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ABSTRACT: The baryon acoustic oscillation (BAO) analysis from the first year of data from
the Dark Energy Spectroscopic Instrument (DESI), when combined with data from the cosmic
microwave background (CMB), has placed an upper-limit on the sum of neutrino masses,
>m, < 70 meV (95%). In addition to excluding the minimum sum associated with the
inverted hierarchy, the posterior is peaked at >>m, = 0 and is close to excluding even the
minumum sum, 58 meV at 20. In this paper, we explore the implications of this data for
cosmology and particle physics. The sum of neutrino mass is determined in cosmology from
the suppression of clustering in the late universe. Allowing the clustering to be enhanced, we
extended the DEST analysis to Y m, < 0 and find >~ m, = —160£90 meV (68%), and that the
suppression of power from the minimum sum of neutrino masses is excluded at 99% confidence.
We show this preference for negative masses makes it challenging to explain the result by a
shift of cosmic parameters, such as the optical depth or matter density. We then show how
a result of > m, = 0 could arise from new physics in the neutrino sector, including decay,
cooling, and/or time-dependent masses. These models are consistent with current observations
but imply new physics that is accessible in a wide range of experiments. In addition, we
discuss how an apparent signal with Y~ m, < 0 can arise from new long range forces in the
dark sector or from a primordial trispectrum that resembles the signal of CMB lensing.
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1 Introduction

The cosmological measurement of the sum of neutrino masses, > m,, is one of the most
anticipated results from the coming generation of cosmic surveys [1-3]. From the measurement
of neutrino flavor oscillations [4], which precisely determine the mass-squared splittings
between neutrino mass eigenstates, it can be inferred that the sum of neutrino masses is
necessarily greater than 58 meV. This provides a concrete prediction within the standard
cosmological model that should be measurable (or detectable) with planned observations [5, 6].

The Dark Energy Spectroscopic Instrument (DESI) [7] is expected to provide the necessary
increase in sensitivity to Y m, to measure the minimum sum at 2 to 3o [5, 6]. Cosmological
measurements of neutrino mass rely on the measurement of the clustering of matter on
scales smaller than the free-streaming length of neutrinos [1]. A universe containing massive
neutrinos will exhibit suppressed matter clustering compared to a universe with only massless
neutrinos. This measurement can be achieved by combining observations of the cosmic
microwave background (CMB) with the measurement of the baryon acoustic oscillations
(BAO). The amplitude of clustering can be determined from the measurement of the CMB
lensing power spectrum, and this amplitude is compared to what would be expected in a
universe with only massless neutrinos [8]. In the absence of massive neutrinos, the amplitude
of matter clustering is determined by the matter density and the primordial amplitude of scalar



fluctuations. Measurements of the CMB angular power spectra allow for a determination of the
primordial fluctuation amplitude. BAO measurements are needed to measure the abundance
of non-relativistic matter to sufficient accuracy to isolate the effect neutrino mass [9].

The release of the first year BAO analysis with DESI [10], combined with data from the
CMB (Planck 2018 [11, 12] and ACT DR6 lensing [13, 14]), showed a remarkable upper-limit
on Y. m,, reaching

> my, < T0meV (95%) . (1.1)

This is consistent with an earlier constraint from (e)BOSS of Y m, < 82 meV [15] using
CMB+BAO+Shape parameters (see also [16]). The DESI result is sufficient to exclude the
minimum mass for an inverted neutrino mass hierarchy, 100 meV, at ~ 30. However, what
is also noteworthy is that the posterior peaks at > m, = 0 and is very close to putting
58 meV in tension with observations.

In this paper, we will explore the current constraints on > m, and what an exclusion
of > m, = 58 meV would mean for cosmology and particle physics. First, we will examine
the current measurement and how it depends on different types of surveys. One particularly
noteworthy aspect of the DESI measurement is that it appears to favor > m, < 0, though
that region of parameter space was excluded from the DESI analysis by imposing a prior
that Y m,, is positive (hints of negative mass from extrapolating the posteriors have been
seen previously [17-19]). Although negative neutrino masses are unphysical, a preference in
the data for > m, < 0 may simply reflect an excess of clustering in the late universe, rather
than a deficit caused by free streaming neutrinos. We use this idea to define a neutrino
mass, »_ my, that is allowed to be negative and perform the same analysis as DESI without
the positive mass prior. We find that data does prefer negative mass, > m, = —160 £ 90
meV (68%), and corresponds to a 30 exclusion of the minimum neutrino mass. The full
posterior is shown in figure 1.

The preference of the current measurement for negative »_ m,, is particularly important
as it affects the bias in the measurement of cosmic parameters, particularly the optical depth,
T, that would be required to explain the current limits. For ¢ > 30, the CMB is only sensitive
to the combination Ase™2", where A is the amplitude of primordial scalar fluctuations. The
determination of 7 is therefore essential for determining A; and suppression of power a late
times, but requires (challenging) large angular scale measurements of the CMB. It is plausible
that Y~ m, = 0 could be explained by a statistical or systematic shift in 7, but it is far more
challenging to explain > m, = —160 meV in this way.

An absence of the neutrino mass signal, while forbidden in the Standard Model (plus
neutrino masses), could be a natural consequence of a wide variety of beyond the Standard
Model (BSM) scenarios. The most straightforward mechanisms to eliminate the signal would
be to eliminate the SM neutrinos via decay (or annihilation), cool the neutrinos so that they
behave like dark matter, or change their mass over cosmological history. Simple models for
all three scenarios can be derived from new interactions in the neutrino sector that are weakly
constrained by experiments. On the other hand, the CMB does provide stringent constraints
on the parameter space of these models, as measurements of Neg are in good agreement with
the expected temperature [20] and free-streaming [21-23] of the cosmic neutrino background
(CvB). Nevertheless, there have been hints of neutrino interactions [24-28] in cosmic data
that may also point to new physics of this kind.
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Figure 1. Posterior of neutrino mass in eV inferred from Planck + ACT Lensing + DESI data.
The blue line shows constraints on a model with a physical neutrino mass, the orange line shows

constraints where the neutrino mass is parametrized as an effect on the CMB lensing power spectrum
and restricted to be positive, and the green line shows constraints on a parametrized neutrino mass
that is allowed to be negative. The best fit for the parametrized neutrino mass is »_ m, = —160 meV,
and the minimal neutrino mass of 58 meV is disfavored at 3o. For details about the parametrization
of negative neutrino mass and the data sets used, see section 2.2.

