appendix A: Command Line Options
Reference

gtkwave

GTKWAVE (1) Simulation Wave Viewer GTKWAVE (1)

NAME
gtkwave - Visualization tool for VCD, LXT, and VZT files

SYNTAX
gtkwave [option]... [DUMPFILE] [SAVEFILE] [RCFILE]

DESCRIPTION

Visualization tool for VCD, LXT, LXT2, VZT, and GHW. VCD is an indus-
try standard simulation dump format. LXT, LXT2, and VZT have been
designed specifically for use with gtkwave. GHW is the native VHDL
format generated by GHDL. Native dumpers exist in Icarus Verilog for
the LXT formats so conversion with vcd2lxt(1l) or vcd21xt2(1l) is not
necessary to take direct advantage of LXT with that simulator. AET2
files can also be processed provided that libae2rw is available but
this is only of interest to people who use IBM EDA toolsets.

OPTIONS
-n,--nocli <directory name>
Use file requester for dumpfile name.

-f,--dump <filename>
Specify dumpfile name.

-F,--fastload
generate/use VCD recoder fastload files. This is similar to the
-g,--giga option, however the spill file generated is not
deleted. Reloading the VCD file another time (either through
pressing the reload button or by re-invoking gtkwave at a later
time) will wuse this generated spill file rather than read the
value change section of the VCD file. This will speed up
reloads on large files greatly as only the variable declaration
section needs to be parsed. Note that the spill file contains
the file size and modification date of the VCD file in order to

GTKWave 3.3 Wave Analyzer User's Guide 63

detect if it is stale and needs to be regenerated.

-0,--optimize
optimize VCD to FST. This will automatically call vcd2fst(1)
to perform the file conversion. This option is highly recom-
mended with large VCD files in order to cut down on the memory
usage required for file viewing. Can be used in conjunction
with -v,--vcd.

-a, --save=FILE
Specify savefile name. Useful suffixes for desktop integration
are .gtkw and .sav (deprecated).

-A, --autosavename
Assume savefile is suffix modified dumpfile name (i.e., remove
and replace with ".gtkw").

-r,--rcfile <filename>
Specify override .gtkwaverc filename.

-1,--logfile <filename>
Specify simulation logfile name. Multiple logfiles may be spec-
ified by preceding each with the command flag. By selecting
the numbers in the text widget, the marker will immediately zoom
to the specific time value.

-d, - -defaultskip
If there is not a .gtkwaverc file in the home directory or cur-
rent directory and it is not explicitly specified on the command
line, when this option is enabled, do not use an implicit con-
figuration file and instead default to the old "whitescreen"
behavior.

-D, --dualid <which>
Specify multisession identifier information. The format of
"which" is m+nnnnnnnn where m is the session number 0 or 1 and
nnnnnnnn is a hexadecimal value indicating the shared memory 1ID
of an array of two gtkwave dual ipc_t data structures. The
intended use of this flag is for front ends such as twinwave(l).

-s,--start <time>
Specify start time for LXT2/VZT block skip.

-e,--end <time>
Specify end time for LXT2/VZT block skip.

-t,--stems <filename>
Specify stems file for source code annotation. This will auto-
matically launch the rtlbrowse(l) helper process. See xml2stems(1)
for information on stems file generation.

-Cc,--Cpu <numcpus>

Specify number of CPUs available for parallelizable ops (e.g.,
block prefetching on VZT reads).

GTKWave 3.3 Wave Analyzer User's Guide 64

-N, - -nowm
Disable window manager for most windows. The intended use of
this is to be used in conjunction with the --script option, how-
ever this also can be used to reparent into an alternate window
manager.

-M, - -nomenus
Do not render menubar. This is mainly wused for making a
restricted applet that cannot initiate file I/0 on its own, how-
ever it also can be used as a workaround in earlier versions of
GTK+ that do not handle GTKSocket/GTKPlug focus interactions
properly.

-H, - -noheader
Do not use headerbars which provide hamburger style menus ren-
dered in the toolbar, but revert back to non-headerbar opera-
tion. This is for GTK 3 only.

-S,--script <filename>
Specify Tcl script for execution.

-R, --repscript <filename>
Specifies Tcl command script file for periodic execution.

-P,--repperiod <filename>
Specifies delay in milliseconds between successive executions of
the repscript. Default is 500.

-T,--tcl script <filename>
Specifies Tcl command script file to be loaded on startup. Implies
--wish command flag.

-W, - -wish
Enables Tcl command line on stdio. All script commands can be
typed in on stdin.

-X, --xid <XID>
Specify XID (in hexadecimal) of window for a GtkPlug to connect
to. GTKWave does not directly render to a window but instead
renders into a Gtk-Plug expecting a GtkSocket at the other end.
Note that there are issues with accelerators working properly so
menus are disabled in the componentized version of GTKWave when
it functions as a plug-in.

-1,--rpcid <RPCID>
Specify RPCID of GConf (or GSettings) session. This is a deci-
mal value zero or greater and is the identifier used by GConf to
know what update data to listen to. This option only works if
--with-gconf (or --with-gsettings) was specified during ./con-
figure.

-2,--chdir <DIRNAME>
Specify new current working directory. This is +typically used
in 0SX to run gtkwave if it was compiled and placed in an .app
bundle. Note that if the environment variable GTKWAVE CHDIR 1is

GTKWave 3.3 Wave Analyzer User's Guide 65

defined, the argument is a dummy argument. This is to support
0SX in that the open command has difficulty in passing spaces as
command 1line arguments and it is possible for pwd(1l) to return
spaces.

-3,--restore

Restore previous default (@) or --rpcid RPCID numbered session.
This only works for one dumpfile, savefile, rcfile, and current
working directory so it has the effect of restoring the most
recently loaded file. If used in conjunction with the --rpcid
option, that option must be specified earlier in the command
line than the --restore option. If RPCID is not specified, then
the default of 0 is used. This option only works if --with-
gconf (or --with-gsettings) was specified during ./configure.
Note that for GSettings, limitations in its implementation allow
it only to restore the previous session.

-4,--rcvar
Specify single rc variable values individually. These take
effect after any other rc variables have been loaded from inter-
nal defaults or from configuration files.

-5, --sstexclude
Specify sst exclusion filter filename.

-6, --dark
Set gtk-application-prefer-dark-theme = TRUE (gtk3 only).

-7,--saveonexit
At exit, a requester is brought up to prompt user to write a
save file. Canceling the requester prevents from writing the
file.

-I,--interactive

Specifies that "interactive" VCD mode is to be used which allows
a viewer to navigate a VCD trace while GTKWave is processing the
VCD file. When this option is used, the filename is overloaded
such that it is the hexadecimal value for the shared memory ID
of a writer. Note that the shared memory ID can be passed
straight from stdin by using the --vcd option; see the manpage
for shmidcat(l) for more details.

-g, --giga
Specifies to use gigabyte mempacking when recoding (slower).

-L,--legacy
Specifies that the viewer should use legacy VCD mode rather than
the VCD recoder. Note that using legacy mode will require con-
siderably more memory than the recoder and its use is discour-
aged for very large traces.

-C,--comphier
Specifies that the viewer should use compressed hierarchy names
when loading the dumpfile (available for VCD recoder, LXT, LXT2, and
VZT). This will use less memory at the expense of

GTKWave 3.3 Wave Analyzer User's Guide 66

compression/decompression delay.

-v,--vcd
Use stdin as a VCD dumpfile.

-0, --output <filename>
Specify filename for stdout/stderr redirect. To disable messages to
the console, use /dev/null as the filename.

-z,--slider-zoom
Enable slider stretch zoom for +the horizontal time slider.
Clicking then dragging the very left or right edge of the slider
can be used to provide fine-grained real-time zooming.

-V, --version
Display version banner then exit.

-h,--help
Display help then exit.

-X,--exit
Exit after loading trace (for loader benchmarking).

FILES
~/ .gtkwaverc

EXAMPLES
To run this program the standard way type:
gtkwave dumpfile.vcd

Alternatively you can run it with a save file as:
gtkwave dumpfile.vcd dumpfile.gtkw

To run interactively using shared memory handle 0x00050003:
gtkwave -1 00050003 dumpfile.gtkw

To pick up a dumpfile automatically from a save file (e.g., when
launching from an icon):
gtkwave --save dumpfile.gtkw

To run from the app bundle gtkwave.app in 0SX using /bin/sh:
GTKWAVE CHDIR="pwd ;export GTKWAVE CHDIR;open -n -W -a gtkwave
--args --chdir dummy --dump des.vzt --save des.gtkw

Alternatively, run the following Perl script gtkwave.app/Con-
tents/Resources/bin/gtkwave to process command line arguments from 0SX
shell scripts.

Note that to pass non-flag items which start with a dash, that it is
required to specify -- in order to turn off flag parsing. A second --
will disable parsing of any following arguments such that they can be
passed on to Tcl scripts and retrieved via gtkwave::getArgv.

Command 1line options are not necessary for representing the dumpfile,
savefile, and rcfile names. They are merely provided to allow specify-

GTKWave 3.3 Wave Analyzer User's Guide 67

ing them out of order.

BUGS
AIX requires -bmaxdata:0x80000000 to be added to your list of compiler
flags for xlc if you want GTKWave to be able to access more than 256MB
of wvirtual memory. The value shown allows the VMM to use up to 2GB.
This may be necessary for very large traces.
Shift and Page operations using the wave window hscrollbar may be non-
functional as you move away from the dump start for very large traces.
A trace that goes out to 45 billion ticks has been known to exhibit
this problem. This stems from using the gfloat element of the horizon-
tal slider to encode the time value for the left margin. The result is
a loss of precision for very large values. Use the hotkeys or buttons
at the top of the screen if this is a problem.
When running under Cygwin, it is required to enable Cygserver if shared
memory IPC is being used. Specifically, this occurs when rtlbrowse(1l)
is launched as a helper process. See the Cygwin documentation for more
information on how to enable Cygserver.

AUTHORS
Anthony Bybell <bybell@rocketmail.com>

SEE ALSO
gtkwaverc(5) 1xt2vcd(1l) wvcd2lxt(1l) vcd21xt2(1l) vzt2vcd(1l) vcd2vzt(1l)
xml2stems (1) rtlbrowse(1l) twinwave(l) shmidcat(1)

Anthony Bybell 3.3.29 GTKWAVE (1)

fst2vcd

FST2VCD(1) Filetype Conversion FST2VCD(1)

NAME
fst2vcd - Converts FST files to VCD

SYNTAX
fst2ved [option]... [FSTFILE]

DESCRIPTION
Converts FST files to VCD files on stdout.

OPTIONS

-f,--fstname <filename>
Specify FST input filename.

-0, --output <filename>
Specify optional VCD output filename.

-e, --extensions

Emit FST extensions to VCD. Enabling this may create VCD files
unreadable by other tools. This is generally intended to be

GTKWave 3.3 Wave Analyzer User's Guide 68

used as a debugging tool when developing FST writer interfaces
to simulators.

-h,--help
Display help then exit.

EXAMPLES
To run this program the standard way type:

fst2vcd filename.fst
The VCD conversion is emitted to stdout.

AUTHORS

Anthony Bybell <bybell@rocketmail.com>
SEE ALSO

vcd2fst(1l) gtkwave(1l)
Anthony Bybell 3.3.52 FST2VCD(1)
vcd2fst
VCD2FST(1) Filetype Conversion VCD2FST(1)
NAME

vcd2fst - Converts VCD files to FST files

SYNTAX
vcd2fst [option]... [VCDFILE] [FSTFILE]

DESCRIPTION
Converts VCD files to FST files.

OPTIONS
-v, --vcdname <filename>
Specify VCD/FSDB/VPD/WLF input filename. Processing of file-
types other than VCD requires that the appropriate 2vcd con-
verter was found during ./configure.

-f,--fstname <filename>
Specify FST output filename.

-4,--fourpack
Indicates that LZ4 should be wused for value change data
(default).

-F,--fastpack

Indicates that fastlz should be used instead of LZ4 for value
change data.

-Z,--zlibpack

Indicates that zlib should be used instead of LZ4 for value
change data.

GTKWave 3.3 Wave Analyzer User's Guide 69

-C,--compress
Indicates that the entire file should be run through gzip on
close. This results in much smaller files at the expense of a
one-time decompression penalty on file open during reads.

-p,--parallel
Indicates that parallel mode should be enabled. This spawns a
worker thread to continue with FST block processing while con-
version continues on the main thread for new FST block data.

-h, --help
Show help screen.

EXAMPLES

Note that you should specify dumpfile.vcd directly or use "-" for
stdin.

vcd2fst dumpfile.vcd dumpfile.fst --compress
This indicates that +the FST file should be post-compressed on

close.

AUTHORS

Anthony Bybell <bybell@rocketmail.com>
SEE ALSO

fst2vcd(l) vcd21lxt(1l) vcd21xt2(1l) 1xt2vcd(l) vcd2vzt(1l) vzt2vcd(l) gtk-

wave(l)
Anthony Bybell 3.3.53 VCD2FST(1)
evcd2vcd
EVCD2VCD (1) Filetype Conversion EVCD2VCD (1)
NAME

evcd2vced - Converts EVCD files to VCD files

SYNTAX
evcd2vced [option]... [EVCDFILE]

DESCRIPTION
Converts EVCD files with bidirectional port definitions to VCD files
with separate in and out ports.

OPTIONS
-f,--filename <filename>
Specify EVCD input filename.

-h, --help
Show help screen.

EXAMPLES

GTKWave 3.3 Wave Analyzer User's Guide 70

Note that you should specify dumpfile.vcd directly or use "-" for
stdin.

evcd2vced dumpfile.evcd
VCD is emitted to stdout.

AUTHORS
Anthony Bybell <bybell@rocketmail.com>

SEE ALSO

vcd2fst(l) fst2ved(1l) wvecd2lxt(1l) vecd2lxt2(1l) 1xt2vecd(1l) vcd2vzt(1l)
vzt2vcd(1l) gtkwave(1l)

Anthony Bybell 3.2.2 EVCD2VCD (1)
twinwave

TWINWAVE (1) Simulation Wave Viewer Multiplexer TWINWAVE (1)
NAME

twinwave - Wraps multiple GTKWave sessions in one window

SYNTAX
twinwave <arglistl> <separator> <arglist2>

DESCRIPTION
Wraps multiple GTKWave sessions with synchronized markers, horizontal
scrolling, and zooming.

EXAMPLES
To run this program the standard way type:

twinwave filenamel.vcd filenamel.sav + filename2.vcd filename2.sav
Two synchronized viewers are then opened in one window.

twinwave filenamel.vcd filenamel.sav ++ filename2.vcd filename2.sav
Two synchronized viewers are then opened in two windows.

LIMITATIONS

twinwave uses the GtkSocket/GtkPlug mechanism to embed two gtkwave(l)
sessions 1into one window. The amount of coupling is currently limited
to communication of temporal information. Other +than that, the two
gtkwave processes are isolated from each other as if the viewers were
spawned separately. Keep in mind that using the same save file for
each session may cause unintended behavior problems if the save file is
written back to disk: only the session written 1last will be saved.
(i.e., the save file 1isn’t cloned and made unique to each session.)
Note that twinwave compiled against Quartz (not X11) on 0SX as well as
MinGW does not place both sessions in a single window.

AUTHORS
Anthony Bybell <bybell@rocketmail.com>

GTKWave 3.3 Wave Analyzer User's Guide 71

SEE ALSO

gtkwave (1)
Anthony Bybell 3.3.39 TWINWAVE (1)
Ixt2miner
LXT2MINER(1) Dumpfile Data Mining LXT2MINER(1)
NAME
Ixt2miner - Data mining of LXT2 files
SYNTAX
Ixt2miner [option]... [LXT2FILE]
DESCRIPTION
Mines LXT2 files for specific data values and generates gtkwave save
files to stdout for future reload.
OPTIONS
-d, --dumpfile <filename>
Specify LXT2 input dumpfile.
-m, --match <value>
Specifies "bitwise" match data (binary, real, string)
-X, --hex <value>
Specifies hexadecimal match data that will automatically be con-
verted to binary for searches
-n, --namesonly
Indicates that only facnames should be printed in a gtkwave
savefile compatible format. By doing this, the file can be used
to specify which traces are to be imported into gtkwave.
-Cc,--comprehensive
Indicates that results are not to stop after the first match.
This can be used to extract all the matching values in the
trace.
-h,--help
Show help screen.
EXAMPLES
Ixt2miner dumpfile.lxt2 --hex 20470000 -n
This attempts to match the hex value 20470000 across all facilities and
when the value is encountered, the facname only is printed to stdout in
order to generate a gtkwave compatible save file.
LIMITATIONS

GTKWave 3.3 Wave Analyzer User's Guide 72

Ixt2miner only prints the first time a value is encountered for a spe-
cific net. This is done in order to cut down on the size of output
files and to aid in following data such as addresses through a simula-

tion model.
AUTHORS

Anthony Bybell <bybell@rocketmail.com>
SEE ALSO

vztminer(l) vzt2vcd(l) 1xt2vcd(l) vcd21xt2(1l) gtkwave(l)
Anthony Bybell 3.2.1 LXT2MINER(1)
Ixt2vced
LXT2VCD(1) Filetype Conversion LXT2VCD (1)
NAME

1xt2vcd - Converts LXT2 files to VCD

SYNTAX
Ixt2vcd <filename>

DESCRIPTION
Converts LXT2 files to VCD files on stdout. Note that "regular" LXT2
files will convert to VCD files with monotonically increasing time val-
ues. LXT2 files which are dumped with the "partial" option (to speed
up access in wave viewers) will dump with monotonically increasing time
values per 2k block of nets. This may be fixed in later versions of
1xt2vcd.

EXAMPLES
To run this program the standard way type:

1xt2vcd filename.lxt
The VCD conversion is emitted to stdout.

LIMITATIONS
1xt2vcd does not re-create glitches as these are coalesced together
into one value change during the writing of the LXT2 file.

AUTHORS
Anthony Bybell <bybell@rocketmail.com>

SEE ALSO
ved21xt2(1) ved2lxt(1l) gtkwave(l)

Anthony Bybell 1.3.64 LXT2VCD(1)

GTKWave 3.3 Wave Analyzer User's Guide 73

rtlbrowse

RTLBROWSE (1) File Viewing RTLBROWSE (1)

NAME
rtlbrowse - Allows hierarchical browsing of Verilog HDL source code and
library design files.

SYNTAX
rtlbrowse <stemsfilename>

DESCRIPTION
Allows hierarchical browsing of Verilog HDL source code and library
design files. Navigation through the hierarchy may be done by clicking
open areas of the tree widget and clicking on the individual levels of
hierarchy. Inside the source code, selecting the module instantiation
name by double clicking or selecting part of the name through drag-
clicking will descend deeper into the RTL hierarchy. Note that it per-
forms optional source code annotation when called as a helper applica-
tion by gtkwave(l) and when the primary marker is set. Source code
annotation is not available for all supported dumpfile types. It is
directly available for LXT2, VZT, FST, and AET2. For VCD, use the
-0,--optimize option of gtkwave(l) in order to optimize the VCD file
into FST. All other dumpfile types (LXT, GHW) are unsupported at this
time.

EXAMPLES
To run this program the standard way type:

rtlbrowse stemsfile
The RTL is then brought up in a GTK tree viewer. Stems must
have been previously generated with xml2stems(1l). Note that gtk-
wave(l) will bring up this program as a client application for
source code annotation. It does that by bringing up the viewer
with the shared memory ID of a segment of memory in the viewer
rather than using a stems filename.

AUTHORS

Anthony Bybell <bybell@rocketmail.com>
SEE ALSO

xml2stems (1) gtkwave(1l)
Anthony Bybell 3.3.28 RTLBROWSE (1)
vced21xt
VCD2LXT (1) Filetype Conversion VCD2LXT(1)
NAME

vcd21lxt - Converts VCD files to interlaced or linear LXT files

GTKWave 3.3 Wave Analyzer User's Guide 74

SYNTAX
vcd21xt [VCDFILE] [LXTFILE] [option]...

DESCRIPTION
Converts VCD files to interlaced or linear LXT files. Noncompressed
interlaced files will provide the fastest access, 1linear files will
provide the slowest yet have the greatest compression ratios.

OPTIONS
-stats Prints out statistics on all nets in VCD file in addition to
performing the conversion.

-clockpack
Apply two-way subtraction algorithm in order to identify nets
whose value changes by a constant XOR or whose value
increases/decreases by a constant amount per constant wunit of
time. This option can reduce dumpfile size dramatically as
value changes can be represented by an equation rather than
explicitly as a triple of time, net, and value.

-chgpack
Emit data to file after being filtered through zlib (gzip).

-linear
Write out LXT in "linear" format with no backpointers. These
are re-generated during initialization in gtkwave. Addition-
ally, use libbz2 (bzip2) as the compression filter.

-dictpack <size>
Store value changes greater than or equal to size bits as an
index into a dictionary. Experimentation shows that a value of
18 is optimal for most cases.

EXAMPLES
Note that you should specify dumpfile.vcd directly or use "-" for
stdin.

vcd21lxt dumpfile.vcd dumpfile.lxt -clockpack -chgpack -dictpack 18
This turns on clock packing, zlib compression, and enables the
dictionary encoding. Note that using no options writes out a
normal LXT file.

vcd21xt dumpfile.vcd dumpfile.lxt -clockpack -linear -dictpack 18
Uses linear mode for even smaller files.

AUTHORS
Anthony Bybell <bybell@rocketmail.com>

GTKWave 3.3 Wave Analyzer User's Guide 75

vced21xt2

VCD2LXT2(1) Filetype Conversion VCD2LXT2(1)

NAME
vcd21xt2 - Converts VCD files to LXT2 files

SYNTAX
vcd21xt2 [option]... [VCDFILE] [LXTFILE]

DESCRIPTION
Converts VCD files to LXT2 files.

OPTIONS
-v, --vcdname <filename>
Specify VCD input filename.

-1, --1lxtname <filename>
Specify LXT2 output filename.

-d, --depth <value>
Specify 0..9 gzip compression depth, default is 4.

-m, --maxgranule <value>
Specify number of granules per section, default is 8. One gran-
ule is equal to 32 timsteps.

-b, --break <value>
Specify break size (default = 0 = off). When the break size is
exceeded, the LXT2 dumper will dump all state information at the
next convenient granule plus dictionary boundary.

-p,--partialmode <mode>
Specify partial zip mode 0 = monolithic, 1 = separation. Using
a value of 1 expands LXT2 filesize but provides fast access for
very large traces. Note that the default mode is neither mono-
lithic nor separation: partial zip is disabled.

-c,--checkpoint <mode>

Specify checkpoint mode. 0 1is on which is default, and 1 is
off. This is disabled when the break size is active.

-h, --help
Show help screen.

EXAMPLES

Note that you should specify dumpfile.vcd directly or use "-" for
stdin.

vcd21lxt dumpfile.vcd dumpfile.lxt --depth 9 --break 1073741824

This sets the compression level to 9 and sets the break size to
1GB.

GTKWave 3.3 Wave Analyzer User's Guide 76

vcd21lxt dumpfile.vcd dumpfile.lxt --depth 9 --maxgranule 256
Allows more granules per section which allows for greater com-

pression.

LIMITATIONS

vcd21xt2 does not store glitches as these are coalesced together into
one value change during the writing of the LXT2 file.

AUTHORS

Anthony Bybell <bybell@rocketmail.com>

SEE ALSO

Ixt2ved (1) vecd21xt2(1) gtkwave(1l)

Anthony Bybell

vcd2vzt

VCD2VZT(1)

NAME

1.3.42 VCD2LXT2(1)

Filetype Conversion VCD2VZT (1)

vcd2vzt - Converts VCD files to VZT files

SYNTAX

vcd2vzt [option]... [VCDFILE]

DESCRIPTION

[VZTFILE]

Converts VCD files to VZT files.