Negative neutrino masses, Y m, < 0, are representative of enhanced clustering of matter,
rather than any physical property of the neutrinos themselves. This kind of enhanced
clustering can be achieved by changing the long range forces that act on matter. We discuss
one simple mechanism, which is to introduce a new scalar force that acts only on the dark
matter. Such forces are more weakly constrained than fifth forces acting on SM particles and
thus could explain our signal without being in tension with other constraints. Alternatively, a
CMB lensing measurement with Y m, < 0 points to a larger than expected CMB trispectrum,
which could result from a non-zero primordial trispectrum. These scenarios will all be testable
with current and/or future cosmic data.

This paper is organized as follows: in section 2, we review the measurement of > m,
and extend the analysis to negative masses. We discuss what shifts in cosmic data would
be required to make these measurements consistent with conventional neutrino physics. In
section 3, we present models that could explain }_ m, = 0 with new physics in the neutrino
sector. In section 4, we present models that could explain a cosmological inference of negative
neutrino masses. We conclude in section 5. Appendix A, we review the physics origin of
the suppression of structure due to massive neutrinos.

2 Neutrino mass and DESI

2.1 How neutrino mass is measured

In order to understand what an apparent measurement of > m, = 0 would mean, we first
need to review exactly what measurements allow us to infer > m, (see also [29, 30] for



review). We will assume that Y m, ~ 60 meV, as this is the minimum sum consistent with
neutrino oscillation experiments and is therefore the minimum value that would need to
be excluded in order to favor > m, = 0.

Cosmic neutrinos are relativistic in the early universe, but become non-relativistic when
their propagation speed, ¢,, drops well below the speed of light. In a ACDM + m,, cosmology,
the typical neutrino speed is given by

<p1/> 3T,

¢, = :z1.0><10—2<
my my

50 meV

my

) (1+2), (2.1)

where (p,) is the average neutrino momentum and we have set ¢ = 1. As a result, the redshift
where the heaviest neutrino becomes non-relativistic is z, ~ 100. For z < z,, the energy
density of neutrinos redshifts like non-relativistic matter so that

Qo =Q+Q +Q,. (2.2)

However, the neutrinos are still sufficiently hot that they do not cluster on scales below their
effective Jeans scale. In terms of wavenumber, this free-streaming scale is given by

3aH _ 1 Zmu
ke = \/7:0.04}11\/[ 1 < ) . 2.3
fs 2 ¢y, pe - x 14+ 2z \ 58 meV (2:3)

Because neutrinos don’t cluster, the amplitude of clustering of matter, defined by the matter

power spectrum
P(k) = (8 (F) ()’ (24)

is suppressed on scales smaller than the neutrino free-streaming scale k > kg

1+ 2,
1+ 2

6 _
PO (k> kg, 2) & (1 —2f, — < fylog ) PRm=0) (k> ke, 2),  (2.5)
where f, = Q,/Q, is the fraction of non-relativistic matter in the form of neutrinos,
Om = Opm/pm is the density contrast of non-relativistic matter, and the prime on the
correlation function means that the delta function has been omitted. The suppression in
this formula is the result of two distinct physical effects (see appendix A for a derivation).

The first term, —2f,, reflects the reduced fraction of matter that is actually clustering. The

1+2,
IS

in the presence of matter that doesn’t cluster. Using

second, —g fuvlog is due to reduced rate of growth of the dark matter perturbations

Qh?=6x10"1 <5§1$</) — f,~4x1073, (2.6)

the suppression of the matter power spectrum at z = 1 is expected to be
pOome=38meV) (5 o 2) & (1 — 0.02) Po™=0) (k> g, 2) . (2.7)

Therefore, the signal we are looking for is an approximately 2% suppression of power on
small scales around z = O(1), as shown in figure 2.



Galaxy surveys like DESI do not directly measure P(k) and instead primarily measure
the clustering of galaxies. The power spectrum of galaxy overdensity has an overall amplitude
that depends on the details of galaxy formation, and the baryonic physics inherent in galaxy
formation is understood with insufficient precision to directly extract the amplitude of P(k)
from these measurements. The best current measurements of the matter power spectrum
come from gravitational lensing of the CMB. The CMB lensing convergence power spectrum
Cp* is given in the Limber approximation by [31]

. B 2
Cp ~ 2m°¢ /77 ndnPy (¢/(no —n);1) ((m _737**)(:0 — 77)> ; (2.8)

where 7 is the conformal time with 7, and 79 denoting the times of recombination and z =0

respectively. We also defined Py as power spectrum of the Weyl potential, ¥, which can

be written in terms of the matter power spectrum as

_ 902, (m)H(n) P(k;n)
82 k

Using the fact that the matter power spectrum is proportional to the primordial scalar

Py (k;n)

. (2.9)

amplitude Ay, we see that the amplitude of the CMB lensing power spectrum scales as

KK 2\2 o fl/
O o (Qmh?)2A, (1 0,02 103> . (2.10)

Therefore, in order to measure a three-percent suppression of the lensing power spectrum,
we must determine the physical matter density Q,,,h? (where h = Hy/(100 kms™ Mpc™!) is
the dimensionless Hubble constant) and the primordial scalar amplitude A to much better
than three-percent accuracy.

The main impact of DESI on the cosmological neutrino mass constraint is to provide a
precise measurement of w,, = €,,h? through the constraint on the expansion history from
BAO. The impact of changing w,, on the CMB lensing power spectrum is shown in figure 2
(for >~ m, = 0 and compared to the change from introducing > m, > 0). The reduction of
wm by 1.7% is roughly equivalent to introducing >~ m, = 58 meV, which implies that a 20
measurement of the minimum sum requires roughly 0.8% precision in the measurement of wy,.
Of course, this estimate is made holding other cosmological parameters fixed and thus is not
precisely what occurs in a full analysis. Yet, this estimate and the role of DESI in improving
Wy, 18 in good agreement with forecasts [6]. Importantly, even with CMB-S4, the uncertainty
on the shape of the power spectrum is much larger than the differences in the shapes of
these curves and thus we will only be sensitive to the average amplitude over the range
£ ~ 200 —1000 [29]. In this regard, the degeneracy between w,, and Y m, in the CMB lensing
power spectrum will only be broken by the primary CMB and BAO for the foreseeable future.

2.2 Negative neutrino mass

The physical sum of neutrino masses is of course restricted to be positive. However, the
combination of cosmological observables that we use to infer the mass of neutrinos are not
restricted in this manner. We show in this subsection that the CMB+DESI data in fact
prefer a negative neutrino mass (already hinted at in eBOSS [19]), corresponding to increased
matter clustering compared to a model with only massless neutrinos.
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Figure 2. Comparison of the fractional change to the CMB lensing power spectrum from changes to
0,,h? and the introduction of a non-zero neutrino mass.