OPTIONS
-V, --vcdname <filename>

Specify VCD input filename.

-1, --vztname <filename>

Specify VZT output filename.

-d, --depth <value>

Specify 0..9 gzip compression depth, default is 4.

-m, --maxgranule <value>

Specify number of granules per section, default is 8. One gran-
ule is equal to 32 timesteps.

-b, --break <value>

Specify break size (default = 0 = off). When the break size is
exceeded, the VZT dumper will dump all state information at the
next convenient granule plus dictionary boundary.

-z,--ziptype <value>

Specify zip type (default = 0 gzip, 1 = bzip2, 2 = 1lzma). This
allows you to override the default compression algorithm to use

GTKWave 3.3 Wave Analyzer User's Guide 77

a more effective one at the expense of greater runtime. Note
that bzip2 does not decompress as fast as gzip so the viewer
will be about two times slower when decompressing blocks.

-t,--twostate
Forces MVL2 twostate mode (default is MVL4). When enabled, the
trace will only store 0/1 values for binary facilities. This is
useful for functional simulation and will speed up dumping as
well as make traces somewhat smaller.

-r, --rle
Uses an bitwise RLE compression on the value table. Default is
off. When enabled, this causes the trace data table to be
stored wusing an alternate representation which can improve com-
pression in many cases.

-h, --help
Show help screen.

EXAMPLES

Note that you should specify dumpfile.vcd directly or use "-" for
stdin.

vcd2vzt dumpfile.vcd dumpfile.lxt --depth 9 --break 1073741824
This sets the compression level to 9 and sets the break size to
1GB.

vcd2vzt dumpfile.vcd dumpfile.lxt --depth 9 --maxgranule 512
Allows more granules per section which allows for greater com-
pression at the expense of memory usage.

LIMITATIONS
vcd2vzt does not store glitches as these are coalesced together into
one value change during the writing of the VZT file.

AUTHORS

Anthony Bybell <bybell@rocketmail.com>
SEE ALSO

vzt2ved(1l) 1xt2vcd(l) vcd21xt2(1l) gtkwave(l)
Anthony Bybell 3.1.21 VCD2VZT(1)
vzt2vcd
VZT2VCD(1) Filetype Conversion VZT2VCD(1)
NAME

vzt2ved - Converts VZT files to VCD

GTKWave 3.3 Wave Analyzer User's Guide 78

SYNTAX
vzt2vcd <filename>

DESCRIPTION
Converts VZT files to VCD files on stdout.

EXAMPLES
To run this program the standard way type:

vzt2ved filename.vzt
The VCD conversion is emitted to stdout.

LIMITATIONS
vzt2vcd does not re-create glitches as these are coalesced together
into one value change during the writing of the VZT file.

AUTHORS

Anthony Bybell <bybell@rocketmail.com>
SEE ALSO

vcd21xt2(1) ved21xt(1l) 1xt2vcd(l) gtkwave(l)
Anthony Bybell 1.3.44 VZT2VCD(1)
vzitminer
VZTMINER(1) Dumpfile Data Mining VZTMINER (1)
NAME

vztminer - Data mining of VZT files

SYNTAX
vztminer [option]... [VZTFILE]

DESCRIPTION
Mines VZT files for specific data values and generates gtkwave save
files to stdout for future reload.

OPTIONS
-d, - -dumpfile <filename>
Specify VZT input dumpfile.

-m, --match <value>
Specifies "bitwise" match data (binary, real, string)

-X, --hex <value>
Specifies hexadecimal match data that will automatically be con-
verted to binary for searches

-n, - -namesonly
Indicates that only facnames should be printed in a gtkwave

GTKWave 3.3 Wave Analyzer User's Guide

79

savefile compatible format. By doing this, the file can be used
to specify which traces are to be imported into gtkwave.

-Cc,--comprehensive
Indicates that results are not to stop after the first match.
This can be used to extract all the matching values in the
trace.

-h,--help
Show help screen.

EXAMPLES
vztminer dumpfile.vzt --hex 20470000 -n

This attempts to match the hex value 20470000 across all facilities and
when the value is encountered, the facname only is printed to stdout in
order to generate a gtkwave compatible save file.

LIMITATIONS
vztminer only prints the first time a value is encountered for a spe-
cific net. This is done in order to cut down on the size of output
files and to aid in following data such as addresses through a simula-

tion model.
AUTHORS
Anthony Bybell <bybell@rocketmail.com>
SEE ALSO
Ixt2miner(1l) vzt2vcd(l) 1xt2vcd(1l) vcd21xt2(1l) gtkwave(l)
Anthony Bybell 3.2.1 VZTMINER(1)
shmidcat
SHMIDCAT(1) Shared Memory Trampoline SHMIDCAT(1)
NAME
shmidcat - Copies stdin/file to a shared memory block for gtkwave(1l)
SYNTAX
shmidcat [VCDFILE]
DESCRIPTION
Copies either the file specified at the command line or stdin (if no
file specified) line by line to a shared memory block. stdout will

contain a shared memory ID which should be passed on to gtkwave(l).

EXAMPLES
To run this program the standard way type:

GTKWave 3.3 Wave Analyzer User's Guide 80

cat whatever.vcd | shmidcat
The shared memory ID is emitted to stdout.

shmidcat whatever.vcd | gtkwave -v -I whatever.sav
GTKWave directly grabs the ID from stdin.

LIMITATIONS
This program is mainly for illustrative and testing purposes only. Its
primary use is for people who wish to write interactive VCD dumpers for
gtkwave(l) as 1its source code may be examined, particularly the
emit string() function. It can also be used to test if an existing V(D
file will load properly in interactive mode. Note that it can also be

used to redirected VCD files which are written into a pipe to gtkwave(l)

in a non-blocking fashion.

AUTHORS

Anthony Bybell <bybell@rocketmail.com>
SEE ALSO

gtkwave (1)
Anthony Bybell 3.0.8 SHMIDCAT (1)
fstminer
FSTMINER(1) Dumpfile Data Mining FSTMINER(1)
NAME

fst2miner - Data mining of FST files

SYNTAX
fstminer [option]... [FSTFILE]

DESCRIPTION
Mines FST files for specific data values and generates gtkwave save
files to stdout for future reload.

OPTIONS
-d, --dumpfile <filename>
Specify FST input dumpfile.

-m, --match <value>
Specifies "bitwise" match data (binary, real, string)

-X, --hex <value>
Specifies hexadecimal match data that will automatically be con-
verted to binary for searches

-n, --namesonly
Indicates that only facnames should be printed in a gtkwave
savefile compatible format. By doing this, the file can be used
to specify which traces are to be imported into gtkwave.

GTKWave 3.3 Wave Analyzer User's Guide

81

-c,--comprehensive
Indicates that results are not to stop after the first match.
This can be used to extract all the matching values in the
trace.

-h,--help
Show help screen.

EXAMPLES
fstminer dumpfile.fst --hex 20470000 -n

This attempts to match the hex value 20470000 across all facilities and
when the value is encountered, the facname only is printed to stdout in
order to generate a gtkwave compatible save file.

LIMITATIONS
fstminer only prints the first time a value is encountered for a spe-
cific net. This is done in order to cut down on the size of output
files and to aid in following data such as addresses through a simula-

tion model.
AUTHORS

Anthony Bybell <bybell@rocketmail.com>
SEE ALSO

vztminer(l) lxt2miner(1l) fst2vcd(1l) vcd2fst(1l) gtkwave(l)
Anthony Bybell 3.3.38 FSTMINER(1)
xml2stems
XML2STEMS (1) Filetype Conversion XML2STEMS (1)
NAME

xml2stems - Verilator XML to rtlbrowse stems conversion.

SYNTAX
xml2stems [option]... INFILE [OUTFILE]

DESCRIPTION
Converts Verilator XML AST representation to stems file for use with
rtlbrowse. Intended to replace vermin, and in the future, advanced
tool features may possibly use additional data provided by the Verila-
tor AST. Using "-" as an input filename reads from stdin. Omitting
the output filename outputs to stdout.

OPTIONS
-V,--vl sim
Adds TOP hierarchy for Verilator sim. Not necessary for other
simulators.
-h,--help

GTKWave 3.3 Wave Analyzer User's Guide 82

Display help then exit.

EXAMPLES
The following is a chain of commands to compile Verilog source and then
bring up gtkwave and rtlbrowse together for source code annotation.
This assumes the file des.fst was already generated from a prior simu-
lation.
verilator -Wno-fatal des.v -xml-only --bbox-sys
xml2stems obj dir/Vdes.xml des.stems
gtkwave -t des.stems des.fst

AUTHORS
Anthony Bybell <bybell@rocketmail.com>

SEE ALSO
rtlbrowse(1l) gtkwave(l)

Anthony Bybell 3.3.93 XML2STEMS (1)

GTKWave 3.3 Wave Analyzer User's Guide 83

GTKWave 3.3 Wave Analyzer User's Guide 84

Appendix B: .gtkwaverc Variable Reference

A difference in Windows to be aware of is that the default (if unspecified)
.gtkwaverc file is known as gtkwave.ini and resides in the current working
directory.

GTKWAVERC(5) GTKWave Configuration File GTKWAVERC(5)

NAME
gtkwaverc - GTKWave Configuration File

SYNTAX
option <value>

The configuration file is a series of option and value pairs. Comment
lines marked with an initial '#' character are permissible. Blank
lines are ignored.

DESCRIPTION
Configuration file for gtkwave(l). The search path for the configura-
tion file (if unspecified) is the current working directory followed by
the user's home directory.

OPTIONS

accel <"pathvalue" accelerator>
This allows replacement of menu accelerator keys. See the .gtk-
waverc file in the source distribution for examples on pathvalue
and accelerator syntax. The special accelerator value of (null)
means that no accelerator is bound to the menu item.

alt hier delimeter <value>
This allows another character in addition to the hier delimeter
to be used to delimit levels in the hierarchy for VCD. Only the
first character in the value is significant. Note that this is
normally off. The intended use is to resolve the hierarchies of
netlist based models that often contain slashes to delimit hier-
archy inside of $var statements.

GTKWave 3.3 Wave Analyzer User's Guide

85

alt_wheel mode <value>
Default is on. Scrollwheel alone pans along a quarter at a time
rather than a full page, so you don't get Tlost. Ctrl+wheel
zooms in/out around the mouse cursor position, not the marker
position. Alt+wheel edges left/right based on the currently
selected signal. This makes measuring deltas easier.

analog redraw skip count <value>
Specifies how many overlapping analog segments can be drawn for
a given X position onscreen. (Default: 20) If there are gaps
in analog traces, this value is too low.

append vcd hier <value>
Allows the specification of a prefix hierarchy for VCD files.
This can be done in "pieces," so that multiple layers of hierar-
chy are prepended to symbol names with the most significant
addition occurring first (see .gtkwaverc in the examples/vcd
directory). The intended use of this is to have the ability to
add "project" prefixes which allow easier selection of every-
thing from the tree hierarchy.

atomic vectors <value>
Speeds up vcd loading and takes up less memory. This option 1is
deprecated; it is currently the default.

autocoalesce <value>
A nonzero value enables autocoalescing of VCD vectors when
applicable. This may be toggled dynamically during wave viewer
usage.

autocoalesce reversal <value>
causes split vectors to be reconstructed in reverse order (only
if autocoalesce is also active).

autoname bundles <value>
A nonzero value indicates that GTKWave will create its own bun-
dle names rather than prompting the user for them.

clipboard _mouseover <value>
A nonzero value indicates that when mouseover 1is enabled, all
values generated for the tooltips will be automatically copied
into the clipboard so they may be pasted into other programs
such as text editors, etc.

color 0 <value>
trace color when 0.

color 1 <value>
trace color when 1.

color_back <value>
background color.

color _brkred <value>
brick red color for comments.

GTKWave 3.3 Wave Analyzer User's Guide 86

color black <value>
color value for "black" in signal window.

color black <value>
color value for "black" in signal window.

color _dash <value>
trace color when don't care ("-").

color dashfill <value>
trace color (inside of box) when don't care ("-").

color dkblue <value>
color value for "dark blue" in signal window.

color _dkgray <value>
color value for "dark gray" in signal window.

color _gmstrd <value>
color value for trace groupings.

color grid <value>
grid color (use Alt-G/Shift-Alt-G to show/hide grid).

also the color used for highlight wavewindow when enabled.

color _grid2 <value>
grid color for secondary pattern search.

color high <value>
trace color when high ("H").

color low <value>
trace color when low ("L").

color 1ltblue <value>
color value for shadowed traces.

color ltgray <value>
color value for "light gray" in signal window.

color_mark <value>
color of the named markers.

color mdgray <value>
color value for "medium gray" in signal window.

color mid <value>
trace color when floating ("Z").

color _normal <value>
color value for "normal" GTK state in signal window.

color time <value>
text color for timebar.

GTKWave 3.3 Wave Analyzer User's Guide

87

color_timeb <value>
text color for timebar's background.

color_trans <value>
trace color when transitioning.

color u <value>
trace color when undefined ("U").

color ufill <value>
trace color (inside of box) when undefined ("U").

color umark <value>
color of the unnamed (primary) marker.

color value <value>
text color for vector values.

color_vbox <value>
vector color (horizontal).

color vtrans <value>
vector color (verticals/transitions).

color w <value>
trace color when weak ("W").

color wfill <value>
trace color (inside of box) when weak ("W").

color white <value>
color value for "white" in signal window.

color x <value>
trace color when undefined ("X") (collision for VHDL).

color xfill <value>
trace color (inside of box) when undefined ("X") (collision for
VHDL) .

constant marker update <value>
A nonzero value indicates that the values for traces 1listed 1in
the signal window are to be updated constantly when the left
mouse button is being held down rather than only when it is
first pressed then when released (which is the default).

context tabposition <value>
Use zero for tabbed viewing with named tabs at the top. Nonzero
places numerically indexed tabs at the left.

convert _to reals <value>
Converts all integer and parameter VCD declarations to real-val-
ued ones when set to a nonzero/yes value. The positive aspect of
this 1is that integers and parameters will take up less space in
memory and will automatically display in decimal format. The

GTKWave 3.3 Wave Analyzer User's Guide 88

negative aspect of this 1is that integers and parameters will
only be displayable as decimals and can't be bit reversed,
inverted, etc.

cursor_snap <value>
A nonzero value indicates the number of pixels the marker should
snap to for the nearest signal transition.

disable ae2 alias <value>
A nonzero value indicates that the AE2 loader is to ignore the
aliasdb keyword and is not to construct facility aliases.

disable auto comphier <value>
A nonzero value indicates that the loaders that support com-
pressed hierarchies should not automatically turn on compression
if the threshold count of signals (500000) has been reached.

disable empty gui <value>
A nonzero value indicates that if gtkwave is invoked without a
dumpfile name, then an empty gtkwave session is to be sup-
pressed. Default is a zero value: to bring up an empty session
which needs a file loaded or dragged into it.

disable mouseover <value>
A nonzero value indicates that signal/value tooltip pop up bub-
bles on mouse button presses should be disabled in the value
window. A zero value indicates that value +tooltips should be
active. (default is disabled).

disable tooltips <value>
A nonzero value indicates that tooltip pop up bubbles should be
disabled. A zero value indicates that tooltips should be active
(default).

do_initial zoom fit <value>
A nonzero value indicates that the trace should initially be
crunched to fit the screen. A zero value indicates that the ini-
tial zoom should be zero (default).

dragzoom threshold <value>
A nonzero value indicates the number of pixels in the x direc-
tion the marker must move in order for a dragzoom to be trig-
gered. This is largely to handle noisy input devices.

dynamic resizing <value>
A nonzero value indicates that dynamic resizing should be ini-
tially enabled (default). A zero value indicates that dynamic
resizing should be initially disabled.

editor <"value">
This is used to specify a string (quotes mandatory) for when
gtkwave invokes a text editor (e.g., Open Source Definition).
Examples are: editor "vimx -g +%d %s", editor "gedit +%d %s",
editor "emacs +%d %s", and for 0SX, editor "mate -1 %d %s". The
%d may be combined with other characters in a string such as +,

GTKWave 3.3 Wave Analyzer User's Guide 89

etc. The %s argument must stand by itself. Note that if this
rc variable is not set, then the environment variable GTK-
WAVE EDITOR will be consulted next, then finally gedit will be
used (if found).

enable fast exit <value>
Allows exit without bringing up a confirmation requester.

enable ghost marker <value>
lets the user turn on/off the ghost marker during primary marker
dragging. Default is enabled.

enable horiz grid <value>
A nonzero value indicates that when grid drawing is enabled,
horizontal lines are to be drawn. This is the default.

enable vcd autosave <value>
causes the vcd loader to automatically generate a .sav file
(vcd_autosave.sav) in the cwd if a save file is not specified
on the command line. Note that this mirrors the VCD $var defs
and no attempt is made to coalesce split bitvectors back
together.

enable vert grid <value>
A nonzero value indicates that when grid drawing is enabled,
vertical 1lines are to be drawn. This is the default. Note that
all possible combinations of enable horiz grid and
enable vert grid values are acceptable.

fill waveform <value>
A zero value indicates that the waveform should not be filled
for 1/H values. This is the default.

fontname_logfile <value>
When followed by an argument, this indicates the name of the X11
font that you wish to use for the logfile browser. You may gen-
erate appropriate fontnames using the xfontsel program.

fontname signals <value>
When followed by an argument, this indicates the name of the X11
font that you wish to use for signals. You may generate appro-
priate fontnames using the xfontsel program.

fontname waves <value>
When followed by an argument, this indicates the name of the X11
font that you wish to use for waves. You may generate appropri-
ate fontnames using the xfontsel program. Note that the signal
font must be taller than the wave font or the viewer will com-
plain then terminate.

force toolbars <value>
When enabled, this forces everything above the signal and wave
windows to be rendered as toolbars. This allows for them to be
detached which allows for more usable wave viewer space. By
default this is off.

GTKWave 3.3 Wave Analyzer User's Guide 90

headerbar <value>
Determines whether the headerbar (with hamburger menu that is
specifically disliked by many) is rendered for GTK3, default is
on. Note that the -H/--noheader command line option always
overrides this.

hide sst <value>
Hides the Signal Search Tree widget for GTK2.4 and greater such
that it is not embedded into the main viewer window. It is
still reachable as an external widget through the menus.

hier delimeter <value>
This allows characters other than '/' to be used to delimit lev-
els in the hierarchy. Only the first character in the value is
significant.

hier ignore escapes <value>
A nonzero value indicates that the signal pane ignores escapes
in identifiers when determining the hierarchy maximum depth.
Default is disabled so that escapes are examined.

hier grouping <value>
For the tree widgets, this allows the hierarchies to be grouped
in a single place rather than spread among the netnames.

hier max_level <value>
Sets the maximum hierarchy depth (from the right side) to dis-
play for trace names. Note that a value of zero displays the
full hierarchy name.

highlight wavewindow <value>
When enabled, this causes traces highlighted in the signal win-
dow also to be highlighted in the wave window.

hpane pack <value>
A nonzero value indicates that the horizontal pane should be
constructed using the gtk paned pack functions (default and rec-
ommended). A zero value indicates that gtk paned add will be
used instead.

ignore savefile pane pos <value>
If nonzero, specifies that the pane position attributes (i.e.,
signal window width size, SST is expanded, etc.) are to be
ignored during savefile loading and is to be skipped during sav-
ing. Default is that the attribute is used.

ignore savefile pos <value>
If nonzero, specifies that the window position attribute is to
be ignored during savefile loading and is to be skipped during
saving. Default is that the position attribute is used.

ignore savefile size <value>
If nonzero, specifies that the window size attribute is +to be
ignored during savefile loading and is to be skipped during sav-
ing. Default is that the size attribute is used.

GTKWave 3.3 Wave Analyzer User's Guide 91

initial signal window width <value>
Sets the creation width for the signal pane on GUI initializa-
tion. Also sets another potential minimum value for dynamic
resizing.

initial window x <value>
Sets the size of the initial width of the wave viewer window.
Values 1less than or equal to zero will set the initial width
equal to -1 which will let GTK determine the minimum size.

initial window xpos <value>
Sets the size of the initial x coordinate of the wave viewer
window. -1 which will let the window manager determine the posi-
tion.

initial window y <value>
Sets the size of the initial height of the wave viewer window.
Values 1less than or equal to zero will set the initial width
equal to -1 which will let GTK determine the minimum size.

initial window ypos <value>
Sets the size of the initial y coordinate of the wave viewer
window. -1 which will let the window manager determine the posi-
tion.

keep xz_colors <value>
When nonzero, indicates that the original color scheme for non
0/1 signal values is to be used when Color Format overrides are
in effect. Default is off.

left justify sigs <value>
When nonzero, indicates that the signal window signal name jus-
tification should default to left, else the justification is to
the right (default).

Ixt clock compress to z <value>
For LXT (not LXT2) allows clocks to compress to a 'z' value so
that regular/periodic value changes may be noted.