In order to measure the preference of cosmological data for negative neutrino mass,
we require an implementation of the effects of neutrino mass that is allowed to take either
sign. The Boltzmann codes CAMB [32, 33] and CLASS [34] model neutrino mass in a way
that is subject to the physicality constraint > m, > 0. We modified CAMB to include a new
parameter, »_ m,, which is designed to mimic the effects of neutrino mass, but which is not
restricted to be positive. Our new parameter simply scales the CMB lensing power spectrum
in the same manner that would be expected from > m,. Specifically, we determine the
fractional change A,(>"m,) = C;*[>-m,|/CF*[>° m, = 0] at fixed values of Hy, wy,, and
wp. Once calibrated on positive values of neutrino mass, the effects of > m, can then be
straightforwardly calculated for negative values as well. In the ACDM+>_ m, cosmology,
observables are computed with the physical > m, = 0 and the CMB lensing power spectrum
is computed as C;* = Ay(3° M, )Crr[>°m, = 0]. The temperature and polarization CMB
power spectra are lensed using this modified CMB lensing power spectrum such that the set
C;‘FT, C’ZE , CEE, C}" is calculated self-consistently for each point in parameter space.

This prescription is very similar, though not identical, to the effects of the physical
neutrino mass in the regime > m, > 0. In particular, the physical neutrino mass in the
ACDM+5" m, cosmology contributes to the non-relativistic matter density today €, = Q +
Q.+ Q. In our ACDM+3" m,, cosmology, there is no neutrino contribution to €,,. As a
result, we anticipate that 3 m, should exhibit slightly weaker constraints than the physical
>~ m, when measured using the same data combination. To check this, we derive constraints
on three cosmological models: a model with a physical neutrino mass ACDM+}_ m,,, a model
with our parametrized neutrino mass restricted to positive values ACDM+(}" m, > 0), and



finally a model with our parametrized neutrino mass with no restriction on sign ACDM+>_ m,.
We analyze each model using the same data combination.

Boltzmann calculations were carried out using our modified version of CAMB [32, 33].
We utilized the likelihood for CMB temperature and polarization from Planck’s 2018 data
release [11], along with the combination of ACT DR6 [13, 14] and Planck CMB lensing [12],
and DESI BAO [10, 35, 36]. This combination of data is the same as that used by the DESI
team to derive cosmological constraints [10]. Our analysis was performed with cobaya [37],
using the Markov chain Monte Carlo sampler adapted from CosmoMC [38, 39] using the fast-
dragging procedure [40]. Analyses were run until the Gelman-Rubin statistic was R—1 < 0.01.

The results are presented in table 1 and figure 3. Notice that the parameter constraints
in the ACDM+3%"m, and ACDM+(}"m, > 0) models are nearly identical, showing only
slightly weaker constraints on ) m, as compared to the physical > m,. This excellent
agreement justifies our prescription for modeling the effects of neutrino mass, with the slightly
weaker constraints on ) 1, expected from the differing treatment of €2, in the two models.
Notice that in the ACDM+>" 7, model, the best-fit value for 3 m, is —160 meV, showing
a preference for negative neutrino mass, and disfavoring even the minimal sum of neutrino
masses inferred from flavor oscillation experiments at 3o.

We also note in passing that in the ACDM+}_ 1, model, the best-fit value for Sg =
03(£2,/0.3)%5 is lower than in ACDM+3Y" m,, by about 1.5¢ and has 40% larger error bars
(and is also smaller than the value inferred with Planck in the ACDM model, for which
Ss = 0.830 £ 0.013 [20]), representing a somewhat smaller Sg tension [41] when neutrino
mass is allowed to be negative.

2.3 Influence of cosmic parameters

Optical depth. The measurement of Ag is limited by our understanding of the optical
depth to reionization, 7. Thomson scattering of CMB photons into and out of the line of site
by free electrons present after reionization suppresses the amplitude of CMB fluctuations.
The observed amplitude of the CMB power spectrum is thereby reduced on small angular
scales. CMB observations primarily constrain the combination [20]

Age™®™ = (1.884 4 0.011) x 1077 (2.11)

This should be contrasted with the much less precise measurement of the primordial am-
plitude [20]

As = (2.100 +0.030) x 1077 (2.12)
Noting that for these same analyses,
7 =10.0544 + 0.0073, (2.13)

the error on A, can be directly attributed to the error in 7 and not the error in the
measurement of Age 27,
Of all the cosmological parameters defining ACDM, the optical depth is the most

challenging to measure. For ¢ > 30, its effects on the CMB are completely degenerate with A,.



ACDM+Ym, ACDM+(Y ., >0) ACDM+Y 1,

Parameter 68% limits 68% limits 68% limits
log(1010A,) 3.051 £ 0.014 3.0537001% 3.030 £ 0.017
N 0.9692 =+ 0.0037 0.9686 =+ 0.0036 0.9708 + 0.0038
1000pic 1.04112 4+ 0.00029  1.04111 +0.00029  1.04118 + 0.00029
Qph? 0.02249 + 0.00013  0.02248 +0.00013  0.02255 + 0.00014
Q.h? 0.11852 4+ 0.00088  0.11880 4 0.00088  0.11780 = 0.00097
Sy (X ) < 0.0741 (95% CL) < 0.0926 (95% CL) —0.15610:093

T 0.0585 =+ 0.0074 0.058810-9962 0.0510 =+ 0.0083
Hy 68.33 4 0.43 68.43 + 0.40 68.87 + 0.45
Quh? 0.14131 +0.00084  0.14127 4+ 0.00083  0.14036 = 0.00092
109 Age™?" 1.8808 + 0.0087 1.8826 + 0.0089 1.869 + 0.010
o8 OB s 0.824610-0058 0.8123 4 0.0078
Sg = 08(2,,/0.3)%5  0.8212 + 0.0096 0.827 + 0.010 0.807 + 0.013

Table 1. Parameter constraints from Planck + ACT lensing + DESI BAO in the three models
described in the text. All constraints are given as 68% limits, except for the upper limits on the
neutrino mass when it is restricted to be positive, which are reported as 95% CL. Values of neutrino
mass are reported in eV and Hy in kms™' Mpc™'. In the ACDM+5> " m,, model, the data favors a
negative neutrino mass and disfavors the minimal physical neutrino mass of 58 meV at 3o.

It is only on large angular scales that the optical depth leaves a unique imprint, through the
production of CMB polarization and the associated ‘reionization bump’ in the polarization
power spectrum. The history of these measurements, shown in figure 4 has involved significant
changes in the central value with relatively small changes in sensitivity.

It is natural to wonder if the apparent measurement of > m, = —160 meV could also be
attributed to an error in the measurement of 7. For this to be possible, we would need the
true value of As to be roughly 8.8% larger, so that the current measurement of the lensing
includes the expected suppression of P(k) relative to As. This would require a value of the
optical depth larger than that inferred from Planck 7 = 7pianck + 07, such that 267 = 0.088.
Using 7planckis = 0.054 and opianckigs = 0.0073, this would require

Terue = 0.098 = Tplanckig + 6.00Planck1s - (214>

Similarly, if we take 7 = 0.051 4+ 0.006 or 7 = 0.058 & 0.006 from [49] and [50], we would
require shifts of 7.80 or 6.70 respectively. For comparison, to shift >~ m, = 0 to 58 meV
only requires Ag to be 2.5% larger, which can be accomplished by a 7 = 0.066 which is a
1.70 upward shift. Both lines are shown in figure 4 and are consistent with some historical
measurements; thus a systematic offset in the more recently inferred values of the optical
depth is a plausible explanation for preference for negative neutrino mass. Yet, due to the
magnitude of the difference it is unlikely to be the result of a statistical fluctuation.

One of the key challenges with the optical depth is that it is very difficult to measure with
ground-based surveys (although it is currently being pursued, for example, by the Cosmology
Large Angular Scale Surveyor (CLASS) collaboration [51, 52]). The results of DESI alone
point to the need for a confirmation of the Planck measurement of the optical depth, and
in principle an improvement to the cosmic variance limit of o(7) = 0.002. This would be
possible with another satellite, such as LiteBird [53]. However, there is the more immediate
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Figure 3. Triangle plot showing parameter constraints from Planck + ACT lensing + DESI BAO
in three models described in the text and shown in table 1. For the purposes of this plot, we treat
the physical neutrino mass and our parametrized version on the same footing. Dashed lines show
vanishing neutrino mass > m, = 0 and the minimal sum of neutrino mass > m, = 58 meV. Values
of neutrino mass are reported in eV and Hy in kms~! Mpc™*.

potential of balloon-based observations which could reach similar levels of sensitivity [54].
Other longer term possibilities include using measurements of cross-correlations between the
CMB and galaxy surveys to eliminate the need for an optical depth measurement [55, 56] or
to use measurement the patchy kinetic Sunyaev-Zeldovich effect to constrain the physical
model of reionization [57-59], both of which might be possible with CMB-S4 [60].

Matter content. The measurement of the matter density w,, is equally important to the
measurement of > m, as the optical depth. The primary CMB directly determines w,
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Figure 4. The historical measurement of the optical depth, 7, from WMAP data [42-46] and
Planck [20, 47-50] by year of publication. The horizontal solid (dashed) blue line indicates the central
value of 7 that would be to move the peak of the DESI+CMB the Y m, posterior from -160 meV (0
meV) to 58 meV.

through its influence on the height and locations of the acoustic peaks. This is, in part, why
the CMB alone is capable of producing very stringent bounds on Y m,, e.g. > m, < 240
meV (95%) from Planck TTTEEE + lensing [20].

Improvements in the measurement to w,, beyond the CMB has been driven by BAO
measurements, most recently with DESI. As shown in figure 5, the BAO has played a
significant role in reducing uncertainty, but has been consistent with the measurements
from the CMB data on which the BAO is calibrated. Like the measurement of the optical
depth, there was a significant improvement from WMAP to Planck. However, unlike 7, the
Planck measurements of w,, have been stable with the inclusion of more data, including
from polarization and the BAO.

The measurement of w,, needs to be accurate to less than 0.8% in order to permit a
reliable measurement of Y m,. While this is a high standard, we have the benefit that w,,
will be measured using a number of different CMB surveys that can be combined with several
large-scale structure (LSS) surveys. Any large shifts in wy, due to systematic effects should be
different for different surveys and thus from planned measurements alone, we should be able to
determine a robust value of w,, and/or identify systematic issues. This is in sharp contrast to
the optical depth, of which Planck is currently the only measurement at the needed accuracy,
and it is unclear if near term observations will reproduce or exceed their sensitivity.

It is well known that introducing dynamical dark energy, e.g. in the form of wy # —1
and w, # 0, significantly weakens' the neutrino mass constraints [63]. This is for the simple

Tmposing Z m, > 0, it has been observed that constraints from current data on neutrino mass can tighten
when marginalizing over some models of non-phantom dynamical dark energy [61, 62]. While the Cramer-Rao
bound requires that the statistical uncertainty must increase, a shift of the central value to more negative
values could explain this behavior.
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Figure 5. The historical measurement of the matter density, §2,,h?, from WMAP data [42-45] and
Planck [20, 47] by year of publication. The black Planck+DESI point is the result of our reanalysis of
ACDM-+)" m, using the same priors as [10]. The horizontal solid (dashed) blue line indicates the
central value of Q,,h? that would be required to move the peak of the CMB+DESI > m,, posterior
from -160 meV (0 meV) to 58 meV.

reason that if we allow for more free parameters in the expression for H(z) at low redshifts, we
cannot measure wy, at the accuracy needed to determine >_ m,. However, this will typically
require fairly significant changes to the content and history of the universe. Leaving the
content of the universe fixed, we will see that the neutrino mass signal can be explained
with changes to the micro-physics in the neutrino and/or dark sector that otherwise leave
the rest of cosmological history intact.

CMB lensing. Weak gravitational lensing of the CMB perturbs the path of photons, so
that the apparently location on the sky is perturbed from the true direction #' = 1 + @(n),
where @(n) is deflection angle [31]. Since the gravitational lensing is time-independent on
the scales of observations, the maps of the CMB temperature anistropies (for example) are
also modified by the same effect,

CZ—‘lensed (ﬁ) = Tunlensed (TAL + O_Z(ﬁ)) . (215)

The deflection angle is related to the gravitational potential via the lensing potential ¢(7),
via @ = V¢ and

- 0 =" R
o) = =2 | " ang Sl () (216)

where U is the Weyl potential and 7, is the conformal time of CMB last scattering.
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We can understand the main influence of lensing on the CMB by Taylor expanding
CZjlensed (ﬁ) ~ Tunlensed (ﬁ) + VﬁT : vﬁ¢ + O(¢2) . (217)

For a small patch of sky, we can Fourier transform 7 — 7 so that the dot product is replaced

with a convolution

L PL - - - oo o
Eensed (ﬁ) ~ Tunlensed (e) - / —L- (E - L)Tunlensed (E - L)(b(L) + O<¢2) . (218>

™

This will induce a non-vanishing correlation between different Fourier modes,

<ﬂensed (Z)ﬂensed (I_:_Z)>T = 5(E)C;T,unlensed
+ i |:(E_Z) .ECTT,unlensed +g ECZT,unlensed ¢(E) +O(¢2) ’

2T |L—|
(2.19)

where CKTT’unlensed is in the unlensed temperature power spectrum, and the subscript T’
on the left-hand side refers to an ensemble average over the unlensed CMB temperature
realization. As the L = 0 correlations would vanish without lensing, we can reconstruct qﬁ(l_;)
from the presence of these correlations [64]. Estimating the CMB lensing power spectrum can
therefore be achieved by measuring the temperature four-point function. Lensing also induces
a measurable smoothing effect on the acoustic peaks of the CMB power spectrum, from
convolving the unlensed power spectrum with the lensing power spectrum at second order.