1z _removal <value>
When nonzero, suppresses the display of leading zeros on non-
filtered traces. This has no effect on filtered traces.

max_fsdb trees <value>
sets the maximum number of hierarchy and signal trees to process
for an FSDB file. Default = 0 = unlimited. The intent of this
is to work around sim environments that accidentally call fsdb-
DumpVars multiple times.

page divisor <value>
Sets the scroll amount for page left and right operations. (The
buttons, not the hscrollbar.) Values over 1.0 are taken as 1/x
and values equal to and less than 1.0 are taken literally.
(i.e., 2 gives a half-page scroll and .67 gives 2/3). The

GTKWave 3.3 Wave Analyzer User's Guide 92

default is 1.0.

ruler _origin <value>
sets the zero origin for alternate time tick marks.

ruler step <value>
sets the left/right step value for the alternate time tick marks
from the origin. When this value is zero, alternate time tick
marks are disabled.

ps_maxveclen <value>
sets the maximum number of characters that can be printed for a
value in the signal window portion of a postscript file (not
including the net name itself). Legal values are 4 through 66
(default).

scale to time dimension <value>
The value can be any of the characters m, u, n, f, p, or s,
which indicates which time dimension to convert the time values
to. The default for this is * which means that time dimension
conversion is disabled.

show base symbols <value>
A nonzero value (default) indicates that the numeric base sym-
bols for hexadecimal ('$'), binary ('%'), and octal ('#') should
be rendered. Otherwise they will be omitted.

show grid <value>
A nonzero value (default) indicates that a grid should be drawn
behind the +traces. A zero indicates that no grid should be
drawn.

splash disable <value>
Turning this off enables the splash screen with the GTKwWave mas-
cot when loading a trace. Default is on.

sst dbl action type <value>
Allows double-clicking to be active in the SST signals pane with
the following actions possible: insert (default), replace,
append, prepend, none. The value specified for the action is
case insensitive and only the first letter is required. Invalid
action types default to none.

sst dynamic filter <value>
When true (default) allows the SST dialog signal filter to fil-
ter signals while keys are being pressed, otherwise enter must
be pressed to cause the filter to go active.

sst_expanded <value>
When +true allows the SST dialog (when not hidden) to come up
already expanded.

strace repeat count <value>

Determines how many times that edge search and pattern search
will iterate on a search. This allows, for example, skipping

GTKWave 3.3 Wave Analyzer User's Guide 93

ahead 10 clock edges instead of 1.

use big fonts <value>
A nonzero value indicates that any text rendered into the wave
window will wuse fonts that are four points larger in size than
normal. This can enhance readability. A zero value indicates
that normal font sizes should be used.

use frequency delta <value>
allows you to switch between the delta time and frequency dis-
play in the upper right corner of the main window when measuring
distances between markers. Default behavior is that the delta
time is displayed (off).

use fat lines <value>
A nonzero value indicates that any lines rendered into the wave
window will be two pixels wide instead of a single pixel in
width. This can enhance readability. A zero value indicates that
normal line widths should be used. [gtkwave3-gtk3 builds only]

use full precision <value>
does not round time values when the number of ticks per pixel
onscreen is greater than 10 when active. The default is that
this feature is disabled.

use gestures <value>
if supported by the GTK version will enable gestures such as
swipe 1in the wave window. The default is that this feature is
enabled if a touch screen is available (value is "maybe"). Val-
ues of on or off are also permissible.

use maxtime display <value>
A nonzero value indicates that the maximum time will be dis-
played in the upper right corner of the screen. Otherwise, the
current primary (unnamed) marker time will be displayed. This
can be toggled at any time with the Toggle Max-Marker menu
option.

use nonprop fonts <value>
Allows accelerated redraws of the signalwindow that can be done
because the font width is constant. Default is off.

use pango_fonts <value>
Uses anti-aliased pango fonts (GTK2) rather than bitmapped X11
ones. Default is on.

use_roundcaps <value>
A nonzero value indicates that vector traces should be drawn
with rounded caps rather than perpendicular ones. The default
for this is zero.

use scrollbar only <value>
A nonzero value indicates that the page, shift, fetch, and dis-
card buttons should not be drawn (i.e., time manipulations
should be through the scrollbar only rather than front panel

GTKWave 3.3 Wave Analyzer User's Guide 94

buttons). The default for this is zero.

use scrollwheel as y <value>
A nonzero value indicates that the scroll wheel on the mouse
should be used to scroll the signals up and down rather than
scrolling the time value from left to right.

use standard clicking <value>
This option no longer has any effect in gtkwave: normal GTK
click semantics are used in the signalwindow.

use toolbutton interface <value>
A nonzero value indicates that a toolbar with buttons should be
at the top of the screen instead of the traditional style gtk-
wave button groups. Default is on.

vcd explicit zero subscripts <value>

indicates that signal names should be stored internally as
name.bitnumber when enabled. When disabled, a more "normal"
ordering of name[bitnumber] is used. Note that when disabled,
the Bundle Up and Bundle Down options are disabled in the Signal
Search Regexp, Signal Search Hierarchy, and Signal Search Tree
options. This is necessary as the internal data structures for
signals are represented with one "less" level of hierarchy than
when enabled and those functions would not work properly. This
should not be an issue if atomic vectors are enabled. Default
for ved explicit zero subscripts is disabled.

vcd _preserve glitches <value>
indicates that any repeat equal values for a net spanning dif-
ferent time values in the VCD/FST file are not to be compressed
into a single value change but should remain in order to allow
glitches to be present for this case. Default for vcd pre-
serve glitches is disabled.

vcd preserve glitches real <value>

indicates that any repeat equal values for a real net spanning
different time values in the VCD/FST file are not to be com-
pressed into a single value change but should remain for this
case. Default for vcd preserve glitches 1is disabled. The
intended use 1is for when viewing analog interpolated data such
that removing duplicate values would incorrectly deform the
interpolation.

vcd warning filesize <value>
produces a warning message if the VCD filesize is greater than
the argument's size in MB. Set to zero to disable this.

vector padding <value>
indicates the number of pixels of extra whitespace that should
be added to any strings for the purpose of calculating text 1in
vectors. Permissible values are 0 to 16 with the default being
4.

vlist compression <value>

GTKWave 3.3 Wave Analyzer User's Guide 95

indicates the value to pass to zlib during vlist processing
(which is wused in the VCD recoder). -1 disables compression,
0-9 correspond to the value zlib expects. 4 is default.

vlist prepack <value>
indicates that the VCD recoder should pre-compress data going
into the value change vlists in order to reduce memory usage.
This is done before potential zlib packing. Default is off.

vlist spill <value>
indicates that the VCD recoder should spill all generated vlists
to a tempfile on disk in order to reduce memory usage. Default
is off.

wave scrolling <value>
a nonzero value enables scrolling by dragging the marker off the
left or right sides of the wave window. A zero value disables
it.

zoom base <value>
allows setting of the zoom base with a value between 1.5 and
10.0. Default is 2.0.

zoom_center <value>
a nonzero value enables center zooming, a zero value disables
it.

zoom _dynamic <value>
a nonzero value enables dynamic full zooming when using the par-
tial VCD (incremental) loader, a zero value disables it.

zoom dynamic_end <value>
a nonzero value enables dynamic zoom to the end when wusing the
partial VCD (incremental) loader, a zero value disables it.

zoom powl@ snap <value>
corresponds to the Zoom Powl® Snap menu option. Default for this
is disabled (zero).

AUTHORS
Anthony Bybell <bybell@rocketmail.com>
SEE ALSO
gtkwave (1)
Anthony Bybell 3.2.0 GTKWAVERC(5)

GTKWave 3.3 Wave Analyzer User's Guide 96

Appendix C: VCD Recoding

VList Recoding Stategy

VCD files can now be recoded in gtkwave on a per-signal basis using a
modified form of VList. The VList structure used by gtkwave is as
follows:

struct vlist t

{

struct vlist t *next;
unsigned int siz;

int offs;

unsigned int elem siz;

};

The elem_siz is always equal to 1 byte. For the first structure, the siz field is 1.

For the next one, it will be 2, then 4, and so forth. Given this doubling property,
this structure allows a dynamically growing indexable array. The offs field is a

pointer to the next element to be written to the array. It starts at zero. When the
offs value is equal to siz, another VList is prepended in front of the existing one.

Note that the siz number of elements are allocated directly after the viist_t
structure, so the first element can be found by skipping sizeof (vlist_t) bytes
from the start of the v1ist_t structure.

When a new vlist_t is prepended in front of an old one, a compaction of the
data elements following the old v1ist_t is attempted with zlib when the number

of bytes to compact is 64 or greater. If the compaction results in a savings of
space, the uncompressed v1ist_t is discarded and the compressed one is kept.

To signify that a particular viist_t is compressed, the offs field is negated.
(Thus, when accessing the list later, a negative offset indicates that the viist_t

GTKWave 3.3 Wave Analyzer User's Guide 97

structure in question is compressed.) Note that for a given VList, it is possible
that there will be both compressed and uncompressed v1ist_t structures, and

this will have to be taken into account when they are accessed later.

When a vlist_t is finalized (i.e., when no more elements are to be added to it), a
compression is attempted. If that fails (i.e., not appreciable size savings), a naive
truncation of the unused bytes (siz-offs) *elem_siz is done. Given the nature
of the data in this list, compression usually succeeds.

These VList structures remain dormant in memory in their (possibly) compressed
form until they are needed to be accessed. At that time they are decompressed
(if required), traversed, and destroyed as they will no longer be needed. The
actual data contained in the memory area following the v1ist_t structures to

represent VHDL/Verilog value changes will now be described.

Time Encoding

Along with the value changes, an uncompressed VList of 64-bit integers is also
generated as time values are parsed from the VCD file. (i.e., lines of the form
"#1000") As the time values are added to that VList, a numerical index (zeroth,
first, second) is maintained separately that indicates what the current time index
is.

The reason for maintaining a list of indices is so that value changes can be
encoded as relative distances in this list rather than actual 64-bit integers.

Single-bit Encoding

Single bit value changes are encoded as a variable length integer of the format
(delta<<?2)|(zero one bit<<1) when the value is zero or one, or (delta<<4)|
rcv_bit value for all other bit values.

The "delta" value represents how many timesteps in the VCD file have taken
place since the previous value change for a signal. Look at the following for an
example:

#1000 clk =0 index=n
#1001 n+1

GTKWave 3.3 Wave Analyzer User's Guide 98

#1010 n+ 2
#1013 n+ 3
#1100 clk =1 n+4

...so for the value change on clk at time #1100, the delta is 4.

The rcv_bit value when the bit value is not zero or one is encoded as the position
numbered 0-7 in the string "XZHUWL-?" multiplied by 2 with one added to the
result. (i.e.,1,3,5,7,9, 11, 13, 15)

The variable length integer is generated with the following algorithm. It shifts
the value out seven bits at a time and sets the high bit on the last byte of the
variable length integer:

unsigned intv; // value
char *pnt; // destination pointer

while((nxt = v>>7))

{

*(pnt++) = (v&0x71);
V = nxt;

}

*pnt = (v&0x71) | 0x80;
Using this scheme, most value changes can be encoded in one or two
(uncompressed) bytes. For the example above, the tuple (4, '1') encodes into an
integer as:

(4<<2) | (1<<1) =0x12

As a variable length integer; it is stored as a single (uncompressed) byte 0x92.

Multi-bit Encoding

Multiple bits are encoded as a variable length integer representing the time
delta (without any left shifting), and immediately after that a reformatted string
is encoded as packed nybbles against the MVL9 string "0XZ1HUWL-". As multi-
bit strings can be of any length, the value of 15 is used to signify the end of
string marker. An example:

#1000 val = 1010 index = n

GTKWave 3.3 Wave Analyzer User's Guide 99

#1001 n+1

#1010 n+2
#1013 n+3
#1100 val = 1zz0 n+4

Thus, the tuple (4, "1ZZ0") at time #1100 is encoded bytewise as:

0x84 [variable length integer for delta of 4]

0x32 ["1Z": "0OXZ1HUWL-"[3], "0XZ1HUWL-"[2]]

0x20 ["Z0": "0OXZ1HUWL-"[2], "0XZ1HUWL-"[0]]

0xf0 [end of string marker + nybble pad to byte boundary]

For longer strings, this provides a 2:1 space compaction prior to calling
zlib.

Reals and String Encoding

They are stored simply as (delta, null terminated string) without any re-encoding
of the real or string from its ASCII representation. So for the value (4,
"3.14159"), it is encoded bytewise as

0x84 [variable length integer for delta of 4]
0x33 0x2e 0x31 0x34 0x31 0x35 0x39 0x00 ["3.14159" with null termination]

Final Notes on VCD Recoding

Even with zlib compression disabled (which gtkwave allows for performance),
the memory usage savings are substantial. There are several reasons for this:

Storing VCD identifiers is completely unnecessary as the value change data
is routed to its appropriate VList. Hence, the identifier implicitly is
represented by the VList itself.

Single-bit changes can be represented in only one or two bytes in most
cases.

Multi-bit changes can be represented with slightly less than half the
amount of memory required normally (as the VCD identifier is no longer
required).

The amount of "next" pointers required per-VList is 1g(n bytes). This allows
a low overhead even when having a large number of active growable VList

GTKWave 3.3 Wave Analyzer User's Guide 100

“streams" in memory at once.
VList truncation when the lists are finalized at the end of the VCD file read
ensure that unused VList space is returned to the operating system.

GTKWave 3.3 Wave Analyzer User's Guide 101

GTKWave 3.3 Wave Analyzer User's Guide 102

Appendix D: LXT File Format

LXT Framing

The three most important values in an LXT(interLaced eXtensible Trace) file are
the following:

#define LT HDRID (0x0138)
#define LT VERSION (0x0001)
#define LT TRLID (0xB4)

An LXT file starts with a two byte LT HDRID with the two byte version number
LT VERSION concatenated onto it. The last byte in the file is the LT TRLID.
These five bytes are the only "absolutes" in an LXT file.

01 380001 ...file body... B4

As one may guess from the example above, all integer values represented in LXT
files are stored in big endian order.

Note that all constant definitions found in this appendix may be found in the
header file src/helpers/Ixt write.h. Note that LXT?2 files use a completely
different file format as well as different constant values.

LXT Section Pointers

Preceding the trailing ID byte B4 is a series of tag bytes which themselves are
preceded by 32-bit offsets into the file which indicate where the sections pointed

GTKWave 3.3 Wave Analyzer User's Guide 103

to by the tags are located. The exception is tag 00 (LT SECTION END) which
indicates that no more tags/sections are specified:

00 ... offset for tag 2, tag 2, offset for tag 1, tag 1, B4

Currently defined tags are:

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

LT SECTION END

LT SECTION CHG

LT SECTION SYNC TABLE

LT _SECTION FACNAME

LT SECTION FACNAME GEOMETRY
LT _SECTION TIMESCALE

LT SECTION TIME TABLE

LT _SECTION INITIAL VALUE

LT SECTION DOUBLE TEST

LT SECTION TIME TABLE64

—_~ e~~~ —~ —~
OoOuUk,WNRERO

(
(7
(8

)
)
)
)
)
)
)
)
)
(9)

Let's put this all together with an example:

The first tag encountered is 08 (LT SECTION DOUBLE TEST) at 339. Its offset
value indicates the position of the double sized floating point comparison
testword. Thus, the section location for the testword is at 0309 from the
beginning of the file.

00000300:
00000310:
00000320:
00000330:

XX XX XX XX XX XX XX XX XX 6e 86 1b
40 00 00 00 00 04 01 00 00 02 4b 02
03 00 00 01 4b 04 00 00 03 08 05 00
00 00 03 07 07 00 00 03 09 08 b4 --

fo 9
00 00
00 02

The next tag encountered is 07 (LT SECTION INITIAL VALUE) at 334. Its offset
value indicates the position of the simulation initial value. Even though this value
is a single byte, its own section is defined. The reasoning behind this is that older
versions of LXT readers would be able to skip unknown sections without needing
to know the size of the section, how it functions, etc.

00000300:
00000310:
00000320:
00000330:

XX XX XX XX XX XX XX XX XX 6e 86 1b
40 00 00 00 00 04 01 00 00 02 4b 02
03 00 00 01 4b 04 00 00 03 08 05 00
00 00 03 07 07 00 00 03 09 08 b4 --

fo 9
00 00
00 02

The next tag encountered is 06 (LT SECTION TIME TABLE) at 32F. Its offset value
(the underlined four byte number) indicates the position of the time table which
stores the time value vs positional offset for the value change data.

00000300
00000310
00000320
00000330

pXX XX XX XX XX XX XX XX XX 6e 86 1b fO f9

: 40 00 0O 00 00 04 01 00 00 02 4b 02

00 00

: 03 00 00 01 4b 04 00 00 03 08 05 00 00 02

: 00 00 03 07 07 0O 00 03 09 08 b4 --

GTKWave 3.3 Wave Analyzer User's Guide 104

The next tag encountered is 05 (LT SECTION TIMESCALE) at 32A. Its offset value
indicates the position of the timescale byte.

00000300: XX XX XX XX XX XX XX XX XX 6e 86 1b fO0 f9 21 09 n....".
00000310: 40 00 00 00 00 04 01 00 GO 02 4b 02 00 00 00 be @......... Kooo..
00000320: 03 00 00 01 4b 04 00 060 63 08 05 00 00 02 8b 06K...........
00000330: 00 00 03 07 07 00 00 03 09 08 b4 -- -- -- -- -- ..o,

The next tag encountered is 04 (LT SECTION FACNAME GEOMETRY) at 325. Its
offset value indicates the geometry (array/msb/Isb/type/etc) of the dumped
facilities (signals) in the file.

00000300: XX XX XX XX XX XX XX XX XX 6e 86 1b f0 f9 21 09 n.....
00000310: 40 00 00 00 00 04 01 00 GO 02 4b 02 00 00 00 be @......... Kooo..
00000320: 03 00 00 01 4b 04 00 00 03 08 05 00 00 02 8b 06K...........
00000330: 00 00 03 07 07 00 00 03 09 08 b4 -- -- -- -- -- ..o,

The next tag encountered is 03 (LT SECTION FACNAME) at 320. Its offset value
indicates where the compressed facility names are stored.

00000300: XX XX XX XX XX XX XX XX XX 6e 86 1b fO0 f9 21 09 n....".
00000310: 40 00 00 00 0O 04 01 00 0O 02 4b 02 00 060 00 be @......... K..o.o..
00000320: 03 00 00 01 4b 04 00 00 03 068 05 00 00 02 8b 06K...........
00000330: 00 00 03 07 07 00 00 63 09 08 b4 -- -- -- -- -- ...

The next tag encountered is 02 (LT SECTION SYNC TABLE) at 31B. Its offset value
points to a table where the final value changes for each facility may be found.

00000300: XX XX XX XX XX XX XX XX XX 6e 86 1b fO0 f9 21 09 n....".
00000310: 40 00 00 00 00 04 01 00 00 02 4b 02 00 00 00 be @......... K.....
00000320: 03 00 00 01 4b 04 00 00 03 08 05 00 00 02 8b 06K...........
00000330: 00 00 03 07 07 00 00 63 09 08 b4 -- -- -- -- -- ...

The next tag encountered is 01 (LT SECTION CHG) at 316. Its offset value points
to the actual value changes in the file.

00000300: XX XX XX XX XX XX XX XX XX 6e 86 1b f0 f9 21 09 n.....
00000310: 40 00 00 00 00 04 01 00 00 02 4b 02 00 00 00 be @......... Koo,
00000320: 03 00 00 01 4b 04 00 00 03 08 05 00 00 02 8b 06K...........
00000330: 00 00 03 07 07 00 00 03 09 08 b4 -- -- -- -- -- ..o,

The final tag encountered is 00 at 311. It signifies that there are no more tags.

00000300: XX XX XX XX XX XX XX XX XX 6e 86 1b f0 f9 21 609 n....u.
00000310: 40 00 00 00 00 04 01 00 OO 02 4b 02 00 00 00 be @......... Kooo..
00000320: 03 00 00 01 4b 04 00 00 03 068 05 00 00 02 8b 06K...........
00000330: 00 00 03 07 07 00 00 63 09 08 b4 -- -- -- -- -- ...

Note that with the exception of the termination tag 00, tags may be encountered
in any order. The fact that they are encountered in monotonically decreasing

GTKWave 3.3 Wave Analyzer User's Guide 105

order in the example above is an implementation detail of the Ixt write dumper.
Code which processes LXT files should be able to handle tags which appear in
any order. For tags which are defined multiple times, it is to be assumed that the
tag instance closest to the termination tag is the one to be used unless each
unique instantiation possesses a special meaning. Currently, repeated tags have
no special semantics.

LXT Section Definitions
The body of each section (as currently defined) will now be explained in detail.
08: LT SECTION DOUBLE TEST

This section is only present if double precision floating point data is to be found
in the file. In order to resolve byte ordering issues across various platforms, a
rounded version of pi (3.14159) is stored in eight consecutive bytes. This value
was picked because each of its eight bytes are unique. It is the responsibility of
an LXT reader to compare the byte ordering found in the

LT SECTION DOUBLE TEST section to that of the same rounded version of pi as
represented by reader's processor. By comparing the position on the host and in
the file, it may be determined how the values stored in the LXT file need to be
rearranged. The following bit of code shows one possible implementation for
this:

static char double mask[8]={0,0,0,0,0,0,0,0};
static char double is native=0;

static void create double endian mask(double *pnt)

{

static double p = 3.14159;

double d;

int i, j;

d= *pnt;

if(p==d)
{
double is native=1;
}
else
{
char *remote, *here;
remote = (char *)&d;
here = (char *)&p;

for(i=0;i<8;i++)

GTKWave 3.3 Wave Analyzer User's Guide 106

{
for(j=0;j<8;j++)
{

if(here[i]==remote[j])
{
double mask[il=j;
break;

}

}

If double _is native is zero, the following function will then be needed to be
called to rearrange the file byte ordering to match the host every time a double
is encountered in the value change data:

static char *swab double via mask(double *d)

{

char swapbuf[8];

char *pnt = malloc(8*sizeof(char));
int 1i;

memcpy (swapbuf, (char *)d, 8);
for(i=0;i<8;i++)

{
pnt[i]=swapbuf[double mask[i]];

}

return(pnt);

}
07: LT_SECTION_INITIAL_VALUE

This section is used as a "shortcut" representation to flash all facilities in a
dumpfile to a specific value at the initial time. Permissible values are '0', '1', 'Z',
'X', 'H', 'U', 'W', 'L, and '-' stored as the byte values 00 through 08 in the LXT file.
06: LT SECTION _TIME TABLE / 08: LT SECTION TIME TABLE64

This section marks the time vs positional data for the LXT file. It is represented
in the following format:

4 bytes: number of entries (n)
4 bytes: min time in dump (8 bytes for LT SECTION TIME TABLEG4)
4 bytes: max time in dump (8 bytes for LT SECTION TIME TABLE64)

n 4-byte positional delta entries follow
n 4-byte time delta entries follow (8 byte entries for LT SECTION TIME TABLEG64)

GTKWave 3.3 Wave Analyzer User's Guide 107

It is assumed that the delta values are represented as current value -

previous value, which means that deltas should always be positive. In addition,
the previous value for delta number zero for both position and time is zero. This
will allow for sanity checking between the time table and the min/max time fields
if it is so desired or if the min/max fields are needed before the delta entries are
traversed.

Example:

00000005 5 entries are in the table
00000000 Min time of simulation is 0
00000004 Max time of simulation is 4.
00000000 time[0]=0

00000001 time[1]=1

00000001 time[2]=2

00000001 time[3]=3

00000001 time[4]=4

00000004 pos[0]=0x4

00000010 pos[1]=0x14

00000020 pos[2]=0x34

00000002 pos[3]=0x36

00000300 pos[4]=0x336

05: LT _SECTION_TIMESCALE

This section consists of a single signed byte. Its value (x) is the exponent of a
base-10 timescale. Thus, each increment of '1' in the time value table

represented in the previous section represents 10 * seconds. Use -9 for
nanoseconds, -12 for picoseconds, etc. Any eight-bit signed value (-128 to +127)
is permissible, but in actual practice only a handful are useful.

03: LT SECTION_FACNAME

No, section 04: LT SECTION FACNAME GEOMETRY hasn't been forgotten. It's more
logical to cover the facilities themselves before their geometries.

4 bytes: number of facilities (n)
4 bytes: amount of memory required in bytes for the decompressed facilities

n compressed facilities follow, where a compressed facility consists of two
values:

2 bytes: number of prefix bytes (min=0, max=65535)
zero terminated string: suffix bytes

GTKWave 3.3 Wave Analyzer User's Guide 108

An example should clarify things (prefix lengths are in bold):

00000020: 00 00 00 04 00 00 00 1d 60 00 61 6¢C 70 68 61 00 alpha.
00000030: 00 01 70 70 6C 65 00 00 04 69 63 61 74 69 6f 6e ..pple...ication
00000040: 00 60 00 7a 65 72 6f 0O OO OO0 00 O1 GO 00 00 GO ...zero.........

Four facilities (underlined) are defined and they occupy 0x0000001d bytes
(second underlined value).

This first prefix length is 0000 (offset 28).
The first suffix is "alpha", therefore the first facility is "alpha". This requires six
bytes.

The second prefix length is 0001 (offset 30).
The second suffix is "pple", therefore the second facility is "apple". This requires
six bytes.

The third prefix length is 0004 (offset 37).
The third suffix is "ication", therefore the third facility is "application". This
requires twelve bytes.

The fourth prefix length is 0000 (offset 41).
The fourth suffix is "zero", therefore the fourth facility is "zero". This requires
five bytes.

6+6+ 12 + 5 =29 which indeed is 0x1d.

It is suggested that the facilities are dumped out in alphabetically sorted order in
order to increase the compression ratio of this section.

04: LT _SECTION_FACNAME_GEOMETRY

This section consists of a repeating series of sixteen byte entries. Each entry
corresponds in order with a facility as defined in 03: LT SECTION FACNAME. As
such there is a 1:1 in-order correspondence between the two sections.