Once the lensing potential is reconstructed, it can be used to calculate the power spectrum
of lensing, remove lensing from the CMB maps [65-67], and /or cross-correlate with other data.
For the neutrino mass, the only piece of information we need it the power spectrum of the
lensing map Cf(b. This is the same information that is contained in the connected trispectrum
of the temperature, as gzb(l_f) was determined from a temperature two-point function. As
shown in figure 2, >~ m, = 58 meV causes a roughly 2-3% suppression of the lensing power,
while >~ m, = —160 meV is a 6-9% enhancement.

The reconstruction of the lensing map is a non-trivial process that could be influenced
by other effects that correlate modes in the temperature maps. For example, it is known that
the non-Gaussian statistics of unresolved foregrounds can induce biases in these maps [68].
Furthermore, these same correlations are relevant to the covariance of the primary CMB
and thus are important for measurements of any other cosmological parameters. Yet, it
is also noteworthy that the neutrino mass measurement not sensitive to non-linear effects
in the matter power spectrum. Using current CMB data, the lensing map is too noisy to
resolve modes that are strongly influenced by non-linear evolution. Yet, even with future
data, such as from CMB-S4, these modes can be removed from the analysis with no loss
of sensitivity to > m, [29].

3 Vanishing neutrino mass

In this section, we will explore mechanisms for eliminating the signal of Y m, > 58 meV,
while being consistent with >>m, > 0. The common element of all these models is that
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we will reduce or eliminate the suppression of power by directly altering the behavior of
the neutrinos. In the next section, we will consider changes to the growth of structure
beyond just the neutrinos, which could allow for an apparent enhancement of structure,
which might be interpreted as >.m, < 0.

3.1 Decays

Perhaps the most obvious way to reconcile a cosmological indication of Y m, = 0 with the
nonzero masses implied by neutrino oscillations is if massive neutrinos decay into massless
degrees of freedom on cosmological timescales. While the two heaviest neutrino mass
eigenstates are already unstable within the Standard Model, their lifetimes are far greater
than the age of the universe (7, oc (h)*/m3, where (h) ~ 246 GeV is the vacuum expectation
value of the Higgs field). Neutrino decays on cosmologically relevant timescales would therefore
be unambiguous evidence of new physics, above and beyond the origin of neutrino masses.

While decays involving photons are strongly constrained by CMB spectral distortions [69],
decays into dark radiation (and either an active or sterile neutrino) are consistent with
current limits over a wide range of lifetimes. A lower bound comes from the requirement
that the decays and inverse decays of relativistic neutrinos do not prevent free streaming,
7, 2 4% 10%s (m,,/0.05eV)? [70]. On the upper end, the maximum neutrino lifetime that can
erase the cosmological signal of neutrino masses depends on the mass spectrum [71-75]. For
the minimum masses implied by neutrino oscillations, the lifetime of the massive neutrinos
should be roughly an order of magnitude shorter than the age of the universe, 7, < 4 x 10'%s.
For the sum of neutrino masses to be observable at KATRIN (sensitive to m,, as small
as 0.2eV [76], which translates to Y. m, ~ 0.6eV), the maximum lifetime of all the active
neutrinos should be around two orders of magnitude smaller, 7, < 4 x 10'4s.

There are a variety of possible decay modes. Two-body decays of massive neutrinos
necessarily proceed into a fermion and a boson, with the former either an active or sterile
neutrino, and the latter a scalar ¢ or vector Z’. As the masses of the bosons increase, the
two-body decay channels close and the bosons instead mediate three-body decays into active
and sterile neutrinos. As the viable parameter space for three-body decays is considerably
more constrained, here we will restrict our attention to the two-body decays.

In the neutrino mass basis, decays into a (pseudo)scalar arise via couplings of the form

Nii Nii o
Ly D %Viljj(ﬁ—k %I/{)@Vj(b—kh.c. (i,j=1,...4), (3.1)
where ¢ = 1,2,3(4) denote the primarily active (sterile) neutrino mass eigenstates; for

definiteness we assume the neutrinos are Majorana. Assuming the lightest active or sterile
neutrinos are much lighter than the heavy neutrinos, the corresponding lifetime for decay
via the pseudoscalar coupling is [73]

~15\ 2
T(vi = vjp) ~ 7 x 101 s x (0'05 eV) <10 ) : (3.2)

32

For two-body decays into active neutrinos to reconcile oscillation splittings with a cosmological
measurement of >~ m, = 0, necessarily m,, ~ 0.05eV. Erasing the energy density in massive
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neutrinos without spoiling free streaming then implies 4 x 107 < A, A < 4 x 10710 [77-81].
The situation is analogous for decays into sterile neutrinos, although in this case the overall
mass scale of active neutrinos may be significantly increased [74].

While the dimensionless couplings required to erase the cosmological neutrino mass
signal are small, they are nicely compatible with expectations from UV-complete models. For
example, models with spontaneously broken global horizontal lepton flavor symmetries [82]
give rise to a goldstone mode coupling to neutrinos as in eq. (3.1). In such models the off-
diagonal pseudoscalar couplings S\ij are generated via mixing between heavy sterile and light
active neutrinos of order :\ij N ICT /f, where f is the scale of spontaneous symmetry
breaking. The desired size of A corresponds to 50 MeV < f < 5TeV, implying new physics
associated with neutrino mass generation around the TeV scale.

Alternately, decays into a vector arise via couplings of the form

L R
Lz D %Z,; vy Prvj + %42,3 U4y" Pruy + hec. (i,j=1,...4), (3.3)

which set a lifetime via two-body decays of order

3 mzg L 2
T = ;2" ~ T x 107 s x <0‘2§:V> ( 55{5\?) . (3.4)

For two-body decays into active neutrinos to erase the cosmological neutrino mass signal
without spoiling free streaming requires 100 MeV < my /g < 10 TeV, along with mz < m,,.
The situation is analogous for decays into sterile neutrinos, modulo the greater freedom
in the active neutrino masses.

As in the scalar case, the dimensionless couplings required to erase the cosmological
neutrino mass signal are nicely compatible with expectations from UV-complete models.
For instance, in a model with a gauged lepton flavor symmetry such as U(1), .—L, broken
at a scale f, we have f = myz /g" and the preferred range of decay couplings once again
suggests new physics around the TeV scale. The preferred range of couplings and masses is
also compatible with current limits, with the most stringent direct bounds mz /g% > 1.3 GeV
coming from monolepton + missing energy searches at the LHC [83].

3.2 Annihilation

The cosmological neutrino mass signal may alternately be erased if the cosmological population
of massive neutrinos annihilates away into light states at late times [84]. For simplicity,
consider the case of a single light (pseudo)scalar coupling to neutrinos, as in eq. (3.1).
Whereas neutrino decays require off-diagonal couplings in the mass basis, annihilation is
efficient even when the largest couplings are diagonal. For annihilations to effectively deplete
the relic neutrino abundance, the couplings A, A should be large enough to keep ¢ in thermal
equilibrium with neutrinos until after the neutrinos become non-relativistic, at which point
the neutrinos annihilate efficiently via vv — ¢¢. The relic neutrino population is effectively
erased provided X, A > 107°. However, such large couplings bring ¢ into thermal equilibrium
before big bang nucleosynthesis (BBN), and the model is ruled out by a combination of
free-streaming requirements and CMB bounds on Ncg.
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However, mild variations on this scenario remain consistent with current cosmological
bounds [85]. One natural possibility is for the active neutrinos to coannihilate into sterile
neutrinos via a scalar or pseudoscalar ¢ through the couplings in eq. (3.1). Avoiding efficient
coannihilation while neutrinos are still in thermal equilibrium implies mg < MeV, while
ending coannihilation before recombination implies m, 2 eV. Within this mass range,

. . . 5 1/2 . . .
efficient conversion requires A\, A > 5 x 10~ x (IZ—{‘}) / , while preserving free streaming at
recombination requires A, A < 5 x 1073 x (g—{*})

The above bounds are based on the direct coupling of active neutrinos to ¢. These are
significantly weakened if the active neutrino couples to ¢ via light right handed neutrinos.
In this case, in the early universe, the mixing of relativistic active neutrinos to the right
handed neutrino is suppressed by the small neutrino mass, suppressing annihilation at early
times. At low redshift, the mixing of non-relativistic neutrinos is unsuppressed, leading
to enhanced annihilation that can also explain this signal. We briefly comment on this
possibility in section 3.4.

3.3 Cooling and heating

The origin of the neutrino mass signal in the matter power spectrum is that the neutrinos
are cold enough to redshift like matter, but not cold enough to cluster like matter. Naturally,
we could eliminate this signal by either heating or cooling the neutrinos. However, any large
change to the temperature would have to come after recombination, as the measurement
Negg = 2.99 £ 0.33 (95%) [20] is in precise agreement with the neutrino density predicted
by the Standard Model [86-91] and inferred from BBN [92].
Cooling the neutrinos can be an effective strategy if they can be cooled enough to reduce
the free-streaming scale below the nonlinear scale, or equivalently kg > knp, = O(1) h Mpc .
Recall that the free-streaming scale is defined by
— (3.5)

2c¢,

where the neutrino speed in the Standard Model is given by

v 3T, _o (50 meV
c,,:<p>zwl.0><102< me>(1+z). (3.6)

ml/ ml/ ml/

As a result, the free-streaming scale as a function of the neutrino temperature is

B zmy> ( 1.95K 1 )
k =0.04 h Mpc™* . 3.7
s(2) pe (58meV % T,(2=0)1+=z2 (37)

The role of the z-dependence puts a somewhat non-trivial requirement on 7,,. At a minimum,
if we have k(2 ~ 100) > 0.1 hMpc™!, then we could expect the neutrinos to cluster on
the scales in the linear regime of our late time observations. Less conservatively, we require
kg(z = 0) > 0.1 hMpc~t. Together, these imply we need to cool the neutrinos by a factor
of 10 to 1000 at redshifts z < 1000 to avoid the neutrino mass signal.

Solving for the coupled linear evolution of the dark matter, baryon, and neutrinos
numerically (see appendix A), figure 6 shows the suppression as a function of the neutrino
temperature as z = 0, T, for the minimum sum of neutrino masses, > m, = 58 meV. From

,15,



these numerical results, we can conclude that 7, < O(1) x 1072 K at z = 0 is sufficient
to move the free-streaming signal to the non-linear regime, assuming that neutrino cooling
occurs near z = 100.

A natural mechanism for cooling the neutrinos is through interactions with dark mat-
ter. The dark matter is cold and therefore is a natural heat sink for the neutrinos. It is
straightforward [93] to couple a right-handed neutrino, N, to dark matter, x at low-redshifts
through a light mediator ¢,

LD gndNN + gyodxx +m?¢?> + myNN + ARLN + m, xx - (3.8)

Scattering between the dark matter and neutrinos scales as 7,5 and thus avoids the constraints
at earlier times (and higher temperatures) from BBN and the CMB [94].

In order to cool the neutrinos and reproduce the clustering in a > m, = 0 universe, it is
important that the scattering between neutrinos and dark matter is ineslatic. This could
be achieved through a number of mechanisms such a additional dark radiation coupled to
X or having nearly degenerate states associated with y (like would occur with atomic dark
matter, for example). This allows the dark matter to absorb energy from the neutrinos and
allows for T,, to decrease. In the above model, gy ~ g, ~ 1077 is sufficient to bring these two
sectors into equilibrium at z < 100 [93] and any efficient process for absorbing the neutrino’s
energy would lead to an effective > m, = 0 signal.

One could also consider the case where x is a single particle sub-component of the dark
matter with total energy fraction f,. Without any additional light states, the scattering
between v and x is purely elastic. In this scenario, the effect of the coupling is create a
neutrino-dark matter fluid, much like the photon-baryon fluid that fills the universe before
recombination, with a free-streaming scale:

~ = fx+fu)1/2(Z:ﬂ”LV)
kg ~ 0.05 h Mpc™ " x ( 7. P mav ) (3.9)

The amplitude of the suppression on scales k& > k¢ is proportional to f, + f,, the total

energy fraction in this fluid. As a result, even if we could couple to all the dark matter so
that kg = 0.8 A Mpc ™!, the suppression is large enough to be constrained by the Lyman-a
forest [95-98] or counts of satellite galaxies [99, 100].