4 bytes: rows (typically zero, only used when defining arrays: this indicates
the max row value+1)

4 bytes: msb

4 bytes: Isb

4 bytes: flags

flags are defined as follows:

#define LT SYM F BITS (0)
#define LT SYM F_INTEGER (1<<0)

GTKWave 3.3 Wave Analyzer User's Guide 109

#define LT SYM F_DOUBLE (1<<1)
#define LT _SYM F_STRING (1<<2)
#define LT SYM F_ALIAS (1<<3)

When an LT SYM F ALIAS is encountered, it indicates that the rows field instead
means "alias this to facility number rows", there the facility number corresponds
to the definition order in 03: LT SECTION FACNAME and starts from zero.

02: LT _SECTION_SYNC_TABLE

This section indicates where the final value change (as a four-byte offset from the
beginning of the file) for every facility is to be found. Facilities which do not
change value contain a value of zero for their final value change. This section is
necessary as value changes are stored as a linked list of backward directed
pointers. There is a 1:1 in-order correspondence between this section and the
definitions found in LT _SECTION_ FACNAME.

4 bytes: final offset for facility (repeated for each facility in order as they were
defined)

01: LT _SECTION_CHG

This section is usually the largest section in a file as is composed of value
changes, however its structure is set up such that individual facilities can be
quickly accessed without the necessity of reading in the entire file. In spite of
this format, this does not prevent one from stepping through the entire section
backwards in order to process it in one pass. The method to achieve this will be
described later.

The final offset for a value change for a specific facility is found in 02:

LT SECTION_SYNC TABLE. Since value changes for a facility are linked together,
one may follow pointers backward from the sync value offset for a facility in
order to read in an entire trace. This is used to accelerate sparse reads of an LXT
file's change data such as those that a visualization tool such as a wave viewer
would perform.

The format for a value change is as follows:

command byte, delta offset of previous changel, [row changed,] change data]
Command Bytes

The command byte is broken into two (as currently defined) bitfields: bits [5:4]
contain a byte count (minus one) required for the

delta offset of previous change (thus a value from one to four bytes), and bits
[3:0] contain the command used to determine the format of the change data (if

any change data is necessary as dictated by the command byte).

GTKWave 3.3 Wave Analyzer User's Guide 110

Bits [3:0] of the command byte are defined as follows. Note that this portion of
the command byte is ignored for strings and doubles and typically x0 is placed in
the dumpfile in those cases:

MVL 2 [or default (for datatype) value change follows]
MVL 4

MVL 9

flash whole value to Os

flash whole value to 1s

flash whole value to Zs

flash whole value to Xs

flash whole value to Hs

flash whole value to Us

flash whole value to Ws

flash whole value to Ls

flash whole value to -s

clock compress use 1 byte repeat count
clock compress use 2 byte repeat count
clock compress use 3 byte repeat count
clock compress use 4 byte repeat count

MMOOm>TO0ooONOUPA,WNRFO

Commands x3-xB only make sense for MVL 2/4/9 (and integer in the case for x3
and x4 when an integer is 0 or ~0) facilities. They are provided as a space saving
device which obviates the need for dumping value change data when all the bits
in a facility are set to the same exact value. For single bit facilities, these
commands suffice in all cases.

Command x0 is used when change data can be stored as MVL 2. Bits defined in
MVL 2 are '0' and '1' and as such, one bit of storage in an LXT file corresponds
to one bit in the facility value.

Command x1 is used when change data can't be stored as MVL 2 but can stored
as MVL 4. Bits defined in MVL 4 are '0', '1', 'Z', and X' are stored in an LXT file
as the two-bit values 00, 01, 10, and 11.

Command x2 is used when change data can't be stored as either MVL 2 or
MVL 4 but can be stored as MVL 9. Bits defined in MVL 9 are '0', '1', 'Z', 'X', '"H',
'U', 'W', 'L', and '-' corresponding to the four-bit values 0000 through 1000.

Commands xC-xF are used to repeat a clock. It is assumed that at least two clock
phase changes are present before the current command. Their time values are
subtracted in order to obtain a delta. The delta is used as the change time
between future phase changes with respect to the time value of the previous
command which is used as a "base time" and "base value" for repeat count+1
phase changes.

GTKWave 3.3 Wave Analyzer User's Guide 111

Note that these repeat command nybbles also are applicable to multi-bit facilities
which are 32-bits or less and MVL 2 in nature. In this case, the preceding two
deltas are subtracted such that a recurrence equation can reconstruct any
specific item of the compressed data:

unsigned int j = item in series to create + 1;

unsigned int res = base + (j/2)*rle delta[l] + ((j/2)+(j&1))*rle deltal0];
For a sequence of: 7B 7C 7D 7E 7F 80 81 82 ...

base = 82

rle deltalll 82 - 81 == 01

rle delta[0] 81l - 80 == 01
Two deltas are used in order to handle the case where a vector which changes
value by a constant XOR. In that case, the rle delta values will be different. In
this way, one command encoding can handle both XOR and

incrementer/decrementer type compression ops.

Delta Offsets

Delta offsets indicate where the preceding change may be found with respect to
the beginning of the LXT file. In order to calculate where the preceding change
for a facility is, take the offset of the command byte, subtract the

delta offset of previous change from it, then subtract 2 bytes more. As an
example:

00001000: 13 02 10 ...

The command byte is 13. Since bits [5:4] are "01", this means that the
delta offset of previous change is two bytes since 1 + 1 = 2.

The next two bytes are 0210, so 1000 - 0210 - 2 = ODEE. Hence, the preceding
value change can be found at ODEE. This process is to be continued until a value
change offset of 0 is obtained. This is impossible because of the existence of the
LXT header bytes.

Row Changed

This field is only present in value changes for arrays. The value is 2, 3, or 4 bytes
depending on the magnitude of the array size: greater than 16777215 rows
requires 4 bytes, greater than 65535 requires 3 bytes, and so on down to one
byte. Note that any value type can be part of an array.

Change Data
This is only present for command _bytes x0-x2 for MVL 2, MVL 4, and MVL 9
data, and any command byte for strings and doubles. Strings are stored in zero

terminated format and doubles are stored as eight bytes in machine-native
format with 08: LT SECTION DOUBLE_TEST being used to resolve possible

GTKWave 3.3 Wave Analyzer User's Guide 112

differences in endianness on the machine reading the LXT file.

Values are stored left justified in big endian order and unused bits are zeroed
out. Examples with " " used to represent the boundary between consecutive
bytes:

MVL 2: "0101010110101010" (16 bits) is stored as 01010101 10101010
MVL 2: "011" (3 bits) is stored as 01100000
MVL 2: "11111110011" (11 bits) is stored as 11111110 01100000

MVL 4: "01ZX01ZX" (8 bits) is stored as 00011011 00011011
MVL 4: "ZX1" (3 bits) is stored as 10110100
MVL 4: "XXXXZ" (5 bits) is stored as 11111111 10000000

MVL 9: "01XZHUWL-" (9 bits) is stored as
00000001 00100011 01000101 01100111 10000000

Correlating Time Values to Offsets

This is what the purpose of 06: LT SECTION TIME TABLE is. Given the offset of a
command byte, bsearch(3) an array of ascending position values (not deltas)
and pick out the maximum position value which is less than or equal to the offset
of the command byte. The following code sequence illustrates this given two
arrays positional information[] and time information[]. Note that

total cycles corresponds to number of entries as defined in 06:

LT SECTION TIME TABLE.

static int max_compare time tc, max compare pos tc;
static int compar mvl timechain(const void *sl1l, const void *s2)

{
int key, obj, delta;
int rv;

key=*((int *)sl);
obj=*((int *)s2);

if((obj<=key)&&(obj>max compare time tc))

max_compare time tc=obj;
max_compare pos tc=(int *)s2 - positional information;

}

delta=key-obj;
if(delta<@) rv=-1;
else if(delta>0) rv=1;
else rv=0;

return(rv);

}

GTKWave 3.3 Wave Analyzer User's Guide 113

static int bsearch position versus time(int key)

{

max_compare time tc=-1; max compare pos tc=-1;

bsearch((void *)&key, (void *)positional information, total cycles, sizeof(int),
compar_mvl_ timechain);
if((max_compare pos tc<=0)||(max compare time tc<0))

{
max_compare pos tc=0; /* aix bsearch fix */
}

return(time information[max compare pos tcl);

}

Reading All Value Changes in One Pass

This requires a little bit more work but it can be done. Basically what you have to
do is the following:

1. Read in all the sync offsets from 02: LT SECTION SYNC TABLE and put
each in a structure which contains the sync offset and the facility index. All
of these structures will compose an array that is as large as the number of
facilities which exist.

2. Heapify the array such that the topmost element of the heap has the
largest positional offset.

3. Change the topmost element's offset to its preceding offset (as determined
by examining the command byte, bits [5:4] and calculating the preceding
offset by subtracting the delta offset of previous change then subtracting
2 bytes.

4. Continue with step 2 until the topmost element's offset is zero after
performing a heapify().

00: LT _SECTION_END

As a section pointer doesn't exist for this, there's no section body either.

The Ixt_write API

In order to facilitate the writing of LXT files, an API has been provided which
does most of the hard work.

struct 1t_trace *1t_init(const char *name)

This opens an LXT file. The pointer returned by this function is NULL if
unsuccessful. If successful, the pointer is to be used as a "context" for all the

GTKWave 3.3 Wave Analyzer User's Guide 114

remaining functions in the API. In this way, multiple LXT files may be generated
at once.

void 1t_close(struct 1t_trace *1t)

This fixates and closes an LXT file. This is extremely important because if the file
is not fixated, it will be impossible to use the value change data in it! For this
reason, it is recommended that the function be placed in an atexit(3) handler
in environments where trace generation can be interrupted through program
crashes or external signals such as control-C.

struct 1t_symbol *1t_symbol_add(struct 1t_trace *1t, const char *name, unsigned
int rows, int msb, int lsb, int flags)

This creates a facility. Since the facility and related tables are written out during
fixation, one may arbitrarily add facilities up until the very moment that 1t close()
is called. For facilities which are not arrays, a value of 0 or 1 for rows. As such,
only values 2 and greater are used to signify arrays. Flags are defined above as
in 04: LT SECTION FACNAME GEOMETRY.

struct 1t_symbol *1t_symbol_ find(struct 1t_trace *1t, const char *name)

This finds if a symbol has been previously defined. If returns non-NULL on
success. It actually returns a symbol pointer, but you shouldn't be dereferencing
the fields inside it unless you know what you are doing.

struct 1t_symbol *1t_symbol alias(struct 1t_trace *1t, const char *existing_name,
const char *alias, int msb, int 1lsb)

This assigns an alias to an existing facility. This is to create signals which
traverse multiple levels of hierarchy, but are the same net, possibly with different
MSB and LSB values (though the distance between them will be the same).

void 1t_symbol_bracket_stripping(struct 1t_trace *1t, int doit)

This is to be used when facilities are defined in Verilog format such that exploded
bitvectors are dumped as x[0], x[1], x[2], etc. If doit is set to a nonzero value, the
bracketed values will be stripped off. In order to keep visualization and other
tools from becoming confused, the MSB/LSB values must be unique for every bit.
The tool vcd21xt shows how this works and should be used. If vectors are
dumped atomically, this function need not be called.

void 1t_set_timescale(struct 1t_trace *1t, int timescale)

This sets the simulation timescale to 10timescale gaconds where timescale is an 8-
bit signed value. As such, negative values are the only useful ones.

void 1t_set_initial_value(struct 1t_trace *1t, char value)

GTKWave 3.3 Wave Analyzer User's Guide 115

This sets the initial value of every MVL (bitwise) facility to whatever the value is.
Permissible values are '0', '1', 'Z', 'X', 'H', 'U', 'W', 'L, and '-'.

int 1t_set_time(struct 1t_trace *1t, unsigned int timeval)
int 1t_inc_time_by delta(struct 1t_trace *1t, unsigned int timeval)
int 1t_set_time64(struct 1t_trace *1t, lxttime_t timeval)
int 1t_inc_time_by_delta64(struct 1t_trace *1t, lxttime_t timeval)

This is how time is dynamically updated in the LXT file. Note that for the non-
delta functions, timeval changes are expected to be monotonically increasing. In
addition, time values dumped to the LXT file are coalesced if there are no value
changes for a specific time value. (Note: Ixttime t is defined as an unsigned long
long.)

void 1t_set clock compress(struct 1t_trace *1t)

Enables clock compression heuristics for the current trace. This cannot be
turned off once it is on.

int 1t_emit_value_int(struct 1t_trace *1t, struct lt_symbol *s, unsigned int row,
int value)

This dumps an MVL 2 value for a specific facility which is 32-bits or less. Note
that this does not work for strings or doubles.

int 1t_emit_value_double(struct 1t_trace *1t, struct lt_symbol *s, unsigned int
row, double value)

This dumps a double value for a specific facility. Note that this only works for
doubles.

int 1t_emit_value_string(struct 1t_trace *lt, struct 1t_symbol *s, unsigned int
row, char *value)

This dumps a string value for a specific facility. Note that this only works for
strings.

int 1t_emit_value_bit_string(struct 1t_trace *1t, struct 1t_symbol *s, unsigned
int row, char *value)

This dumps an MVL 2, MVL 4, or MVL 9 value out to the LXT file for a specific
facility. Note that the value is parsed in order to determine how to optimally
represent it in the file. In addition, note that if the value's string length is shorter
than the facility length, it will be left justified with the rightmost character will
be propagated to the right in order to pad the value string out to the correct
length. Therefore, "10x" for 8-bits becomes "10xxxxxx" and "z" for 8-bits becomes
"222777277".

GTKWave 3.3 Wave Analyzer User's Guide 116

Appendix E: Tcl Command Syntax

Tcl Command Syntax

Besides being able to access the menu options (e.g., gtkwave::/File/Quit), within
Tcl scripts there are more commands available for manipulating the viewer.

addCommentTracesFromList: adds comment traces to the viewer
Syntax: set num_found [gtkwave::addCommentTracesFromList list]

Example:

set clk48 [list]

lappend clk48 "Sfacnamel"
lappend clk48 "Sfacname2"

set num_added [gtkwave::addCommentTracesFromList $clk48]
addSignalsFromlList: adds signals to the viewer

Syntax: set num_found [gtkwave::addSignalsFromList list]

Example:

set clk48 [list]

lappend clk48 "$facnamel"
lappend clk48 "$facnamel2"

set num_added [gtkwave::addSignalsFromList $clk48]

deleteSignalsFromList: deletes signals from the viewer. This deletes only the
first instance found unless the signal is specified multiple times in the list.

Syntax: set num_deleted [gtkwave::deleteSignalsFromList list]

GTKWave 3.3 Wave Analyzer User's Guide 117

Example:
set clk48 [list]

lappend clk48 "Sfacnamel"
lappend clk48 "Sfacname2"

set num_deleted [gtkwave::deleteSignalsFromList $clk48]

deleteSignalsFromListIncludingDuplicates: deletes signals from the viewer. This
deletes all the instances found so there is no need to specify the same signal
multiple times in the list.

Syntax: set num_deleted
[gtkwave::deleteSignalsFromListIncludingDuplicates list]

Example:
set clk48 [list]

lappend clk48 "$facnamel"
lappend clk48 "$facnamel2"

set num_deleted [gtkwave::deleteSignalsFromListIncludingDuplicates
$clk48]

findNextEdge: advances the marker to the next edge for highlighted signals

Syntax: set marker_time [gtkwave: :findNextEdge]

Example:
gtkwave::highlightSignalsFromList "top.clk"

set time_value [gtkwave::findNextEdge]

puts "time_value: S$time_value"

findPrevEdge: moves the marker to the previous edge for highlighted signals

Syntax: set marker_time [gtkwave::findPrevEdge]

Example:
gtkwave::highlightSignalsFromList "top.clk"

set time_value [gtkwave::findPrevEdge]

puts "time_value: $time_value"

forceOpenTreeNode: forces open one tree node in the Signal Search Tree and
closes the rest. If upper levels are not open, the tree will remain closed however
once the upper levels are opened, the hierarchy specified will become open. If
path is missing or is an empty string, the function returns the current hierarchy
path selected by the SST or -1 in case of error.

GTKWave 3.3 Wave Analyzer User's Guide 118

Syntax: gtkwave: :forceOpenTreeNode hierarchy_path

Returned value:
0 - success
1 - path not found in the tree
-1 - SST tree does not exist

Example:
set path tb.HDT.cpu
switch —- [gtkwavetcl::forceOpenTreeNode S$path] {
-1 {puts "Error: SST is not supported here"}
1 {puts "Error: 'Spath' was not recorder to dump file"}

0 {1}

getArgv: returns a list of arguments which were used to start gtkwave from the
command line

Syntax: set argvlist [gtkwave::getArgv]
Example:
set argvs [gtkwave::getArgv]

puts "Sargvs"
getBaselineMarker: returns the numeric value of the baseline marker time

Syntax: set baseline_time [gtkwave::getBaselineMarker]
Example:
set baseline [gtkwave::getBaselineMarker]

puts "Sbaseline"

getDisplayedSignals: returns a list of all signals currently on display
Syntax: set display_1list [gtkwave::getDisplayedSignals]

Example:
set display_list [gtkwave::getDisplayedSignals]

puts "Sdisplay_list"
getDumpFileName: returns the filename for the loaded dumpfile

Syntax: set loaded_file_name [gtkwave::getDumpFileName]

Exanuﬂe:set nfacs [gtkwave::getNumFacs]
set dumpname [gtkwave::getDumpFileName]

GTKWave 3.3 Wave Analyzer User's Guide 119

set dmt [gtkwave::getDumpType |
puts "number of signals in dumpfile 'S$dumpname' of type $dmt: $nfacs"

getDumpType: returns the dump type as a string (VCD, PVCD, LXT, LXT2, GHW,
VZT)

Syntax: set dump_type [gtkwave::getDumpType]
Example:

set nfacs [gtkwave::getNumFacs]

set dumpname [gtkwave::getDumpFileName]

set dmt [gtkwave::getDumpType]
puts "number of signals in dumpfile 'S$dumpname' of type S$dmt: $nfacs"

getFacName: returns a string for the facility name which corresponds to a given
facility number

Syntax: set fac_name [gtkwave::getFacName fac_number]

Example:
set nfacs [gtkwave::getNumFacs]

for {set i 0} {$i < S$nfacs } {incr i} {
set facname [gtkwave::getFacName $i]
puts "$i: S$facname"

}

getFacDir: returns a string for the direction which corresponds to a given facility
number

Syntax: set fac_dir [gtkwave::getFacDir fac_number]
Example:
set nfacs [gtkwave::getNumFacs]

for {set i 0} {$1i < S$nfacs } {incr i} {
set facdir [gtkwave::getFacDir $i]
puts "$i: S$facdir"

}

getFacVtype: returns a string for the variable type which corresponds to a given
facility number

Syntax: set fac_vtype [gtkwave::getFacVtype fac_number]
Example:
set nfacs [gtkwave::getNumFacs]

for {set 1 0} {$i < $nfacs } {incr 1} {
set facvtype [gtkwave::getFacVtype $i]
puts "$i: $facvtype"

GTKWave 3.3 Wave Analyzer User's Guide 120

}

getFacDtype: returns a string for the data type which corresponds to a given
facility number

Syntax: set fac_dtype [gtkwave::getFacDtype fac_number]
Example:
set nfacs [gtkwave::getNumFacs]

for {set 1 0} {$i < $nfacs } {incr 1} {
set facdtype [gtkwave::getFacDtype $i]
puts "S$i: $facdtype"

}

getFontHeight: returns the font height for signal names

Syntax: set font_height [gtkwave::getFontHeight]

Example:
set font_height [gtkwave::getFontHeight]

puts "Sfont_height"

getFromEntry: returns the time value string in the “From:” box.

Syntax: set from _entry [gtkwave::getFromEntry]

Example:
set from_entry [gtkwave::getFromEntry]

puts "$from_entry"

getHierMaxLevel: returns the max hier value which is set in the viewer

Syntax: set hier _max_level [gtkwave::getHierMaxLevel]
Example:
set max_level [gtkwave::getHierMaxLevel]

puts "Smax_level"

getLeftJustifySigs: returns 1 if signals are left justified, else 0

Syntax: set left_justify [gtkwave::getLeftJustifySigs]

Example:
set justify [gtkwave::getLeftJustifySigs]

puts "Sjustify"

getLongestName: returns number of characters of the longest name in the
dumpfile

GTKWave 3.3 Wave Analyzer User's Guide 121

Syntax: set longestname_len [gtkwave::getLongestName]

Example:
set longest [gtkwave::getLongestName]

puts "Slongest"

getMarker: returns the numeric value of the primary marker position

Syntax: set marker_time [gtkwave::getMarker]
Example:
set marker_time [gtkwave::getMarker]

puts "Smarker_time"

getMaxTime: returns the numeric value of the last time value in the dumpfile

Syntax: set max_time [gtkwave::getMaxTime]
Example:
set max_time [gtkwave::getMaxTime]

puts "Smax_time"

getMinTime: returns the numeric value of the first time value in the dumpfile

Syntax: set min_time [gtkwave::getMinTime]
Example:
set min_time [gtkwave::getMinTime]

puts "S$min_time"

getNamedMarker: returns the numeric value of the named marker position

Syntax: set time_value [gtkwave::getNamedMarker which]
such that which = A-Z or a-z

Example:
set marker_time [gtkwave::getNamedMarker A]

puts "Smarker_time"

getNumPFacs: returns the number of facilities encountered in the dumpfile

Syntax: set numfacs [gtkwave::getNumFacs]
Example:

set nfacs [gtkwave::getNumFacs]

set dumpname [gtkwave::getDumpFileName]

set dmt [gtkwave::getDumpType]
puts "number of signals in dumpfile 'Sdumpname' of type $dmt: Snfacs"

GTKWave 3.3 Wave Analyzer User's Guide 122

getNumTabs: returns the number of tabs shown on the viewer

Syntax: set numtabs [gtkwave::getNumTabs]

Example:
set ntabs [gtkwave::getNumTabs]

puts "number of tabs: S$ntabs"

getPixelsUnitTime: returns the number of pixels per unit time

Syntax: set pxut [gtkwave::getPixelsUnitTime]
Example:
set pxut [gtkwave::getPixelsUnitTime]

puts "Spxut"

getSaveFileName: returns the save filename

Syntax: set save_file_name [gtkwave::getSaveFileName]
Example:
set savename [gtkwave::getSaveFileName]

puts "S$Ssavename"

getStemsFileName: returns the stems filename

Syntax: set stems_file_name [gtkwave::getStemsFileName]
Example:
set stemsname [gtkwave::getStemsFileName]

puts "Sstemsname"

getTimeDimension: returns the first character of the time units that the trace
was saved in (e.g., "u" for us, "n" for "ns", "s" for sec, etc.)

Syntax: set dimension_first_char [gtkwave::getTimeDimension]

Example:
set dimch [gtkwave::getTimeDimension]

puts "Sdimch"

getTimeZero: returns the numeric value for what represents the time #0 in the
dumpfile. This is only of interest if the $timezero directive is encountered in the
dumpfile.

Syntax: set zero_time [gtkwave::getTimeZero]

Example:

GTKWave 3.3 Wave Analyzer User's Guide 123

set zero_time [gtkwave::getTimeZero]
puts "Szero_time"

getToEntry: returns the time value string in the “To:” box.

Syntax: set to_entry [gtkwave::getToEntry]

Example:
set to_entry [gtkwave::getFromEntry]

puts "Sto_entry"

getTotalNumTraces: returns the total number of traces that are being displayed
currently

Syntax: set total_traces [gtkwave::getTotalNumTraces]

Example:
set totnum [gtkwave::getTotalNumTraces]

puts "Stotnum"

getTraceFlagsFromIndex: returns the decimal value of the sum of all flags for a
given trace

Syntax: set flags [gtkwave::getTraceFlagsFromIndex trace_number]

Example:
set tflags [gtkwave::getTraceFlagsFromIndex 0]

puts “Stflags”

getTraceFlagsFromName: returns the decimal value of the sum of all flags for a
given trace

Syntax: set flags [gtkwave::getTraceFlagsFromName trace_name]

Example:
set tflags [gtkwave::getTraceFlagsFromName {top.des.klx[1:48]} 1]

puts "sStflags"

getTraceNameFromIndex: returns the name of a trace when given the index
value

Syntax: set trace_name [gtkwave::getTraceNameFromIndex
trace_number]

Example:
set tname [gtkwave::getTraceNameFromIndex 1]

puts "Stname"
getTraceScrollbarRowValue: returns the scrollbar value (which corresponds to

GTKWave 3.3 Wave Analyzer User's Guide 124

the trace index for the topmost trace on screen)

Syntax: set scroller_value [gtkwave::getTraceScrollbarRowValue]

Example:
set scroller [gtkwave::getTraceScrollbarRowValue]

puts "S$scroller"

getTraceValueAtMarkerFromIndex: returns the value under the marker for the
trace numbered trace index

Syntax: set ascii_value [gtkwave::getTraceValueAtMarkerFromIndex
trace_number]

Example:
set tvi [gtkwave::getTraceValueAtMarkerFromIndex 2]

puts "Stvi"

getTraceValueAtMarkerFromName: returns the value under the primary marker
for the given trace name

Syntax: set ascii_value [gtkwave::getTraceValueAtMarkerFromName
fac_name]

Example:
set tvn [gtkwave::getTraceValueAtMarkerFromName

{top.des.k2x[1:48]} 1
puts "stvn"

getTraceValueAtNamedMarkerFromName: returns the value under the named
marker for the given trace name

Syntax: set ascii_value
[gtkwave: :getTraceValueAtNamedMarkerFromName which fac_name]
such that which = A-Z or a-z

Example:
set tvn [gtkwave::getTraceValueAtNamedMarkerFromName A

{top.des.k2x[1:48]} 1]
puts "S$tvn"

getUnitTimePixels: returns the number of time units per pixel

Syntax: set utpx [gtkwave::getUnitTimePixels]
Example:
set utpx [gtkwave::getUnitTimePixels]

GTKWave 3.3 Wave Analyzer User's Guide 125

puts "sSutpx"

getVisibleNumTraces: returns number of non-collapsed traces

Syntax: set num_visible_traces [gtkwave::getVisibleNumTraces]
Example:
set nvt [gtkwave::getVisibleNumTraces]

puts "$Snvt"

getWaveHeight: returns the height of the wave window in pixels

Syntax: set wave_height [gtkwave::getWaveHeight]
Example:

set wht [gtkwave::getWaveHeight]

puts "Swht"

getWaveWidth: returns the width of the wave window in pixels

Syntax: set wave_width [gtkwave::getWaveWidth]

Example:
set wwt [gtkwave::getWaveWidth]

puts "Swwt"
getWindowEndTime: returns the end time of the wave window

Syntax: set end_time_value [gtkwave::getWindowEndTime]
Example:
set wet [gtkwave::getWindowEndTime]

puts "Swet"
getWindowStartTime: returns the start time of the wave window

Syntax: set start_time_value [gtkwave::getWindowStartTime]
Example:
set wst [gtkwave::getWindowStartTime]

puts "Swst"
getZoomFactor: returns the zoom factor of the wave window

Syntax: set zoom_value [gtkwave::getZoomFactor]

Example:
set zf [gtkwave::getZoomFactor]

GTKWave 3.3 Wave Analyzer User's Guide 126

puts "S$zf"

highlightSignalsFromList: highlights the facilities contained in the list argument

Syntax: set num_highlighted [gtkwave::highlightSignalsFromList
list]

Example:
set clk48 [list]

lappend clk48 "Sfacnamel"
lappend clk48 "Sfacname2"

set num_highlighted [gtkwave::highlightSignalsFromList $clk48]

installFileFilter: installs file filter number which across all highlighted traces.
Using zero for which removes the filter.

Syntax: set num_updated [gtkwave::installFileFilter which]

Example:
set num_updated [gtkwave::installFileFilter 0]

puts "$num_updated"

installProcFilter: installs process filter number which across all highlighted
traces. Using zero for which removes the filter.

Syntax: set num_updated [gtkwave::installProcFilter which]
Example:
set num_updated [gtkwave::installProcFilter 0]

puts "Snum_updated"

installTransFilter: installs transaction process filter number which across all
highlighted traces. Using zero for which removes the filter.

Syntax: set num_updated [gtkwave::installTransFilter which]

Example:
set num_updated [gtkwave::installTransFilter 0]

puts "S$num_updated"
loadFile: loads a new file

Syntax: gtkwave::loadFile filename

Example:
gtkwave::loadFile "Sfilename"

nop: calls the GTK main loop in order to update the gtkwave GUI

GTKWave 3.3 Wave Analyzer User's Guide 127

Syntax: gtkwave: :nop

Example:
gtkwave: :nop

presentWindow: raises the main window in the stacking order or deiconifies it

Syntax: gtkwave: :presentWindow

Example:
gtkwave: :presentWindow

rel.oadFile: reloads the current active file

Syntax: gtkwave: :reLoadFile

Example:
gtkwave: :reLoadFile

setBaselineMarker: sets the time for the baseline marker (-1 removes it)

Syntax: gtkwave: :setBaselineMarker time_value

Example:
gtkwave: :setBaselineMarker 128

setCurrentTranslateEnums: sets the enum list to function as the current
translate file and returns the corresponding which value to be used with
gtkwave::installFileFilter. As a real file is not used, the results of this are not
recreated when a save file is loaded or if the waveform is reloaded.

Syntax: set which_f [gtkwave::setCurrentTranslateEnums elist]
Example:

Set enums [list]

lappend enums 0000000000000000 IDLE

lappend enums FFFFFFFFFFFFFEFFEF BUSY

lappend enums 3000000000000000 OTHER

lappend enums 0123456789ABCDEF HEXSTATE

lappend enums 1111111111111111 "All 1s"

set which_f [gtkwave::setCurrentTranslateFile S$Senums]
puts "Swhich_f"

setCurrentTranslateFile: sets the filename to the current translate file and
returns the corresponding which value to be used with gtkwave::installFileFilter.

Syntax: set which_f [gtkwave::setCurrentTranslateFile filename]

GTKWave 3.3 Wave Analyzer User's Guide 128

Example:
set which_f [gtkwave::setCurrentTranslateFile ./zzz.txt]

puts "Swhich_f"

setCurrentTranslateProc: sets the filename to the current translate process
(executable) and returns the corresponding which value to be used with
gtkwave::installProcFilter.

Syntax: set which_f [gtkwave::setCurrentTranslateProc filename]
Example:
set which_f [gtkwave::setCurrentTranslateProc ./zzz.exe]

puts "Swhich_f£f"

setCurrentTranslateTransProc: sets the filename to the current transaction
translate process (executable) and returns the corresponding which value to be
used with gtkwave::installTransFilter.

Syntax: set which_f [gtkwave::setCurrentTranslateTransProc filename
]

Example:

set which_f [gtkwave::setCurrentTranslateTransProc ./zzz.exe]

puts "Swhich_f"

setFromEntry: sets the time in the “From:” box.

Syntax: gtkwave: :setFromEntry time_value

Example:
gtkwave: :setFromEntry 100

setLeftJustifySigs: turns left justification for signal names on or off

Syntax: gtkwave::setLeftJustifySigs on_off value

Example:
gtkwave::setLeftJustifySigs on

gtkwave::setLeftJustifySigs off

setMarker: sets the time for the primary marker (-1 removes it)

Syntax: gtkwave: :setMarker time_value

Example:
gtkwave: :setMarker 128

setNamedMarker: sets named marker A-Z (a-z) to a given time value and

GTKWave 3.3 Wave Analyzer User's Guide 129

optionally renames the marker text to a string (-1 removes the marker)

Syntax: gtkwave: :setNamedMarker which time_value [string]

Example:
gtkwave: :setNamedMarker A 400 "Example Named Marker"

gtkwave: :setNamedMarker A 400

setTabActive: sets the active tab in the viewer (0..getNumTabs-1)

Syntax: gtkwave: :setTabActive which

Example:
gtkwave: :setTabActive 0

setToEntry: sets the time in the “To:” box.

Syntax: gtkwave::setToEntry time_value

Example:
gtkwave: :setToEntry 600

setTraceHighlightFromIndex: highlights or unhighlights the specified trace

Syntax: gtkwave: :setTraceHighlightFromIndex trace_index on_off

Example:
gtkwave: :setTraceHighlightFromIndex 2 on

gtkwave: :setTraceHighlightFromIndex 2 off

setTraceHighlightFromNameMatch: highlights or unhighlights the specified
trace

Syntax: gtkwave: :setTraceHighlightFromNameMatch fac_name on_off

Example:
gtkwave: :setTraceHighlightFromNameMatch top.des.clk on

gtkwave: :setTraceHighlightFromNameMatch top.clk off

setTraceScrollbarRowValue: sets the scrollbar for traces a number of traces
down from the very top

Syntax: gtkwave: :setTraceScrollbarRowValue scroller_value

Example:
gtkwave: :setTraceScrollbarRowValue 10

setWindowStartTime: scrolls the traces such that the start time is at the left
margin (as long as the zoom level permits this)

GTKWave 3.3 Wave Analyzer User's Guide

130

Syntax: gtkwave: :setWindowStartTime start_time

Example:
gtkwave: :setWindowStartTime 100

setZoomPFactor: sets the zoom factor for the trace data (i.e., how compressed it is
with respect to time)

Syntax: gtkwave: :setZoomFactor zoom_value

Example:
gtkwave: :setZoomFactor -3

setZoomRangeTimes: sets the visible time range for the trace data

Syntax: gtkwave: :setZoomRangeTimes timel time2

Example:
gtkwave: :setZoomRangeTimes 100 217

showSignal: sets the scrollbar for traces a number of traces down from the very
top (0), center (1), or bottom (2)

Syntax: gtkwave: :setTraceScrollbarRowValue scroller_value position
Example:
gtkwave: :setTraceScrollbarRowValue 10 O

signalChangelList: returns time and value changes for the signals indicated by
the argument names

Syntax: gtkwave: :signalChangelist signal_name options
Where options is are one or more of the following:
-start_time start-time (default 0)

-end_time end-time (default last sample in dump file)

-max maximum-number-of-samples (default 0x7fffffff)

—-dir forward|backward (default forward)

The function returns a Tcl list of value changes for the signal-name starting at
start-time and ending at end-time or an empty list in any other case.

GTKWave 3.3 Wave Analyzer User's Guide 131

Even members of the list hold the time of change and odd members hold the
value that is associated with the time the precedes it. Values are given as strings
in the base of the signal.

If signal-name is not present then the first highlighted signal is taken.
Length of the list is defined by both end-time and max, whichever comes first.

To specify backward search, end-time should be smaller than start-time or dir
should have the value of backward and end-time is not defined.

A conflict between timing (start/end-time) and direction (forward/backward)
returns an empty list.

Examples:

1. prints the first 100 changes of the signal tb.HDT.cpu.CS starting at time 10000

set signal tb.HDT.cpu.CS
set start_time 10000
foreach {time value} [gtkwave::signalChangelList $signal -start_time
Sstart_time -max 100] {
puts "Time: S$time value: $value"

}

2. retrieve the value of tb.HDT.cpu.CS at time 123456

lassign [gtkwave::signalChangelList tb.HDT.cpu.CS -start_time
123456

-max 1] dont_care wvalue

unhighlightSignalsFromList: unhighlights the facilities contained in the list
argument

Syntax: set num_unhighlighted [gtkwave::unhighlightSignalsFromList
list]

Example:
set clk48 [list]

lappend clk48 "Sfacnamel"
lappend clk48 "Sfacname2"

set num_highlighted [gtkwave::unhighlightSignalsFromList $clk48]

GTKWave 3.3 Wave Analyzer User's Guide 132

Tcl Callbacks

When gtkwave performs various functions, global callback variables prepended
with gtkwave:: are modified within the Tcl interpreter. By using the trace write
feature in Tcl, scripts can achieve a very tight integration with gtkwave. Global
variables which may be used to register callback procedures are as follows:

gtkwave::cbCloseTabNumber contains the value returned is the number of the
tab which is going to be closed, starting from zero. As this is set before the tab
actually closes, scripts can interrogate for further information.

gtkwave::cbCloseTraceGroup contains the name of the expanded trace or trace
group being closed.

gtkwave::cbCurrentActiveTab contains the number of the tab currently selected.
Note that when new tabs are being created, this callback sometimes will oscillate
between the old and new tab number, finally settling on the new tab being
created.

gtkwave::cbError contains an error string such as “reload failed”,
“gtkwave::loadFile prohibited in callback”, “gtkwave::reLoadFile prohibited in
callback”, or “gtkwave::setTabActive prohibited in callback”.

gtkwave::cbFromEntryUpdated contains the value stored in the “From:” widget
when it is updated.

gtkwave::cbOpenTraceGroup contains the name of a trace being expanded or
trace group being opened.

gtkwave::cbQuitProgram contains the tab number which initiated a Quit
operation. Tabs are numbered starting from zero.

gtkwave::cbReloadBegin contains the name of a trace being reloaded. This is
called at the start of a reload sequence.

gtkwave::cbReloadEnd contains the name of a trace being reloaded. This is
called at the end of a reload sequence.

gtkwave::cbStatusText contains the status text which goes to stderr.
gtkwave::cbTimerPeriod contains the timer period in milliseconds (default is
250), and this callback is invoked every timer period expiration. If Tcl code

modifies this value, the timer period can be changed dynamically.

gtkwave::cbToEntryUpdated contains the value stored in the “To:” widget when
it is updated.

GTKWave 3.3 Wave Analyzer User's Guide 133

gtkwave::cbTracesUpdated contains the total number of traces. This is called
when traces are added, deleted, etc. from the viewer.

gtkwave::cbTreeCollapse contains the flattened hierarchical name of the SST
tree node being collapsed.

gtkwave::cbTreeExpand contains the flattened hierarchical name of the SST tree
node being expanded.

gtkwave::cbTreeSelect contains the flattened hierarchical name of the SST tree
node being selected.

gtkwave::cbTreeSigDoubleClick contains the name of the signal being double-
clicked in the signals section of the SST.

gtkwave::cbTreeSigSelect contains the name of the signal being selected in the
signals section of the SST.

gtkwave::cbTreeSigUnselect contains the name of the signal being unselected in
the signals section of the SST.

gtkwave::cbTreeUnselect contains the flattened hierarchical name of the SST
tree node being unselected.

An example Tcl script follows to illustrate usage.

proc tracer {varname args} {
upvar #0 S$varname var
puts "S$varname was updated to be \"Svar\""

}

proc tracer_error {varname args} {
upvar #0 S$varname var
puts "*** ERROR: $varname was updated to be \"Svar\""

}

set i1e [info exists tracer_defined]
if { $ie == 0 } {
set tracer_defined 1

trace add variable gtkwave::cbTreeExpand write "tracer
gtkwave: :cbTreeExpand"

trace add variable gtkwave::cbTreeCollapse write "tracer
gtkwave: :cbTreeCollapse"

GTKWave 3.3 Wave Analyzer User's Guide 134

gtkwave:

gtkwave:

gtkwave:

gtkwave:

"tracer

trace add variable gtkwave::cbTreeSelect write "tracer
:cbTreeSelect"

trace add variable gtkwave::cbTreeUnselect write "tracer
:cbTreeUnselect"

trace add variable gtkwave::cbTreeSigSelect write "tracer
:cbTreeSigSelect"

trace add variable gtkwave::cbTreeSigUnselect write "tracer
:cbTreeSigUnselect"

trace add variable gtkwave::cbTreeSigDoubleClick write
gtkwave: :cbTreeSigDoubleClick"
}

puts "Exiting script!"

GTKWave 3.3 Wave Analyzer User's Guide 135

GTKWave 3.3 Wave Analyzer User's Guide 136

Appendix F: Implementation of an
Efficient Method for Digital Waveform
Compression

Anthony Bybell
Advanced Micro Devices, Inc.
Austin, Texas
anthony.bybell@amd.com

Abstract—An efficient method in both speed
and size for the reformatting, compression, and
storage of digital waveform data as generated by
digital system simulators is described.

Keywords—Verilog;
compression

VCD; digital; waveform;

I. Introduction
Compression of analog waveform data has received
much attention due to the shift from analog to digital
media for the storage and delivery of entertainment
content. A large number of lossy formats (e.g., MP3,
ATRAC, RealAudio) and lossless formats (e.g., ALAC,
MPEG-4 ALS, FLAC) exist ranging from proprietary to
open source offerings.
Much less focus has been directed toward the efficient
compression and retrieval of digital waveform data.
One significant source of such data is the simulation of
digital systems representing complex VLSI designs.
IEEE 1800 [1] describes a format known as Value
Change Dump (VCD), which although well-
documented and supported, leaves much to be desired
in file size and reader access speed: a flat text file is
not a compressed, random access database. To this
end, various commercial products [2][3][4][5] have
surfaced to address size and performance issues, but
the algorithms used by them to process digital
waveform data have not been disclosed. Nevertheless,
for [4] its writer API [6] which provides an interface to
simulators, and its reader API [7] which provides an
interface to other tools such as waveform viewers can
yield substantial hints to the details of a commercial
database’s implementation. Of the sparse published
information to be found regarding the topic of digital
waveform compression, the approach described in [8]
is an instructive starting point for study.
The approach described in this paper separates the
waveform data generated by a simulator into a
number of independent, temporal streams that are
individually preprocessed, compressed, deduplicated,
and finally emitted into a database either literally or as
a reference to a previously encountered equivalent
stream.

Fig. 1.

II. VCD file format
As described in [1], VCD is an ASCII-based file format
for the storage of digital waveform data that is
relatively easy to generate and to parse. VCD files
contain three sections: header information, node
information, and value changes.
A. Header Information
Header information is trivial. It contains information
such as the simulator version, the timescale of the
simulation, and optional comments.
B. Node Information
Node information contains a series of scope/upscope
declarations and variable declarations.
Scope declarations contain a scope name and a scope
type (such as “module”) along with an appropriately
paired “upscope” declaration.
A variable declaration contains variable type, size, and
name fields, as well as an encoded version of an
unsigned nonzero integer identifier_code value.
Identifier code values are encoded by most
commercial simulators from an unsigned nonzero
value v into bijective base-94 printable ASCII in
character array V according to the following

algorithm:
1:i<0
2: while v # 0 do
3: vev-1
4. Vi< (vmod 94) + 33
5: vev /94
6: i—i+1
7: end while
Conversion of an unsigned nonzero integer value

into a bijectively encoded character array

This bijective encoding is significant in that the values
1 to 94 are encoded, not 0 to 93. An interesting side
effect of this is that it is impossible to construct two or
more strings representing the same integer value as
this number system lacks a zero symbol [9]. As each
string in the set of all possible strings generates a
unique integer value, it can be exploited for perfect
hashing, thus eliminating the need during subsequent
VCD file reading to process identifier codes as strings.

Fig. 2.

Decoding of an encoded value from character array V
into unsigned integer value v is similar:

1: i(_‘/length -]-

2: v 0

3: while i = 0 do

4. ve—v*¥94 4+ (V- 32)
S: i—i-1

6: end while

Decoding a bijectively encoded character array
into an unsigned nonzero integer

The identifier code is used to correlate a given
variable declaration to its entries in the value changes
section. As a space optimization, if a simulator
identifies that two or more variables are functionally
equivalent (e.g., as with a clock that propagates across
a functional model), then it may reuse the same
identifier_code for all of the aliases of the initial
declaration.

To assist in parsing a VCD file so that associative
arrays are not required to look up identifier codes, the
identifier code starts at a value of one and increments
by one from its previous maximum for each
succeeding variable declaration that is not an alias.
Thus, a simple array where the identifier code
functions as an array index suffices for lookups. VCD
parsers taking advantage of this “parse by value”
scheme must revert to using associative arrays (“parse
by handle”) of unsigned integers or some similar
method to process identifier codes when this property
does not hold.

C. Value Changes

The value changes section is the final section of the
VCD file and generally is the most substantial portion
of the file with regard to the percentage of total file
size. It contains digital waveform data stored as a
series of simulation_time items and value change
items. A value change item as specified by [1] is an
encoded identifier code paired with a value that is an
integer, a double-precision floating-point number, or a
multi-value 4-state “01XZ” (MVL-4) bit string.

A simulation_time item associates with all

value _change items that follow until the next
encountered simulation_time item. Thus, the value
changes section encodes a series of {time,

identifier code, value} transition triples
representative of all the traced variables in a
simulation. As there is no limitation on where a

value change for a given identifier code can be
located, the determination of all of the transition
triples for a given variable requires processing of the
entire value changes section. This is clearly inefficient
for interactive tools such as waveform viewers as
much irrelevant data must be processed. To
ameliorate this situation, most commercial tools such
as [3]1[4]1[5] will convert a VCD file to a native database
format rather than process the VCD file directly.

III. Limitations and acceptable shortcuts

Some simulation tools such as [5] provide precise
reconstruction of the ordering for all the value change
items that share the same simulation_time value.
Other commercial tools such as [4] by default do not

preserve this ordering unless a sequence ordering
option is specifically enabled. In [4], it is stated that
enabling sequence ordering increases file size and
simulation run time. The precise ordering offered by
[5] is generally not enabled in [4] as it is not useful for
functional debug of race-free zero-delay designs. It
does have its place however, for debugging test bench
code.
It is to be noted that for a variable that glitches (i.e., a
single identifier code contains multiple value change
items for a given simulation_time value), at least the
final value change for the variable must be stored.
This is to ensure that the final state a variable settles
at for a given simulation_time value is visible when the
database is queried. A well-known glitch suppression
method employed by Verilog simulators is that
simulation data for all variables that change within a
time step are written all at once during the
REASON ROSYNCH callback for the time step.
In order to minimize file size, sequence ordering is not
preserved by the approach described in this paper.
For the FST file format implementation in [10] that
implements the algorithms described in this paper,
glitch transitions are preserved as doing so simplifies
file generation, though a compile-time option is
available that permits elision of all glitch
value changes except the final one.
IV. Design goals
The features listed below are found in most
commercial digital waveform database
implementations and were treated as design goals for
the implementation in [10].
A. Fast generation
Given that a common usage case is the interactive
viewing of waveform data, there should be minimal
overhead in the generation of a database file in order
to make it available quickly for viewing.
B. Small file size
A small file size is highly desired; however this must
be balanced with generation time.
C. Fast reader initialization
Opening up a database file for reading should proceed
quickly in that large, irrelevant portions of the
database do not need to be processed.
D. Fast extraction of a handful of variables or all
variables
It is to be expected that extracting all of the data from
a large database file will take some amount of time,
but it is certainly not desired that extracting a handful
of variables in order to perform debug will take much
time at all, especially given that adding new signals
into an interactive waveform viewer session is often an
incremental and repetitive process.
E. Allow reading of a database that is still
writing
It is helpful if a file can be accessed while it is being
written as debugging can start with no need to wait
for simulation to finish. An easy way to accomplish
this is to segment the writing of the database into a
series of independent blocks or sections such that a
reader is permitted to access blocks whose contents
have finalized.