Heating the neutrinos to avoid the suppression of matter clustering requires that the
neutrino speed, shown in eq. (3.6), remain near unity throughout cosmic history. This could
be achieved by increasing 7T, by a factor of ~ 100 in the regime 1000 = z 2 100; however, this
would correspond to increasing the energy density of the cosmic neutrino background (CvB)
by at least the same factor (assuming no change to the number density of neutrinos). The
extra energy density acquired by neutrinos needs to be transferred from another component,
with the dark matter serving as the natural candidate during the matter-dominated era. A
transfer of energy from the dark matter to the CvB will have similar cosmological effects as
models of dark matter decaying into dark radiation, which are subject to constraints from
observations of the matter power spectrum and of the CMB that arise from a larger late-time
integrated Sachs-Wolfe effect as compared to a standard cosmological history [101-104].
Current constraints set an upper limit of about 4% of dark matter decaying into radiation
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Figure 6. Suppression of P, (k) for > m, = 58 meV and various neutrino temperatures at redshift
zero, T,,(z = 0). As the suppression is a percent level effect, it will only be observable in the linear
regime k < 0.1 hMpc™!. We see that cooling to T}, < 0.02 K, or cooling by factor of 100, is sufficient
to eliminate the signal of free-streaming neutrinos.

after recombination [104], comparable to the fraction of energy density that would need
to be transferred from dark matter to heat the CvB in order to keep neutrinos relativistic
until the present time.

3.4 Time varying mass

The tension between the DESI data and the laboratory measurement of neutrino masses
can also be alleviated if the mass of the neutrino is not a constant in either time or space.
For example, it might be the case that neutrinos had a smaller mass in the early universe
(until around z ~ 10) but then subsequently had their mass change by O (1), as suggested
in [105-107]. Alternately, it could be the case that the neutrino is a chameleon which acquires
a larger mass near high density matter [108] but is otherwise lighter in the low density of the
cosmos that is relevant to DESI and CMB lensing. For the purposes of illustration of this
concept, in this paper, we study the possibility that the neutrino mass evolved in time and
leave further exploration of potential chameleonic nature of neutrinos for future work.

To realize the phenomenology of lower mass neutrinos that become more massive around
z ~ 10, consider the following terms of the Lagrangian (3.8):

L D yhLN + gyéNN +m2¢? . (3.10)

We take the Yukawa coupling y ~ 10(1}?;\/ so that the neutrino’s Dirac mass is comparable

to the current neutrino mass ~ 10 meV (per neutrino). Observe that when gn¢ > y(h)
the phenomenology is identical to that of the conventional “see-saw” mechanism and thus
the neutrino mass will be light. When gny¢ < y(h), the Dirac mass will dominate and
equal the desired present day value. The cosmological evolution of (¢) naturally leads to
such a change due to the fact that (¢) is sourced by the CvB, whose number density drops
as the universe expands.

To illustrate this dynamic, let us pick some example numbers. Suppose we assume that
the neutrino mass was around ~ 1 meV in the early universe. Such neutrinos would be
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relativistic until z ~ 10. When they are relativistic, the CvB sources (¢) ~ gn m;‘f [93],
independent of the temperature of the neutrinos. Once the neutrinos become non-relativistic,
(@) scales with the number density of the CvB and we get (¢) ~ gNZ;—z. When (¢) drops, the
neutrinos become more massive, approaching their Dirac mass. The main constraint on this
scenario is the bound gy <5 x 1078 in order to ensure that the neutrinos do not annihilate
into ¢ when they are light (in fact, if they do, the situation reduces to the annihilation
scenarios considered earlier). Setting gn ~ 1078 and m ~ 10712 eV, we see that at early times
the neutrino mass is around ~ 1 meV. These neutrinos become non-relativistic around z ~ 10.
The subsequent drop in (¢) raises the neutrino mass to around ~ 20 meV today (per neutrino).

3.5 Mirror sectors and relation to the Hubble tension

The deviation from ACDM for > m, is roughly consistent with the suggestion that new
physics might only impact dimensionful parameters [109, 110]. The CMB and LSS directly
measure dimensionless quantities (angles, redshifts) and thus are not directly related to
dimensionful quantities like Hy and > m,. This idea was put forward in refs. [109, 110]
to explain the Hubble tension. They realized this concept by introducing a mirror of the
Standard Model in the dark sector, such that the gravitational signals remained unchanged
but the Standard Model densities could be rescaled.

Naturally, such a model could also easily explain the apparent > m, ~ 0, by having
massless neutrinos in the hidden sector. This would leave the other gravitational signals
unchanged, but reduce the total gravitational influence of the Standard Model neutrinos.
This dilutes > m, by the fraction of matter in the hidden sector to the mirror sector, and
thus requires the Standard Model to be a small component of the total matter density. Unlike
some of the other solutions to > m,, this requires an order one change to the universe and
thus is difficult to make compatible with all observations. For example, BBN is sensitive to
the physical baryon density and thus is not compatible with the simplest implementations
of this idea.

Interestingly, the suggestion that there could be multiple copies of the Standard Model
with different mass parameters is a natural consequence of several recent mechanisms for
solving the hierarchy problem [111-113]. However, these hidden sector typically increase
Neg > 3.044 and > m, > 58 meV. Without fine tuning these models to take the form
of those described in refs. [109, 110], observations that favor Y m, < 58 meV severely
constrain these models.

4 Negative “neutrino mass”

The possibility of an apparent measurement with ) m, < 0 would be most naturally explained
by an increase in the amount of clustering in the late universe, or at least an apparent increase
as measured through gravitational lensing of the CMB. Even if neutrinos were truly massless
> m, = 0, this would require a change to the formation of structure or the statistical
properties of the CMB. Such a mechanism could also erase the signal from conventional
massive neutrinos and thus need not involve a change to the neutrino sector at all. In this
section, we will explore representative examples of how this signal could arise. We will
consider physically increasing the amount of clustering through a new long range force, and
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creating a apparent increase in lensing through changes to the statistics of the primordial
density fluctuations. Both classes of ideas lead to observable consequences that may already
be testable with existing cosmological data.

4.1 Dark matter with long range forces

The most direct approach to enhancing the clustering of matter is to increase the strength
of the long range force between dark matter particles. Such long range forces are very well
constrained for ordinary matter, from tests of the equivalence principle [114]. However, if
this new force is limited to the dark matter, it would evade most simple equivalence principle
tests. It will nonetheless have observable implications for gravitational dynamics that impact
structure on galactic [115-118] and cosmological scales [119, 120]. Interestingly, any such
force would also violate the single-field consistency conditions for large-scale structure and
thus would leave a measurable non-Gaussian imprint on cosmological correlators [121-123],
in addition to the any change to the power spectrum.