V. Database writer API

As the internal format of any database is subject to
change, a database writer API was created for [10]
similar to that of [6] to shield users from the
implementation. A reader API also was created for
[10], but it is beyond the scope of this paper.

The database writer API was designed to map its
function onto a superset of VCD constructs and also
provide for future expansion. It achieves this by using
tagged blocks in conjunction with a tagged binary
format.

Similar to [6], the handle value returned by the API
upon variable creation maintains the exact VCD “parse
by value” property of the incrementing identifier code
values described earlier. Thus, for most simulators,
there is no additional memory required to be allocated
in a simulator for the storage of variable handles
returned by the writer API. As such, much existing
VCD emission code can be converted with minimal
modification to use the database writer API instead.
In order to allow multiple, separate databases to be
written simultaneously in a thread-safe lock-free
manner, upon database creation the API generates an
opaque context value representing the database. All
subsequent API operations up to and including the
closing of the database then refer to the context.

VI. Compression techniques and compressed
data types used by the database writer API

The following three subsections are relevant to
database construction so they will now be discussed.
A. Iterative compression

To facilitate late signal additions, node information is
stored in a hierarchy tree, which is a separate file
whose filename contains a “.hier” extension. When
the writer API is directed to close the database, this
file is compressed twice with byte-based compressor
LZ4 [11], it is appended as a block in the database,
and then the “.hier” file is deleted. Experimentation
has shown that [6] also double compresses data with
its own proprietary byte-based LZ4-like compressors
prior to writing into its database. Why was a
compressor library such as zlib (used by gzip) not used
instead?

One reason discovered from performance analysis is
that zlib is slow when very many small, discontiguous
regions of memory need to be compressed: zlib must
reinitialize a non-trivial amount of its compressor state
for every new invocation.

Another reason is that an iterative, multi-layered
approach performs better for some data. The
following table compares zlib against an iterative LZ4
compression strategy and also a combination of the
two. In the final row of the table, LZ4 functions as a
preprocessor for zlib, providing the smallest resulting
file size at a total compression speed even faster than
gzip executing at its weakest compression level.

TABLE I.

ComPRESSION OF 111MB OF HIERARCHY TREE DATA
(4.5 MILLION VARIABLE DECLARATIONS)*

Fig. 3.

Compresso | Compressed Comp resst

r size (bytes) on time
(seconds)

gzip -1 15,213,337 1.15

gzip -4 13,345,371 1.53

gzip -9 12,236,236 13.39

lzd ~ — (run | 55 895 848 0.28

once)

1z4 (run | 13 807,145 0.39

twice)

1z4 (run

twice) then | 11,045,828 1.00

gzip -1

* All execution runs documented in this paper were
run single-threaded on a Dell Optiplex 760 with a
3.0GHz Core2Duo processor and 8GB of RAM.

Processing any data through zlib destroys the
alignment of data at byte boundaries due to the
properties of Huffman encoding [12], so if zlib is used,
it should be the last step for any form of byte-based
iterative compression. It is to be noted that files
created by [6] are often quite compressible by gzip
and other compressors, so it may be deduced that to
maintain high performance, [6] does not process much
or any of its data using compression routines that
employ statistical encoding or other bit reduction
techniques.
B. Variable-length unsigned integer storage
In keeping with the previous observation concerning
the usage of byte-based compressors, to save space
prior to compression, various items of data are
encoded throughout the database as variable-length
unsigned integers using the formatting as documented
in [13]. The algorithm to convert an unsigned integer
v into a variable-length unsigned integer
representation contained in array V is shown in Figure
3.
110
whlle (kv>>7)#0do

Vi « (v & 0x7F) | 0x80

i—i+1

vek

end while
7 Vi—v & 0x7F

Conversion of an unsigned integer to an array of

OU_L:nfl}_wt\)n—\

bytes

The following table illustrates a number of edge case
values and the variable-length unsigned integer
representations resulting from processing by this
algorithm.

Fig. 4.

TABLE II. CoOMPARISON OF REPRESENTATIONS OF DECIMAL,
HEXADECIMAL, AND VARIABLE-LENGTH UNSIGNED INTEGERS

Variable-
Decimal Hexadecimal If]i';?gt?ne d
Integer
0 00 00
1 01 01
127 7F 7F
128 80 80 01
130 82 82 01
16383 3FFF FF 7F
16384 4000 80 80 01
65535 FFFF FF FF 03
65536 10000 80 80 04

As shown in the table, this method achieves very good
space savings for relatively small positive values.
These small values occur quite often in the database.
It is sometimes useful for a payload of known bit width
to “hitchhike” onto the low-order bits of another
integer such that the shifted and combined result is
encoded as a single variable-length integer. This
feature is exploited in various places in the writer,
most significantly for the encoding and compression of
a stream of values for a single-bit MVL-4 variable. It is
often the case that a value change item in these
streams can be transformed into a single byte. In a
VCD file, such value changes occupy at least three
bytes and do not compress well as they lack locality
with related value changes.

C. Variable-length signed integer storage

As the sign of a number can function as a flag bit,
variable-length signed integers as documented in [13]
occasionally prove useful. The algorithm to convert a
signed integer v into a variable-length signed integer
representation contained in array V is shown in Figure
4.

1:i<0

2: more « true

3:do

4: b < (v & 0x7F) | 0x80

5: Vev>>T7

6: if ((v = 0) and (b & 0x40 = 0)) or

7 ((v=-1) and (b & 0x40 = 1))

8: more « false

9: b < b & 0x7F

10: end if

11: Vieb

12: i—i+1

13: while more # false

Conversion of a signed integer to an array of

bytes

The following table illustrates a number of edge case
values and the variable-length signed integer
representations resulting from processing by this

Fig. 5.

algorithm.

TABLE III. COMPARISON OF REPRESENTATIONS OF DECIMAL,
HEXADECIMAL, AND VARIABLE-LENGTH SIGNED INTEGERS

Variable-
Decimal Hexadecimal Ilﬁ:;?gﬂr:e d
Integer
0 0000 00
0001 01
-1 FFFF 7F
2 0002 02
-2 FFFE 7E
63 003F 3F
-63 FFC1 41
64 0040 C0 00
-64 FFCO 40
127 007F FF 00
-127 FF81 81 7F
128 0080 80 01
-128 FF80 80 7F

As this encoding is not as space efficient as the
encoding for variable-length unsigned integers, usage
of signed variable-length integers in the writer in [10]
was limited to a handful of areas where
experimentation determined that is was beneficial.
VII. Processing of declarations and time/value
change data into the database format

As shown in Figure 5, there are four basic phases that
the database writer cycles through based on the API
calls it receives.

A: Scope and
variable
declaration
processing

B: Time and
value

change
processing

D: Close
database

Four basic phases of database writer execution

A. Scope and variable declaration processing
Minimal processing is performed upon node
information. Mostly, this involves converting
scope/upscope/variable declarations into an easily
processed tagged binary format. Ordering of
declarations as encountered by the writer API is
strictly maintained as there is no compelling reason to
modify the declared order prior to emission into the
hierarchy tree. Some commercial tools such as [6][7]
maintain separate data structures for scope
declarations and for variable declarations. This allows
for scope data to be retrieved faster by a reader
during initialization and may aid in compression.
Once scope and upscope declarations are written into
the hierarchy tree, they are no longer needed by the
writer. These declarations are only useful for
database reader code: the writer is more concerned
with variable declarations.

During the writer API call for a variable declaration,
various auxiliary structure arrays are updated by the
writer. In [10], all of the following arrays exist as
hidden temporary files and are subject to being
mmap()’d in and munmap()’d out as necessary:

e Geometry: contains each variable’s storage
requirements, namely the length and number of
bytes per unit of length. This is used by
readers to speed up initialization for variables
by not requiring a traversal of the hierarchy
tree. Upon the closing of the database,
geometry data are compressed and appended
to their own block in the database.

e Bits Array: contains a full checkpoint of the
database state across all variables. It exists to
allow for reads to start at a time other than the
initial simulation time, as well as to allow the
opportunity for the future implementation of
block splicing utilities.

e Time Chain: stores each simulation_time value
encountered by the writer. Values in the time
chain as emitted by simulators are
monotonically increasing. When elements
comprising the time chain are emitted to the
database, a simulation_time value is compared
to its preceding simulation_time value and the
mathematical delta between the two is stored
in the database. A 64-bit time value thus can
reduce to a much smaller variable-length
unsigned integer value in the database.
Additionally, the time chain aids in allowing for
efficient value change compression as
value changes are transformed by the writer
into a consecutive sequence of time chain index
deltas paired with a “hitchhiker” value. The
time chain is analogous to XTags in [6][7],
however this implementation detail is hidden
from the writer API.

e Value/Position Structure Array: contains a four
element structure for each variable consisting
of {position in bits array, variable-length,
position in value change preprocessing buffer,
time chain index}. Each time the writer
processes a value change for a variable, the
final two fields of this structure are updated.

This structure is used solely by the writer to

provide bookkeeping and is not written into the

database.
B. Time and value change processing
As writer API calls generate time changes, each
change is added to the time chain and the current
time chain index is incremented. As the APIs in [6][7]
can be interfaced to various digital and analog
simulators, integer or floating-point values are
possible for their XTags. For Verilog simulation, all
time values generated are 64-bit integers. The
example that follows in the next subsection will use
only integer time values for clarity. The
implementation in [10] currently uses only 64-bit
integer time values.
For value changes, the value change items are
reformatted and stored in the value change
preprocessing buffer. This buffer is a large holding
area that receives dynamically converted
value _change items prepended onto a linked list of
{previous list item pointer, time chain index delta,
value} triples. There is one linked list per variable,
with each variable’s corresponding element in the
value/position structure array storing the head pointer
for the variable’s list of time reversed value changes.
To demonstrate value change processing, the following
series of time and value changes are received by the
writer API:

#0
A= ‘0’
B = ‘1’
#10
A= ‘1’
#15
B = ‘0
#20
B = ‘1’
#30
A= ‘0’

After time value 30, the time index value would be 4
(starting the index count from zero) and the time
chain would appear as follows in memory on a little-
endian machine:

0000: 00 00 0O GO GO 6O 00 00
0008: OA 00 00 0O GO 6O 00 60
0010: OF 00 0O GO GO OO 00 00
0018: 14 00 00 0O GO 6O 00 60
0020: 1E 00 00 0O GO OO 00 00

In the value change preprocessing buffer, previous list
item pointers are currently stored in [10] as 32-bit
unsigned integers (limiting the size of the buffer to
4GB), the time chain index deltas are stored as
variable-length unsigned integers, and finally the
values themselves are stored as raw ASCII. This was a
design choice dictated by performance in order to
simplify this portion of value change processing.

For the example time and value changes, the final
state of the value change preprocessing buffer would
appear as follows:

0000: 21 00 0O GO OO 60 30 00
0008: 00 00 0O GO 31 01 00 00
0016: 00 01 31 07 OG0 60 00 02
0018: 30 13 00 00 00 01 31 6D
0020: 00 00 00 63 30 -- -- --

The first character (0x21 / “!”) shown in the buffer at
offset zero is nothing more than an unreachable
placeholder character. During list traversal, a list item
pointer containing a value of zero signifies the end of a
list traversal.

To assist in demonstrating the traversal of the list for
variable “A”, only the bytes relevant to variable “A” will
be shown such that the back pointers are shaded, the
time change index values are in boldface italics, and
the values are unformatted text:

0000: .. GO0 0O 0O 00 00 30 ..
0008: 01 00 00
0010: 00 01 31 .. o
0e18: OD
0020: 00 GO 0O 63 30 -- -- --

Now showing only the bytes relevant to variable “B”
such that the back pointers are shaded, the time
change index values are in boldface italics, and the
values are unformatted text:

0eeO: OO
0008: 00 00 0O 00 31 .. e
0016: 07 00 60 00 02
0018: 30 13 00 GO 60 61 31 ..
0020: == o= ==

The value/position structures {position in bits array,
variable-length, position in value change
preprocessing buffer, time chain index} for each
variable would appear as follows at the end of time
value 30:

A: {0, 1, Ox1F, 4}

B: {1, 1, ox19, 3}

It is not necessary when processing value changes to
update the bits array. As the value/position structure
for each variable points to its final value change in the
block, the bits array can easily be updated later to
avoid unnecessary overwrites.

C. Context flush

When the value change preprocessing buffer is full or
is about to become full, a context flush sequence will
occur either when the next time change is
encountered or when the database is closed. To
prevent buffer overruns, the value change
preprocessing buffer is dynamically enlarged as
needed.

A context flush is analogous to the “flush session”
documented in [6] and it performs the following
actions which are summarized in Figure 6:

Fig. 6.

® Create a new, invalid block in the database

Create new buffers if a producer-consumer model of parallel
execution is optionally enabled

Compress, write, and update the bits array

Segregate and reformat each variable’s data into a contiguous
stream of memory locations through a serialization process

Compress the reformatted data

Deduplicate the compressed data and generate an entry in the
position table

Compress the position table

Compress the time table

Finalize the block

(-GGG G- K- - 4

Summary of the operations performed by a con-
text flush

1) Create a new, invalid block in the database.
A major advantage of segmenting the data into
independent blocks is that it gives reader code
the ability to access all the currently valid blocks
previously generated by a simulation while the
simulation is still running.

2) Create new buffers if a producer-consumer
model of parallel execution is optionally enabled.
Upon creation of new buffers, a separate context
flush thread is spawned to process the old buffers
while the writer API returns control back to the
calling process. By making time and value
change processing as described earlier simple,
more work can be offloaded to the context flush
thread. This minimizes how long a simulator is
blocked by a context flush. Parallel execution is
more useful when zlib is enabled to compress
transformed value_change data: LZ4 is so fast
that the overhead of parallel execution can slow
writing down.

3) Compress, write, and update the bits array.
The bits array represents the checkpoint of
simulation before any value changes in the block
have been encountered. After the bits array has
been emitted to the database, it may then be
updated to reflect the final value change for each
variable. As the value/position structure for each
variable contains the position of its final value

change in the block, the bits array can be quickly
updated.

4) Segregate and reformat each variable’s data
into a contiguous stream of memory locations
through a serialization process. For each
variable, the linked list pointed to by its
value/position structure is traversed and the time
changes and values are reformatted and emitted
into another buffer. As the list traversal proceeds
in the reverse of simulation order, the
reformatted data is built by [10] into descending
memory locations in the destination buffer in
order to reconstruct the original simulation
order in a single pass.

Recall from the earlier example how the relevant bytes
of the value change preprocessing buffer for variable
“A” would appear as follows at the end of time value
30:

0000: .. 00 0O GO 60 60 30 ..
0ee8: 01 00 00
0010: 00 01 31 .. e
0e18: OD
0020: 00 00 0O 03 30 -- -- --

Again, recall the value/position structure {position in
bits array, variable-length, position in value change
preprocessing buffer, time chain index} for variable
“A” as it would appear at the end of time value 30:

A: {0, 1, Ox1F, 4}

Starting at Ox1F the following sets of value change
data are encountered:

Ox1F: 03 30 (‘0’)
Ox0D: 01 31 (‘1’)
0x01: 00 30 (‘0)

As this variable is a single-bit variable (shown by the
length = 1 field for the value/position structure for
“A”), time/value changes may be encoded using a
variable-length unsigned integer with a fixed-width
payload for the value specified in the low-order bits.
For this example, assume an MVL-4 encoding where
‘0’ equals 0, ‘1’ equals 1, X’ equals 2, and ‘z’ equals 3.

03 30 (‘0") = (OxB3 << 2)|0 = OxOC
01 31 (‘1’) = (Ox01 << 2)|1 = 0x05
00 30 (‘0’) = (OXxB0 << 2)|0 = Ox00

It follows that VHDL would use a larger payload to

encode the MVL-9 values “01XZHUWL-".

Thus, the following sequence of bytes when correlated

against the time chain and built in reverse in memory

represent the time and value changes for variable “A”:
00 05 0OC

It should be obvious that for repetitive value changes
such as those generated by clocks, a highly
compressible, recurring stream of bytes such as the
following will result:

04 05 04 05 04 05 04 05 04 05 ..

Variables occupying more than one byte (bit vectors,

integers, reals, strings, etc.) are handled differently in
[10] in that the time delta value is stored as its own
variable-length unsigned integer and the value is
stored either in a packed binary representation or as
raw ASCII. For reader code to determine which
representation was used when an item was written
into the database, a “hitchhiker” payload is contained
in the low-order bits of the time delta value.

Unlike the approach taken in [8], there was no attempt
made to predict values in a variable’s value change
stream. As a simple example of prediction, for a
single-bit variable, if its value is ‘0’, it can be predicted
with a high degree of confidence that its next value
change is almost always a ‘1’, and vice-versa. Thus, to
create a stream of bytes that is more compressible,
the XOR of the actual value versus the predicted value
would be stored instead of the actual value.

5) Compress the reformatted data. After
serialization, a variable’s data are compressed
using LZ4. Unlike [6], in [10] this is only
performed once. In lieu of double compression,
multi-bit MVL-4/MVL-9 values are stored packed
as eight bits per byte when a value is scanned
and discovered to contain only ‘0’ and ‘1’ value
bits. A modified form of Duff’s Device [14] is
used to perform the packing operation.

6) Deduplicate the compressed data and
generate an entry in the position table.
Deduplication of the compressed, serialized data
then occurs where the data are either compared
against existing data stored in a Judy array [15]
or a structure based on a move-to-front reference
sorted Jenkins hash [16] array. The Jenkins hash
deduplication performs slightly faster than the
Judy array, however it may be subject to patent
issues described in [17] so its selection is
determined at compile time for [10] by a compile
time option.

If the compressed and serialized data are not already
present in the deduplication structure, then the data
are inserted into the deduplication structure, are
emitted into the database, and the offset representing
where the data are stored in the block is then stored
in an element in the position table indexed by the
identifier code for the variable. Otherwise, a dynamic
alias (the identifier code for the matching data
subtracted from zero, thus making it a negative value)
is stored into the position table and no redundant data
are added to the database. Variables which have no
value changes are assigned the offset of zero, which
never represents valid data and never represents a
valid identifier code.

The position table as stored in the database is not
compressed further in order to aid in reader access
speed. This is to give reader code the opportunity to
perform a partial decompression of this table if all
variables do not need to be accessed. (e.g., if there
are two million variables and the maximum

identifier code for a variable that needs to be read is
500000, then decompression to determine variable
offsets can stop approximately one-quarter of the way

through this table.) It is to be noted that as the
transformed value change data for a variable have
been serialized and are located in a contiguous range
of locations in the database, reader code can
immediately and directly seek to and process a
variable’s data once the offset for the location of the
data is known.

7) Compress the position table. After all
variables have been deduplicated, consecutive
elements of the position table for non-dynamic
aliases (positive values) are delta compressed
and stored in the database as a positive variable-
length signed integer. Dynamic aliases (negative
values) are stored as a variable-length negative
signed integer. To save additional space, a match
of the current dynamic alias with the most recent
previous one is represented as a value of zero.
When one or more consecutive elements in the
position table contain a value of zero (meaning
each has no value changes), the zeros are run-
length encoded then stored in the database as a
variable-length unsigned integer. To
differentiate in the reader between the two types
of data (delta offsets or dynamic aliases versus
counts of runs of zeros), the least significant bit
of the variable-length integer is treated as a
“hitchhiker” flag that differentiates between the
two types of data, and either the signed or
unsigned variable-length integer decoder are
invoked appropriately.

8) Compress the time table. The final
structure requiring emission into the database is
a compressed version of the time table. It is first
preprocessed by converting it to a series of
variable-length unsigned integers representing
deltas of consecutive time values. Recall the
time table values encountered earlier:

0000: 00 0O 0O GO OO 60 00 00
0008: OA 00 0O GO OO 00 00 00
0010: OF 0O 0O GO OGO 60 00 00
0018: 14 00 0O GO OGO 600 00 00
0020: 1E 00 00 GO OGO 00 00 00

The variable-length unsigned integers representing
the delta compressed values would occupy this series
of bytes:

00 OA 05 05 OA

This data exhibits the property that it is highly
repetitive as time deltas in a simulation tend to occupy
a small number of fixed “pound delay” values. As
there is only one time table per block, zlib
compression overhead with respect to processing of
the full block is low, so the data are run through zlib at
its highest compression level and then are emitted into
the database. Floating-point time values would
require different compression techniques such as that
described in [18].

9) Finalize the block. At this point, the

context memory has been processed into a block
in the database. The block is then marked as
valid (in order to allow simultaneous reading of
the database as it is generating), the context
memory is recycled, and the writer API continues
collecting more time changes and value changes
until the database is closed.

D. Close the database

Closing the database compresses and appends the
hierarchy tree as a block and marks the entire
database as finalized. Any externally visible
temporary files that were created are deleted. In
addition, the full database can optionally be
recompressed using zlib and be emitted as a single
special block. Compression as a single block
overcomes the zlib performance issues discussed
earlier.

VIII. Experimental results

Compression size and speed results for two non-trivial
VCD files will be shown below. The tool vfast can be
found in [4], the tool vcd2fst (results in italics) which
implements the approach described in this paper can
be found in [10], the tool vcd2vpd can be found in [2],
and the tool vcd2wlf can be found in [5]. The utility
gzip can be found in any Linux distribution. Results
for [10] are shown in italics.

TABLE IV. Cowmpression oF 1.5GB orF VCD (57312 TtotaL
VARIABLE DECLARATIONS, 20826 ARE ALIASES)

Compress
Com Compressed ti
pressor size (bytes) ime
(seconds)
gzip -1 483,489,275 28.88
gzip -4 453,921,410 39.74
gzip -9 425,526,503 338.32
ved2fst (LZ4) 19,964,916 18.34
ved2fst (LZ4) | 11 558306 | 19.39
plus gzip -4
ved2fst (zlib) 12,144,313 23.89
ved2fst (zlib) | 14 164 461 24.41
plus gzip 4
ved2fst (LZ4)
no 71,600,821 18.68
deduplication
vfast

vfast plus gzip

vfast -compact
vfast -compact
plus gzip -4
ved2vpd
ved2vpd plus
gzip -4
ved2wlf
ved2wlf
gzip -4

Sanitized in public release due
to anti-benchmarking clause
in simulator EULAs.

plus

TABLE V. CowmpressioN oF 5.0GB or VCD (5.8 miLLION

TOTAL VARIABLE DECLARATIONS, 0 aARe ALIASES)

C d Compress

Com ompresse t
pressor . ime

size (bytes) (seconds)
gzip -1 1,331,508,502 | 87.44
gzip -4 1,262,303,074 | 124.12
gzip -9 1,258,996,174 | 1024.90
ved2fst (LZ4) 35,087,853 76.20
ved2fst (LZ4) | 14 995,265 | 77.71
plus gzip -4 ’ ’ .
ved2fst (z1ib) 30,582,983 100.85
ved2fst (2lib) | 16 852 741 101.76
plus gzip 4
ved2fst (LZ4)
no 88,209,725 75.76
deduplication
vfast
vfast plus gzip
-4
vfast -compact
Vfizt —Zcion_lgl)act Sanitized in public release due
pus gz1p to anti-benchmarking clause
ved2vpd in simulator EULAs.
vcd2vpd plus
gzip -4
ved2wlf
ved2wlf plus
gzip -4

IX. Conclusion
Processing digital waveform data for efficient storage
and retrieval does not require computationally
expensive analysis heuristics. Instead, a fast method
can be employed that separates value change data into
individual streams that are reformatted and
compressed independently. Streams identified as
equal can be deduplicated dynamically, further
reducing database size.
The experimental results show that compression ratios
and execution speeds achieved by this method can
significantly exceed those of prior art.

X. Future work
Simulation data such as EVCD as described in [1]
appear to compress much better with FastL.Z [19] than
LZ4 in [10], so it may be advantageous to employ
multiple fast compression algorithms that are

automatically selected based on the type of data being
compressed.

Using [18] in conjunction with [11] could prove highly
effective for reducing the storage requirements of
IEEE-754 floating-point time change data in
implementations that store such data.

Bijective encoding of MVL-4 and MVL-9 value change
strings into variable-length perfect hash integers
could merit further study as a space saving technique.

REFERENCES

[1] IEEE Computer Society, “IEEE Standard for System
Verilog—Unified Hardware Design, Specification, and
Verification Language,” 2009, pp. 572-592.

[2] Synopsys, Inc., “VirSim User Guide Version 4.4,” 2003,
pp. 379-412.

[3] Cadence Design Systems, Inc., “SimVision User Guide
Product Version 8.2,” 2009, pp. 109-124.

[4] Synopsys, Inc., “Verdi® and Siloti Command Reference,”
2013, pp. 1543-1559.

[5] Mentor Graphics Corporation, “Questa SIM User’s
Manual Including Support for Questa SV/AFV Software
Version 10.0d,” 2011, pp. 679-694.

[6] Synopsys, Inc., “Open FSDB Writer,” 2013, pp. 1-186.

[7] Synopsys, Inc., “Open FSDB Reader,” 2013, pp. 1-144.

[8] E. Naroska, et al., “A Novel Approach for Digital
Waveform Compression,” ASP-DAC, 2003, pp. 712-715.

[9] A.R. Forslund, “A logical alternative to the existing
positional number system,” Southwest Journal of Pure
and Applied Mathematics, Volume 1, September 1995,
pp. 27-29.

[10]A. Bybell, “GTKWave User Manual,” 2013, pp. 1-149.

[111Y. Collet, “1z4: Extremely Fast Compression algorithm,”
2013, http://code.google.com/p/lz4/.

[12]D.A. Huffman, “A Method for the Construction of
Minimum-Redundancy Codes,” Proceedings of the I.R.E.,
September 1952, pp. 1098-1102.

[13]1DWARF Debugging Information Format Committee,
“DWARF Debugging Information Format Version 4,”
2010, pp. 161-163, 217-218.

[14]R. Holly, “A Reusable Duff Device,” Dr. Dobb’s Journal,
August 2005, pp. 73-74.

[15]A. Silverstein, “Judy IV Shop Manual,” 2002, pp. 1-81.

[16]1B. Jenkins, “Algorithm Alley: Hash Functions,” Dr. Dobb’s
Journal, Sep. 1997, pp. 107-109, 115-116.

[17]1C.A. Waldspurger, “Transparent sharing of memory
pages using content comparison,” US 7620766 B1, 2009,
pp. 1-22.

[18]M. Burtscher, P. Ratanaworabhan, “High Throughput
Compression of Double-Precision Floating-Point Data,”
2007, pp.1-10.

[19]A. Hidayat, “FastLZ, free, open-source, portable real-time
compression library,” 2013, http://fastlz.org.

http://fastlz.org/
http://code.google.com/p/lz4/

Index

lllustration Index

Figure 1: GTKWave running under LINUX.........ccooviiiiiiiiiiniiie e e e ene v eea e 12
Figure 2: Demonstrating application integration with Mac OSX / Quartz.................. 14
Figure 3: The GTKWave main WINAOW........ccuuiiuiiiniiiiiiiiieiieeie et e e e eaneenneaneans 19
Figure 4: The main window with an embedded SST.............cc.oiiiiiin, 20
Figure 5: Verilog hierarchy type icons in SST frame..........cccccoevviiiiiiiiiiiiiniiniinieeeenee. 21
Figure 6: VHDL (not GHDL) hierarchy type icons in SST frame................ccccevnennenn.n. 21
Figure 7: Verilog I/O and type information in SST frame...........cc.cccoveviiiiiiiiiniininn..n. 22
Figure 8: The main window using the toolbutton interface..............cc.cooviiiiiininnin. 23
Figure 9: Signal subwindow with scrollbar and an “open” collapsible trace.............. 24
Figure 10: Signal subwindow with no hidden area from left to right......................... 24
Figure 11: Signal subwindow with left justified signal names...........c...ccoceviiiininnnnn.n. 25
Figure 12: A typical view of the wave subwindow.............ccoooiiiiiiiiiiiiinnin, 26
Figure 13: An example of both positively and negatively timeshifted traces............. 27
Figure 14: The Navigation and Status Panel.............c.ccooiiiiiiiiii e, 27
Figure 15: TwinWave managing two GTKWave sessions in a single window.............. 29
Figure 16: The RTLBrowse RTL Design Hierarchy window..............c.cccccevviiiiininnnnen... 31
Figure 17: Source code annotated by RTLBIrOWSE........cc.ciuviiiiiiiiiiiiiiiiiieieeeieeeeaenes 32
Figure 18: The main window with viewer state loaded from a save file..................... 53
Figure 19: The Signal Search (regular expression search) Requester....................... 54
Figure 20: The Hierarchy Search Requester.........ccccviiiiiiiiiiiiiiiniiniiee e 55
Figure 21: The Signal Search Tree Requester.......c.ccooiviiiiiiiiiiiiiiiiiincceece e 56
Figure 22: The Pattern Search Requester.........ccocovviiiiiiiiiiiiiiiiii e, 57
Alphabetical Index

ACCERL e ettt et et eaaeens 85
ACCESSING Of fI1ES. . eu it e e e e e e e e e e e e e e e e enaas 35
addCommentTraCeSFTOMLIST.......iiuiiii e e e e e anas 117
addSignalSFrOmMLISE.ccuiiiiiiii e as 117

AET2 TEAART AP ...ttt et e et e et e et e et et s seanananaans 16
ALLAS FALES. . it ettt e et a et a e aans 57
Alias Highlighted TracCe.......ccou ittt e e e e e e e enas 37
AL EVENTES TraCE. . cu ittt e e e e e et e et e et et et et et snaaneaanns 16
ALPRADEEIZE. ... e aaas 42
Alt hieT delIMETET...cue i e e e e e e e ans 85
AlE Wheel INOAE......cuiiiii et e e e e e e aas 86
Alternate Wheel MOAE..... ..ottt e e e e e e aaans 46
FN a1 [Yo FR PPN 41
PN aFo1 (oo B v = of =T SRRt 20
analog redraw SKIP COUNT......cooiiiiiiiii ettt e e e e e 86
FAN 0] 013 1 Lo F PSPPSRt 54
oY 0] 01=] a e BRV(olo B 11 <) o 86
FAY 0] o] (=T PPN 14
FoY o) o] hTot=1nlo) o N W =TSy o F- A4 011 o Vo FUN PR 35
N 1 O 1 P 38
oY) 1108 (o V=T o1 1o) T PPN 86
attaching diSasSEmMbDIETS........ouniiiii e 37
AULOCOALESCE. ...iiiiiiiie et 43, 86
AUutoC0alesCe REVETSAL........couiiiiiiiiiei e e 43
AULOC0AlESCE TEVETSAL.....cuuiiiiiiii e e e 86
automatic conversion Of VCD fileS......cuiuiiiiiiiee e 52
AUtONAME BUNALES.ot e e e e e e e e aaaas 43
autoname DUNALES.o ettt e ans 86
Base Time 1abel... ... o e 28
DASEIINE MATKET ..ottt e e e neaas 26pp., 45
|5 31 0 1= 1 oy PP PP 38
2L K] 2 U= T | B PP 39
| o30EaTo 15 Vo PR PP 43
o741 o)OO 11
(OF2) a1 1= a0 1o) 1 4 - TN 48
(o s Lo 1 of U 65
(O o 11 Lo B=Y o T o 10 b PPN 55
(o2 o] : o hiar=Yo [0 [=Te PPN 28
ClIPDOATrd INOUSEOVETc.uiiiiiiiiiii ettt e e et e e e e e eans 86
[0 [0 T~ - PP 36
Collect All Named MaATKeETS.cuuiiiiiiiiieie et e e e e e e e e e e e et e s e et eeaaaneaannns 46
Collect Named MarTKeTcuieiiiiieie ettt et e et e e e e e eeaeeaas 46
(0F0) [o) ol 210 o 11 T= | FU TP 40
Color FOrmat-Keep XZ COlOTS......iuiiiiiiiiiiiee et e e ae e e e e e anas 40
(OF0)01 0} hia LT B 0)73 s FOS 38
(070} 101 0110 LT U o FU PPN 38
COMIMEIITE TTACE. .. euiniieiei ettt ettt et et et et et et eaeeaea e eneeneeneneaenenenennes 24
(070310} 0) 1 1 =) PPN 66
[0F0) 001 031 51 Lo PP 11

compresSibility Of VCD fIleS....cuniiniiiiiii e e e e 52

Constant Marker UpPdate.o e e e 48

constant Marker UPAate........coueiiiiiiiiiii et et et e e 88
CONEEXE TADPOSITION. ...uiiniiiii et aas 88
CONVETE TO TRALS....ieeiiiii ettt et e e e e e e e eans 88
(00)72 PPN 37
Copy Primary -> B MaATKET......cc.iiiiiiiie et e e e e et e e e e e 46
(0 ¢/ 1 o 011) o F PPN 42
Current Time 1abel.. ... e e a e 28
CUTTEIE VBT SIOIL. 1. tuitiiniieieitiet et ettt et et et et ete e et tn et e et it et tneaaanesensaasatenenenenenesesnsnsns 50
(021 E 10 oS s T | o J PP 89
L0 1 PSPPI 37
(000 11 1<) PP PPN 13
L0 70 1714 o T PPN 13
(0 = 1 ol SRR 66
data representation Of VAlUeS.........couniiiiiiiiii e 37
D<o 00 - Y R 38
(o 1CTC] o N 001 00) ot AP 55
Define Time RUler MarKs........iuiiiiiiiiiii e e e e e e e e e e e eae e en e 49
D I2) 1) o TP URTPR PPN 38
Delete Primary MaArTKeTo ittt e e e e e e eeeeeae e e e eane s eanaaeeneaasnannes 46
deleteSignalSFrOmMILLISE.ot e 117
deleteSignalsFromListIncludingDuplicates..........cccuviiiiiiiiiiiiiiiiieeeeee e 118
(0 LY L= T 1 L 28
diSable @2 @lIAS.....cuiiiiiiiiiiii e ans 89
disable auto COMPRIET e 89
disable @MPEY QUi et e e e e 89
AiSADIE INOUSEOVETcuuiiiiiii ettt e e et e et e e et e eaeaaeeanas 89
AiSADIE TOOIEIPS . ceu ittt ettt e a e ans 89
DTS o= 1 o FS PRSP 45
do initial ZOOM fit....c.iiniiii et 89
D ar=Yo =1 a Lo B B oo o JO S 20, 25
(o B Yo 7= o OO UUTTURNt 42
dragzoom threShold..........coo it 89
Draw Roundcapped VECEOTS.cuouiiiiiiii e e e e e ena e 48
Drop Named MaATKETouiiiiiiiiiiee ettt ettt e e e e re e e e e aeaeanenns 46
(o RV B0) o)1 (TSP 15
DYNAMIC RESIZE...ouiiiiiiiiiiiiiii et e e e et e et e et et et et e s e e eaaananans 48
(6)70 k= 00k (o2 o Yo | | o TP 47
(072 0=V 00 N Lo o] VA 2 o PP 89
LCTe 110) oS 89
enable fast EXit......ooi i e 90
enable ghOSt MaATKET ...ttt e e e e e e 90
enable hOTIZ gTid......coiiiiiiiii e et e e e e e et e e e eaeaanas 90
enable VCA AULOSAVE.......c..iiiiiii e 90
(30 b1 o LY=)o Al o 1 o (o I PP 90
8 1 D1 4 DT TP 38

0 o] 11 o 1= TP 42
|4 0 1< 110 Lo FO PPN 38
=01 1L =TT PP TPTPP PP 27
Fast Signal Database.......c.iuiiiiiiiee e 16
Fast Signal TracCe.....ccuoiniiiiiiiii ettt e e e e e e e e et e et e e e e e enas 16
ir= 1] 1 (0 < Lo OO 63
it= 1] 1 TP 69
it 1S 0 =T o] : SO PSRN 69
Y o o P PPN 45
F11€ COMVETSION.iiiiiiiiei ettt et e et et e et e e e e e e et e s e eaeaneannees 18, 64
FiletyPe CONVETSION......iiuiiiiiiieieeiie e e e et e e eaeeae e et eneaenees 73p., 76pp.
1 Y=Y () 1/ PPN 90
filter to modify the background color of a trace..........cccoeeviiiiiiiiiiiiee e, 59, 61
N0 L0 DTS- 2o [1= TSP 118
N 010 0 2 =R Td o [o [TP 118
Fixed Point Shift........cooiiii e e e e e e e e ans 39
fontname 10GHile. ... e 90
fONtNAME SIGNALS. ...ttt e e e e ans 90
FONTNAINE WAVES. .. ittt et e et e e e et et et e e e e e e e e eanenns 90
o) A of T o0 I o F- 1 = TP PPP 90
fOTCEOPENTIEENOAE.eiiiiiiiiiiie ettt et e e e e et e e et et e e e s eaeaenans 118
(0] 01y oY o RO 69
| =0 TSN\ E T =) PPN 18
| B 16, 69
Y0 0 0)27 o] o FS PPN 16
1Y 1 016 127 16 Vo PO PN 16
FSADREAAEr LIDTATIES.oiiiiiiiiiiie et e ans 16
FSDBREADER HDRS ... ittt e et e e et e e ae et e e e e e e eans 16
FSDBREADER LIBS ... ittt e e e e et e e et e et e e e e e e et e e et eneaneaneaneans 16
s RPN 16
1] WA V4ol F USRS 68
1] 1010 111 PSPPSR 81
| 1 B o o T03 1S3 0) o FR PP 49
(100 o} PSPPI 65
(6 L1 AN oo PP PRN 119
JetBaSElIiNEMATKETcuiiiiiiii e e aas 119
getDisSplayedSignals......cc.oiuiiiiiiiiiii e 119
(o LY D2 ha] o] A LcY AT 10 = TP 119
Lo L= D AU b 0} o} Y o 1= TP 120
[0 [=11 t= ol B 1 o 120
[0 (=10t Tod D 1 74 1= TP 121
JEEFACINAINIE. et et e et et e et e et e et e e e e e ans 120
(o L1 2t 1ol VA 1 74 o 1 T PP 120
(o =1 a0} a1 [Lo 1 o1 PR 121
[0 =1 2 (0] 001 28 01 1 oy 72PN 121

GETHIETMAXLEVEL .. .oeiiiiiii ettt e e e et e et et et e e e e e e eanaanas 121

(o =3 IS o RO RS W i A3 T £ PP 121

(o =1 o) aTe [1S] AN E= 1 1 0 1< TP RRPRR 121
[0 =1 A\Y 1 o () PP 122
Lo LMY = B B 0 1 TP PP 122
Lo LMYl I 0 0 PP 122
FEENAMEAMEATKET ot e et e e e e e et e a e e e eneaenes 122
[0 LA L U N 01 = Lo TP 122
Lo LA L0 b0 =1 o TP 123
JEtPIXEISUNIETIINIE . ceu ittt et et e e et e e e e e e e e e e e e e eanaanas 123
JEESAVEFILEINAINIE. ... et e et e it et et et et e et aaaananns 123
JEtSTEMSFIIENGAIME. ...ttt e et e e e a e e e ens 123
ool N aT=T DN 0 L=) 0 K3 T0) o DO PP 123
(o L1 N 0 (YA S oo T PPN 123
Lo =2 K0 28 | oy V2P PPN 124
JELTOLAIINUIMTTACES. ...uuiiiiiiiie ittt et e e e e e et et e e et e e e e e e e aaaenenns 124
getTraceFlagSFromINdeX........ccuiiiiiiiiiiiiiiiie e e e e e e e 124
getTraceFlagSFrOmMNaAINE.cc.iiiiiiii et e e e e e e eae e e e e eneanens 124
getTraceNameFTOMINAEX.ottt e et e e e e e ee e e eeeanens 124
getTraceScrollbarROWValUE........cc.iuiiii e 124
getTraceValue AtMarkerFromIndeX.......c.cou i e 125
getTraceValueAtMarkerFromIName............ooouiiniiiiiiiii e 125
getTraceValueAtNamedMarkerFromName...........ocuviuiiiiiiiiiiieiieiieii e ee e 125
JELUNIETIMEPIXEIS. ..eu it e e e et e et e e e e e e e eaneees 125
JEtVISIDIENUIMNTIACES. .. cuniiiiiiiiie e et e e e e e e eaaanns 126
GEEWAVEHEIGRNT. ..o e e e e aas 126
GEtWAVEWIALN.. .o e 126
JEtWINAOWENATIIE. ... ettt et e e e e e e e e e e e e e e eeaaeaneaanans 126
FEtWINAOWSTATTTIMIE. ... et e e e e e e e e e e ens 126
(o[w400} 1101 2= Ve o) (PP 126
(@] 5 1) PP 16
(@] 5 1 Y VL= v i PR 16
(@] o PPN 16
[0 11 7 o] o HS PPN 73, 77pp., 95
GNU GPL General PUubliC LICENSE.......iuuiiiiiiiiiiiiieee e e e e e e e e e ens 4
[0 1 011 ol PPN 11
GIrabh TO File. .ottt e e e e e e e e e eans 36
LG = ko £ T PPN 65
[PP 11
()1 =4 1 o 65
(@] &5 0 Yol -] 65
GTKWaVE SCOPE SEAte. . e et e e e e e eenns 52
GTKWAVE CHDIR.....coniiiiiiie et e e e e e et e e e e e e e e e e et e e eaeeneaneaneaneans 65, 67
gtkwave::chCloSeTabINUMDETcoiiiii e e 133
gtKWave::ChClOSETTaCEGTIOUD. ...uiuiiiiiieie et e et et e et e e ee e ens 133
gtkwave::chCurrentActiveTab........coooiiiiii e 133
GERWAVE i D ETTOT e e e ens 133

gtkwave::chFromEntryUpdated.........c.coouiiiiiiii e 133

gtkwave::ChOPENTTACEGTOUD. ... ittt ee et e e e e e e e e e e e eanens 133

gtkwave::ChQUILPTOGTAIMN.ot e e e e et et e e e ee e ens 133
gtkwave::ChReloadBegin........couiiniiiii e 133
gtkwave::ChRelOadENd..........coiiniii e 133
GEKWaVE::Ch STAtUSTEXT. ..o et 133
gtkwave::ChTImerPeriod..o e e e ees 133
gtkwave::ChTOENtryUpdated........ccuiuniiiiiiiiiie et e e e e anas 133
gtkwave::chTracesUpdated..........oouiiiiiiiiiiiii e ens 134
GEKWaVE::CDTTEECOIIAPSE. ... vttt et e e e e e e e e e e e e e e e e e e eanaans 134
gtkwave::ChTTEEEXPANd......cc.oiuiiiiii e e e e e e e e e ens 134
GEKWaVE::CDTTEESELECT. ...cn i et e e 134
gtkwave::cbTreeSigDoUDbIeCliCK. ... 134
gtkwave::ChTTeeSIigSElect.o 134
gtkwave::ChTreeSiGUNSELECT. et e e 134
gtkwave::ChTTeeUNSEIECT. ... e e e 134
(o = NI o) o T PPN 14, 67
gtkwave.app/Contents/Resources/bin/gtkwave.........c.ccooiiiiiiiiiiiiiiiie e, 14
[0 12 2= N ST 1 o 1 PP 85
REAAETDAT ... ettt et et et e e eas 91
helper AP PlICATIONS. ...e e e 16
| 5 Lo SO TP PP PP P PP PPPPRPIR 38
o8 o Lo TS /ORI 91
B C) oo oY 0] 1Y PN 91
o NSy oo 1 4 0101)12 Yo FU P 91
RIET IgNOTE ESCAPES. ... ittt et et ettt et e e e e e e e e eaeans 91
hier MAaX LEVEL.. ...ttt e et e e et e e e e aes 91
HiIerarChy SEarCh........ovniiiii ettt e e e e e e ee e e eaeene e enees 55
HighLight AlL ...ttt et et et e e et e et e e e et e e eanas 42
| BT a1 o o Ll A=Y o (=54 o FU PR 42
highlight WaveWINAOW.......c..iiiiiii e e e e e eans 91
highlighted TTacCe. ... ccuiiiie e e e e e e e eans 24
highlighted WavefOTmIS..........cooiii e e e e 47
highlightSignalSFromLiSt.........cuiiiiiiiii e e e e e e ens 127
o] 0T N Lo o T o - PP 91
| of=N ot b ESR /Y a1 (o Yo PR PPN 15, 51
| D) PRSPPI 16
IgNOTE SAVETIlE PAINE POS...uiiiiiiiiiieei ettt e e e e e e e e aans 91
IGNOTE SAVETILE POS..uiiiiiiiiii it ee et et e e et e e e et e e e e e e e e eanas 91
IgNOTE SAVETIIE SIZE...cuuiiiiiiiii et e e e e ans 91
1100 T: Lo fo I 0 1 i 1 o JOU PP 36
IMPOTTING SIGNALS. .. euiiniiiii et e e et e e e et e e e et et et e e eneaaeneaenes 54
initial signal Window Width..........ooiiiiii e 92
INITIAL WINIAOW Xuiutiiiiiiiiiii ettt et et et e et e e e et e e et e et e e e enneannees 92
INItiAl WINAOW XDOS .. ittt ettt et e et et e et e ae et e e e e e e e e eaenns 92
INITIAL WINAOW Y.iitiiiii ettt e et e e et et e e e e e e e e e e eaenns 92
INItiAl WINAOW YOS .. ittt et e et et e e e et e e e et e e e e e e e e eanenns 92

Insert Analog Height EXteNSION......c.iuiiiiiiii ettt a e e e e 37

| TCYY il 2 o o 37
| §aXSYcY o A O0) 01011 0 1Y o | ST PTPON 37
R Ey 1 11 31 (2] 1 <) PP 127,128
| 5is £ < 11 3 Vo PO PPN 11
INSEAIIPTOCHIILOT .. c.eeieiiiei e e aes 127,129
R Ty Y M =N o o <Y ol 129
FR R Y ir= L0 1 2 < N 66
INEETACEIVE VI D .. e ettt e e e nenenan 33, 81
InterLaced eXtenSIDIE TTaACEe.t aeaes 15
|2} 5 0 Y6 1§ o] 1 (o) s D 15
| 2775 o APPSRt 39
L GCIC] oI A o0 (o) TP 92
Left JUSTIY Sigmnals.. ..o 48
left MOUSE DULLON.....coeiii e 24pp., 33, 41, 48
Y o LTS T T TP 92
1Yo £ Loy YA O D I 1170 Yo 1T PP 66
Loy My Yo B 00 =T <) o= TN 26
| FoT=Te I i 1 [TP 127
Lock to Greater Named MarKeTc.ouiiiiiiiieee ettt enenenenen 46
Lock to Lesser Named MaTKeTottt 46
(oo 13 1 L= TP 36
| 09 PR 15
LXT ClOCK COMPIESS TO Z..enoniiiiiiieie ettt et e e e e e e et e e e aenaanas 50
| D, 8 B 1 Y)y 0 | 103
| I B =1 0012 PO PP 103
LXT SecCtion DefinitionsS. ...t e enenenes 106
| 9,4 BT =Ted nTe) o N 2011 01 <) ST TSPt 103
IXt ClOCK COMPTESS £O Z.uiuniiiiiiiii et e e e e e e ans 92
| 9, PR 15
LXT2/VZT DIOCK SKiD ettt et e e e e e e e e e e ea e 64
5 4 0 11 0 1<) PR 72
970 o N 73
|4 =) 0110}V | PP 92
| Y PP 69
AV =Y ol 1 0 1 0 1] FO PPN 14
AV =T o 1o) ol £ TP 14
Magnifying GlasS 1COMS.cuiiiiiiiiie et e e e e e e e e e ans 27
Y =Y 3 s YA 1'a o o)7 2 19
Y =N S O 11 L 43
Marker time 1Al ... e 28
LY = N ool A LTSI o Y0 >« 54
MAX FSAD TT@ES. ..t e et e e e e e e eans 92
maximum hierarchy depth..........ooii e 37
menu accelerator keys, replacement of ..o, 85
Microsoft Windows Operating SyStemS.......c.ciuiiiiiiiiiiiieiiiiiei e 13

INIAALE INOUSE DULEOIN. ottt et eaeaaeans 26

Y BE (A= 0h T4k 0] N0 1= 0 | U PR 13

MiSSING MOAUIES. .. et et et et et et et et et aaneseneanenaenes 30
MIMS-DIEFELAS. ... e e e e ans 13
Mouseover Copies To Clipbhoard...........coiuiiniiiiiiiii e 48
IMOVE TO TIINIE...euiiiiiiiiiiei ettt ettt e e e e ee et e e e e e et e e e e e e e aneanean st eansaneaneaneans 44
MUIEIPTOCESSOT MACHINES. ...ttt e e e e ae e e ees 16
1Y A I T 99
Navigation and Status Panel............cooiiiiiiiii e 27
1070) aT=Y: Lo (=) o P 65
110) 00120 10 £SO 65
1010) o P 127
101014 4 D TP PT PPN 65
NSEAI T AN S FIIEET ... i et et e e e e e e e e e e e eanees 127
(@ o - 1 F PP UPT PPN 38
OPEN NEW TaD .. oeiiiiiiiiee et e e et e e e e et e e et ere e e s saeaaanennes 35
OPEIN NEW VIBWET ...u ittt ettt et e et e e et et et e s et e s et s et s aaasseananananannes 35
() 013 s B Tel0) o = TP 44
Open SoUrce DefiNition. . ..o 44
Open Source INStantialion......c.cou i 44
L0) GO PRSPPI 14, 65, 67
(O, Q= s L=1 1 Yol o o] = TP 67
override .gtkwaverc filename............cooiiiiiiiiii e 64
(1772 o V4 T PPN 15
o Vo [TSP 45
oL Lo S ¢ N7 Yo o OO OO PR PR PR PRSPPI 92
Partial VCD Dynamic Zoom Full.........c.cooiiii et 49
Partial VCD Dynamic Zoom TO ENd.......cccoiiiiiiiiiiii et ee e 49
PATEIAl ZIP INOA ... et 76
| s) 1T TP 37
PALEEIT TNATKS. .. ot e e et e e et e et et a e aaaas 57
Pattern SEATCR. ... 43, 56
1031 01 TP 33
19110 Lo £ o F PR 65
o L PR 36
| 0] o 1o} o1 SN 39
POPULATION COUNT.. ..ttt et e e e e e e e et e e eae e s seeneneanas 39
| O ST, G i1 1= PP 55
POSIX regular €XPreSSION......iu ittt et ee et e e et et e e aea e e eanaas 42p., 54p.
|0 TS] A Yo o o | PP 18
PrESENEWINIAOW ittt ettt et e e e e e e e e e et e e e s e e e s eaneasnesasaneananns 128
Primary MarkerT......c.coeueeriieeniinieieieneaeenennennns 24, 26pp., 30, 33, 36, 43, 45p., 48, 74, 90
o o L o T 1 = PPN 36
1) 0101 11 4 Lo OO PPN 35
PS IMNAXVECIEI. c.uiiiiiiiii ittt et e et et et e et et et e et e et e eanan 93
(1 ot 12 14
L@ 1 3 PP 36

Range Fill WIth OS.......ouniiiiiii e et e et e e e e et e e e e e e enaanas 41

Range Fill WIth LS. ..o e et e e e e e e e e e e e e eneans 41
| 0AVZ= 1 PP 06
| CY= Yo B o Yo 1 i L P 36
REAA SAVE Fl. .. et ettt 36
Read SCTIPE File. ..ot e e e et e r e e e e e 36
Read Verilog StemSTile.......oouiiniiiiie e e 36
REAITOBIES. . aei ettt 39
Jar=Y0 KR SYoa W=Yo N VA O3 I J N 81
Reload Current WavVefOTIN.ot aeas 35
=Y e T Vo 1 2k 1 [T 128
Remove Highlighted ALL@SES.......iuiiniiiiiiii et e et e e e e e 37
RemOVE Pattern IMarKS. ..ot e enenes 49
=Y 0] = Yol TP 54
| ST X0) < N 66
| R SIS Y T TN 42
RS TS) AT 5) A P 39
R To] o L OS] 1§ PPN 39
Right JUSTIfy Sigmals.....c.couiiniiiiii et et e e e e e eaas 49
Tight MouSe DULLON.......oi e e 25p., 33
1 0103 (o BT 65
|24 5 o0}] < TN 30
1V =Y ol o) o T 1o PPN 93
1 o o] 1Y o JO PPN 93
Y- 0a0] o) [SIAVLEY ol oTe e (=TS} Co 1 o FAN PPN 51
ESFe A7 Y0) 0 1< b« 1 N 66
Scale TO Time DI EIISIONttt et et ea e s e s e e e enenerrnenes 49
scale to time dIMENSION. ...ttt ettt et et e e e e e e e e e eanens 93
Yoy o] | BMVAVA <Y< TP 33
Search HierarChy GrOUDING.....c.oiuiiiiiiiiiieiie e ee e e e e e e e e e e e e e eaeanenas 43
TS A = <) 37
Set Pattern Search Repeat CoUNt........coooiiiiiiiiii e 44
SEEBASEIINEIM AT KO ...t 128
SetCUITentTranSlateE NUINIS. ... e 128
SEtCUITENtTTaANSIAEFILO. .. oo 128
SEtCUITENtTTaNSIAtEPTOC. 129
SetCUrrentTransSlateTranSPIOC.o.iu e 129
Y1/ b 0001 2801 oy VPR 129
Sy IS] O] 7 o £ PN 129
S A = Ny <) N 129
SEEINAIMIEAMATKETt e e e e e e e e enenaanens 129
S A A IV . . e 130
Y=Yl 0] 28 11 1 PP PP 130
setTraceHighlightFromInAeX........coviiiiiiiii et e e e 130
setTraceHighlightFromNameMatCh.........c.cooiiiiiiiii e 130
SetTraceScrollDArROWVaAlUEG........c.iviii e 130

L1 AN\ e Yo o) TTAc] = Vo ol i1 010 = TOR OO 130

SELZOOMRANGETIMIES. .. euiiiiiiiiie e e e e e e e et e e ae e et e e eneaenaanannes 131
Shared MeEMOTY ID ... e e e et e e et e e e ae s e e s eneanenaan 74
] =N oy 0T Ko =TSP 48
NS 8 PPN 45
ST a1 28 2 Vo PR PPN 25
T a1l o) 10 = TS 25
SRIMIACAT. e e a e 33, 66, 80
S 110} PSPPI 42
ShOW Base SYMIDOLS. ...t e e e e e e e e 48
] a0) 1 € o (e PR 47
SNOW MOUSEBOVETiiiiiiiei ettt et e e et et et e et e e et e e eaneenns 47
Show Wave Highlight. ..o e e e e 47
ShOW Dbase SYMDOIS.......iuniii s 93
Y a0 1o 1 o S 93
Show-Change All Highlighted.........couieiiiii e 41
Show-Change First Highlighted...........cooiiiiii e 41
Show-Change Marker Data........ccoviiiiiiiiii e 46
SHOWSIGNAL ..o e e e e aaans 131
S To o T=1 o b oY o1 1 o) o BN 21
Signal HierarChy DOX. ... e e e e 55
SIgNAl SAVE FileS.. e et a e 56
SIgNAL SEATCR.....ieii et a e 54
Signal Search HIierarChyo 43
Signal SEATCR REGEXD. ..ttt e et e et e et e et e e e 43
SIgNAl SEATCR TTEE... ettt e et e et e et e e e e e ae e eneananns 43
SIgNAICHANGELIST. ...t et ans 131
(o 1 1T o FR PPN 38
S 10 510 o PPN 42
SIMARADMA BASE ..ttt et et e e e e e et e ee et e e e e et et et aaeaneaneanen 16
] 0 1Y a0 Yo) /s R 67
] [0 o3 ha Lo J=Te Lo (=1 F PPN 48
SPlash dISADLE.... ..t 93
Y)01 aTo o - o . PPN 27
ST o 1 o) H= Ted o) o N 4 1 NPT PP PP 93
SSE AyNAmMIC IlEOT..cen i 93
SSE EXPANAEA. ... i et e e e et aas 93
ST 1= Cod L o L= T PRSP 66
Standard TTacCe SELECT...... v e e e e e e e e 48
SEATUS WINAOW .. euiiiniiiii et et et e e e et e et e e e e e e e e eaneanas 19, 27
SEEIMNS fIle e 18, 30, 36, 52, 64, 74
SErace TePEAt COUNT......cuiieiiiii e e e e e e et e e e e eae e aneenens 93
] 1= 110 B PP PTPRPPN 54
RS0 01 a0] = o 11
TCL CallDACKS. .ceuiiiiii ettt e et et e et e e e et e e e e e e e e e e ans 133
TCl ComMmMAaNd SYNEAX. . ..ottt et e et e e e ee et et et et e eae e ererenaananns 117

J Kol BT} o) o] O PP 36

5010 L TPt 38
TIINE MEASUTEINIEIITS. ... ettt et et et et et et e e et e et ea e en et eneaenenenennes 26
B0 TSTS] 0 1 i PRSP PRT PR PPPRPRN 27
TIMINGANALYZET ..ottt e et e et et et et et et et et et e e raaneaaenas 35
Toggle Delta-FreqUEINCY.....c.iuniiiiiiieee e ee et e e e e e e e e e e e e e e e anas 48
Yo {0] (SR € 4 01U 1 o JE PPN 42
TOGGLE MaX-IMATKETottt et e e et e e e et e et e e et e e eaaeaeanas 48
TOGQLE TTACE HIET ... e it e e e e e e e e et e e e e e e e ene e anans 37
TOOIDULEON INTEITACE. .. .ceeiieiiiii e e e e e e ens 23
[= Yol =3 o0 (o) PPN 86
Transaction FIlEer PrOCESS.......ciuuiiiiiiii et aae e 40
TranSaCtion FIlEETS. ... e et e et e e e e e e aneennees 59
Translate Filter File.. ... ee e e e e e e e e es 40
Translate Filter PrOCESS. ... iuuiii ittt e e e e e e e e e e e aaeeanees 40
TTEE SEATCI...c.eiiiiiiii e e e et e e e e e e e e e et et e e e anas 55
TWINWAVE. ..ot e e et et e e et e ee et e eaa e s e eaneanesneanaanns 29, 64, 68, 71p.
1172 TSI e B0 0 =1 [0 o B PP 21
UnHiIighLIGht AlL ... et e e e e e et e e e e e e e e e s e aneaneaaenaaasnannes 42
[0 BTe f a1 hTe] oA aUCT o 1) q o TP PPN 42
unhighlightSignalSFromList.........cooiiiii e 132
Unix and Linux Operating SySTemMS........cuiiiiiiiiiiiie e e e e 11
Unlock from Named MarTKET.......c.iuuiiiiiiiiiii et e e et e et e e e aeea e e e e eans 47
L0 N2 o o TP 42
Use Black and White.ot e e e e e et et eaaeaenes 49
0TS I 070) [0) o PP 49
USE DI TOMES ettt e a e aas 94
USE FAL LINES. . ittt e e e e ans 94
USE freqUENCY delta.....cooniiiiiiii e ans 94
ORISR LT o) o =T33 o) o B PP 94
USE JESEUTES. e uitniiiiiii ittt ettt e e et et e et et et e et e et et e e e e e aneenetneanstaneananesesnanennenes 94
USE MAXEIME AISPIAY . .uuiiuiiniiiiiii e e e e ans 94
USE NONPTOP FOMES..ciniiii ettt et et e a e e eans 94
USE PANGO ONTS..ouiiiiiiiii et e e e et e e e e e e e e e e et e et e e e aaanas 94
USE TOUTNACADS - evuttunetntunetnennetuetneeueetneetnetuetnstuetnseunetnsetnetuesnetunsanseseseenstnstnernennennenns 94
USE SCTOLIDAT OMILY..uiiiniiiiii et et et e e e e e eans 94
USE SCTOIWREEL @S Y.iuuiiiiiiiiiiiiii et e e e e e e e e e ans 95
use standard ClICKING......cco.iiiiiiii e e e e e e e e 25, 95
use toolbutton INterfacCe........cooiuiiiiiiiii e 23, 95
18R] B T VN o Lot o) s T U 37
Value Change DUIND.....cc.iiiiiiiii ettt e et e et e et e et e e e enaaeananns 15
71 L0 LT Yo L o JE PPN 89
variable length INEEger... ..o e 99
V03 B TSP OP PP 15
VICD PlUS DU . e ittt ettt eee e e e e et et e et s et e s e e s s eaesnanaananns 16
AV403 B =T o{0 o =) PR PRPRN 66

VCD 1eCOder fastlOad fIleS. ... ettt e e enanns 63

VCD ReCOAET INAEX Fill. ..ot 16

AYA03 D 20 2 U=TeTo Jo i o Vo PR PR RPRPRN 97
VCA_exXpPliCit ZEr0 SUDSCIIPTS...cuuiiiiiiiii e a s 95
VCA Preserve GLECRES. ...t 95
ved preserve glitChes Teal.......ooviiiiiiiiii e 95
VCA WarNINgG fIlESIZE....iuniiiiiiiiiii ettt e e et e e e e e 95
LT 00 DA] N 69
L7016 12 b /PN 74
7ol ¢ 1 b PPN 76
7010 A V74 PR 77
7/=Te1 7o) ol 0 Y=o Lo i1 s o pRuN PRI PR PPN 95
7=) a1 oY o) USRS 52, 82p.
AY(=) ar CoTo B Y o) o Y=To B B = Yol S TP 16
VETTICAl DIUE LINES ...t e e e e e e e e e aanas 20
B S U= Y (O e R 13
BV] PP 96, 97
VISE COMIPIESSION. ... iitiiiiiiei et ettt et et et e e e et e e et e e eaneenns 95
174 R A 0] =) o1 o - S PP PSRPPRN 96
7 R) 011 DU 96
Y/ 2 B T PP PT PP 16, 69
174 016 WA v/ o] F PSPPSR 16
YA PPN 16
A7 WA V4 oL« PP 78
L7740 1 11111 TP PP RPN 79
LA By o PN 41
LA Y s =] o T PPN 50
LA AT o o i 1 (= TP 16
LA NS T o) 1 o Vo PO PP 46
WaVE SUDWINIAOWt et e e e et e e et e et e e ea e e e eneanes 26
WAVE VBISION. ... ceniiiiii ittt et e et e et e e et et et et et et e e eanean et eanaanennanss 50
WAVE SCTOIIIIG . ..uiiiiii et et e et e e e et e et et e e e e e e e e eaeaeneeneenaenaanns 96
WA B aTe Lo)To s Fo N o F Yo (=) TP 92
1A 0 16, 69
7 AT o o PP 16
L TA V2 8: 1 Lo [TP PP PRSP 54
WIIEE LXT FIle AS. ittt ettt et e e et et e et e ee et e e e e e e eanaes 35
WIIEE SAVE Fill. e e e e e e e e et e eaeeaes 36
WIIEE SAVE FIle AS. et e e e et e e e ae e e e eanees 36
WIIEE TIM FilE AS. .ottt e e e e e e e e et e e e eneaneneanas 35
WIIEE VICD il AS. .ttt e e e et et e e e e e eneans 35
LTA] 1 o= 1 Lo B PPN 54
D 1 5 P 65
b a0 01 A 1< 10 J PPN 82
Zero Range Fill Off...... ..ottt e et e et e e e eaaaan 41
7 11 ¢ PPN 11, 97
vA 11 0] o T< o3 . SO TP 69

PAeY0) 0 0 AN 1010 11 1 o1 HETURTR PR 44

Y40 10) 0 B 2 1 1] - PPN 44
Ao Te) 10 M =0} VA OIS o T o 49
yA010) 10 o 1= 1 TP PP OPR PP 96
yA010) 1 R o1=] 1Y (U PR PPN 96
yA010) 10 ¢ A 72 0TV 1 0§ (oS PP PRRPR TR 96
yA010) 10 0 A2 0TV 0§ (o = o Lo ISR 96
ZOOM POW L0 STIAP . tuiniiiiiiiiiii ettt eie ettt et et et e et et et eteeneaneaneanstnsaeenenetnenesnenesnenennes 96

0 124 = N T4 o PPNt 85

	Contents
	Using This Manual
	Printing Conventions

	Compiling and Installing GTKWave
	Unix and Linux Operating Systems
	Compiling and Installing

	Microsoft Windows Operating Systems
	Cygwin
	MinGW versus VC++ for Native Binaries
	MinGW with GTK-1.2
	MinGW with GTK-2.0

	Apple Macintosh Operating Systems
	OSX / Macports

	Introduction
	GTKWave Overview
	Why Use GTKWave?
	What Is GTKWave?

	GTKWave User Interface
	GTKWave
	Main Window
	Toolbutton Interface
	Signal Subwindow
	Wave Subwindow
	Navigation and Status Panel

	TwinWave
	RTLBrowse
	Ergonomic Extras
	Scroll Wheels
	The Primary Marker
	Interactive VCD

	GTKWave Menu Functions
	File
	Edit
	Search
	Time
	Markers
	View
	Help

	Quick Start
	Sample Design
	Launching GTKWave
	Displaying Waveforms
	Signal Search
	Hierarchy Search
	Tree Search
	Signal Save Files
	Pattern Search
	Alias Files and Attaching External Disassemblers

	Transaction Filters
	Debugging the Source Code

	Appendix A: Command Line Options Reference
	gtkwave
	fst2vcd
	vcd2fst
	evcd2vcd
	twinwave
	lxt2miner
	lxt2vcd
	rtlbrowse
	vcd2lxt
	vcd2lxt2
	vcd2vzt
	vzt2vcd
	vztminer
	shmidcat
	fstminer
	xml2stems

	Appendix B: .gtkwaverc Variable Reference
	Appendix C: VCD Recoding
	VList Recoding Stategy
	Time Encoding
	Single-bit Encoding
	Multi-bit Encoding
	Reals and String Encoding
	Final Notes on VCD Recoding

	Appendix D: LXT File Format
	LXT Framing
	LXT Section Definitions
	07: LT_SECTION_INITIAL_VALUE
	06: LT_SECTION_TIME_TABLE / 08: LT_SECTION_TIME_TABLE64
	05: LT_SECTION_TIMESCALE
	03: LT_SECTION_FACNAME
	04: LT_SECTION_FACNAME_GEOMETRY
	02: LT_SECTION_SYNC_TABLE
	01: LT_SECTION_CHG
	Command Bytes
	Delta Offsets
	Row Changed
	Change Data
	Correlating Time Values to Offsets
	Reading All Value Changes in One Pass

	00: LT_SECTION_END

	The lxt_write API

	Appendix E: Tcl Command Syntax
	Tcl Command Syntax
	Tcl Callbacks

	I. Introduction
	II. VCD file format
	A. Header Information
	B. Node Information
	C. Value Changes

	III. Limitations and acceptable shortcuts
	IV. Design goals
	A. Fast generation
	B. Small file size
	C. Fast reader initialization
	D. Fast extraction of a handful of variables or all variables
	E. Allow reading of a database that is still writing

	V. Database writer API
	VI. Compression techniques and compressed data types used by the database writer API
	A. Iterative compression
	B. Variable-length unsigned integer storage
	C. Variable-length signed integer storage

	VII. Processing of declarations and time/value change data into the database format
	A. Scope and variable declaration processing
	B. Time and value change processing
	C. Context flush
	1) Create a new, invalid block in the database. A major advantage of segmenting the data into independent blocks is that it gives reader code the ability to access all the currently valid blocks previously generated by a simulation while the simulation is still running.
	2) Create new buffers if a producer-consumer model of parallel execution is optionally enabled. Upon creation of new buffers, a separate context flush thread is spawned to process the old buffers while the writer API returns control back to the calling process. By making time and value change processing as described earlier simple, more work can be offloaded to the context flush thread. This minimizes how long a simulator is blocked by a context flush. Parallel execution is more useful when zlib is enabled to compress transformed value_change data: LZ4 is so fast that the overhead of parallel execution can slow writing down.
	3) Compress, write, and update the bits array. The bits array represents the checkpoint of simulation before any value changes in the block have been encountered. After the bits array has been emitted to the database, it may then be updated to reflect the final value change for each variable. As the value/position structure for each variable contains the position of its final value change in the block, the bits array can be quickly updated.
	4) Segregate and reformat each variable’s data into a contiguous stream of memory locations through a serialization process. For each variable, the linked list pointed to by its value/position structure is traversed and the time changes and values are reformatted and emitted into another buffer. As the list traversal proceeds in the reverse of simulation order, the reformatted data is built by [10] into descending memory locations in the destination buffer in order to reconstruct the original simulation order in a single pass.
	5) Compress the reformatted data. After serialization, a variable’s data are compressed using LZ4. Unlike [6], in [10] this is only performed once. In lieu of double compression, multi-bit MVL-4/MVL-9 values are stored packed as eight bits per byte when a value is scanned and discovered to contain only ‘0’ and ‘1’ value bits. A modified form of Duff’s Device [14] is used to perform the packing operation.
	6) Deduplicate the compressed data and generate an entry in the position table. Deduplication of the compressed, serialized data then occurs where the data are either compared against existing data stored in a Judy array [15] or a structure based on a move-to-front reference sorted Jenkins hash [16] array. The Jenkins hash deduplication performs slightly faster than the Judy array, however it may be subject to patent issues described in [17] so its selection is determined at compile time for [10] by a compile time option.
	7) Compress the position table. After all variables have been deduplicated, consecutive elements of the position table for non-dynamic aliases (positive values) are delta compressed and stored in the database as a positive variable-length signed integer. Dynamic aliases (negative values) are stored as a variable-length negative signed integer. To save additional space, a match of the current dynamic alias with the most recent previous one is represented as a value of zero. When one or more consecutive elements in the position table contain a value of zero (meaning each has no value changes), the zeros are run-length encoded then stored in the database as a variable-length unsigned integer. To differentiate in the reader between the two types of data (delta offsets or dynamic aliases versus counts of runs of zeros), the least significant bit of the variable-length integer is treated as a “hitchhiker” flag that differentiates between the two types of data, and either the signed or unsigned variable-length integer decoder are invoked appropriately.
	8) Compress the time table. The final structure requiring emission into the database is a compressed version of the time table. It is first preprocessed by converting it to a series of variable-length unsigned integers representing deltas of consecutive time values. Recall the time table values encountered earlier:
	9) Finalize the block. At this point, the context memory has been processed into a block in the database. The block is then marked as valid (in order to allow simultaneous reading of the database as it is generating), the context memory is recycled, and the writer API continues collecting more time changes and value changes until the database is closed.

	D. Close the database

	VIII. Experimental results
	IX. Conclusion
	X. Future work
	References

	Index