Following [120, 123, 124], suppose we introduce a massless field ¢ that couples only to
the dark matter with a r=2 force similar to Newtonian gravity. This force will modify the
momentum conservation equation for the dark matter,

. 1 _
Ucdm T Hucdm = _a ((I) + 0490) 3 VZ(P = a87ercdm50dm ; (41>

where X = %X is a derivative with respect to proper time at fixed comoving coordinates. The

resulting linear growth of the dark matter and baryons at k > k¢ where 9,, = 0, is described by

. 4 . 2

Beam + 558 = g5 (1= fu = o)1+ 20°)0cam + fo] (42)
. 4. 9
o + §5b =32 (1= fu — fo)dcdm + fodb) - (4.3)

We will define the new growth term as (1 — f, — f)(1 + 2a?) = 1 +¢, so that e controls the
change to the linear evolution. Taking dcqm = t7 and 0y = £dcqm we find
4 2 4 2/ 1+e€
W=D+ gr-S(reréf) =0, Et-Dregr—3 (o +h) (1.4

To linear order in € and f; one finds the growing solution

’yzg—k%(e—i-fb), £=1-(2a%). (4.5)

In the presense of this new long range force, the power spectrum is therefore modified

142z,
142

PO (> kg, 2) (1_2 f,,—l—g(e—l— £,)log ) PO m=0) (ks ke 2). (4.6)
Here z, is the redshift where the long-range force becomes important. In most simple models,
2z, is the redshift of horizon entry k = a(z.)H (24). This would make the above signal scale
dependent and thus would not mimic the neutrino signal. As a result, cosmological constraints
already exclude o < 0.01 [119, 120]. Therefore, it is important that z, is a k-independent
constant and that the field ¢ only becomes important at late times. In this case, if we assume
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the minimum 3" m, so that f, = 4 x 1073, as derived in equation (2.6), we could explain
an apparent . m, ~ —160 meV with o? = 7 x 1073.

A phase transition, or some other time- or temperature-dependent physics could change
the mass of ¢ so that it became massless at z, = 100. This would imply equivalence principle
violation for the dark matter at later times. Current constraints [115-118] likely require
o? < 1 but have not been explored in detail. In addition, this type of equivalence principle
violation leaves a number of cosmological [123] and astrophysical signals [125] that could be
observed in near-term surveys and experiments. For example, the change to the evolution of
matter also alters the galaxy bispectrum in a way that breaks the single-field consistency
conditions. This effect is sufficient to measure a? > 1073 [123] for a quasi-realistic survey.

4.2 Primordial trispectrum

The trispectrum (four-point function) of the CMB plays two significant roles in the measure-
ment of neutrino mass. First, gravitational lensing induces a connected four point function,
and measuring the trispectrum allows us to reconstruct the lensing power spectrum. Secondly,
the trispectrum is also what determines the variance of the primary CMB which sets the
uncertainty in all our cosmic parameters [126, 127].

A primordial trispectrum of the appropriate shape could mimic the effect of lensing
and thus could lead to an apparent increase in the lensing amplitude. Both lensing and
primordial trispectra can be measured using the same class of estimators defined in ref. [128].
Concretely, we could couple the inflaton to an additional field, o(Z), that modulates the
amplitude of the adiabatic fluctuations, ((¥), by a term

((F) = ¢a(@) +/Rle(@)o (D), (4.7)

where (q(Z) and o(%) are Gaussian random fields. This modulation leads to a connected
trispectrum

!/
<<151<152<153</54> = 781 P (k1) P (k3) Py (|ky + ka|) + permutations
= TR T (k1, k2, k3, ka) - (4.8)

This is not equivalent to the lensing signal because it is a three-dimensional correlation
between the modes, rather than two dimensional. Bounds on this kind of non-Gaussianity
for a scale invariant o, P, ~ P, have been derived from the CMB and yield meeal < 1700
(95%) [129]. However, if the power spectrum of o were taken to be scale dependent to
be degenerate with the lensing potential, qﬁ(f), it would be projected out of that analysis.
Following ref. [130] (see also refs. [131, 132]), we can estimate how correlated the proposed

trispectrum would be with the local model using the Fisher matrix,

d3k1d3k2d3k3d3k4 <Ck1ck2gk¢3€k‘4> <<I€1Ckzcl€3gk4> o1t 353 <Z k)
27T)12 PC (kl) PC (kQ) PC (kg) PC (k4) ‘ (’ )
4.9

F (T1,Ty) = V/
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where V' x k;l?n is the survey volume. The ratio of the off-diagonal to diagonal terms defines

the correlation coefficient between 7g; and nie, C (1, 7)), which is approximately
J &k Py (k)P (k)
T AP (k)2\ /] APy (k)2

C (i, NE™) ~ (4.10)

To match the CMB lensing power, we should choose P, (k) oc Py, (k) so that it takes a similar
form to the lensing signal. We therefore require P, (k) — 0 as k — 0, P, oc k=3 as k — oo,
and have a maximum at some k = k.. We would then expect the correlation to be suppressed
by C(1gy,, &™) & (kmin/ks)? < 1. In this regard, the shape of P, (k) may not have to be
finely tuned to contribute to the observed lensing trispectrum without violating other CMB
trispectrum constraints. Other trispectrum shapes, like those considered in refs. [130, 133]
are usually scale invariant and peak in equilateral configurations where k& ~ kpax.

Although this signal would be degenerate with lensing in the CMB, it would be introduce
non-Gaussianity in the late universe that could be measured through the galaxy power
spectrum [134] (via scale-dependent bias [135, 136]) or cross-correlations between the CMB
and LSS [137]. CMB lensing is currently measured at 400 [12-14, 138] and therefore a
trispectrum mimicking a 2.5%-7.5% shift in the lensing amplitude would be visible at the
1-30 level. Given that the current constraints on primordial non-Gaussianity from related
models are at least an order of magnitude weaker than Planck constraints [139], we do not
expect? current galaxy survey data to be sensitive to such a trispectrum. However, data from
DESI, Euclid [140], and particularly SPHEREx [141] are expected to be up to an order of
magnitude more sensitive than Planck to this type of non-Gaussian signature. Concretely,
SPHEREX is expected to be sensitive to 7y, = 130 at 20 [142] which is roughly 10 times
the sensitivity of Planck [133].

A second possibility is that additional contributions to the trispectrum could increase
the true uncertainty in cosmic parameters. This could increase the probability that value
of As determined from the primary CMB is simply a statistical outlier. Specifically, a large
primordial trispectrum increases the deviation of parameters from their mean values. One
model that achieves such behavior is disorder in single field inflation [143]. In these models,
random features in the inflationary potential introduce, on average, a trispectrum that is
identical to the Gaussian noise but with a larger or smaller amplitude. One can achieve a
similar effect on >~ m, [144] from super-sample covariance [145], through a large amplitude
of local-term non-Gaussianity (e.g. 7ic®). To be consistent with CMB constraints, the
effective amplitude 7y, would have to be scale-dependent to avoid the direct constraints
from the CMB trispectrum.

5 Conclusions

The exclusion of the minimum sum of neutrino masses, from either the inverted or normal
hierarchy, is a remarkable statement of the power of cosmological data. At these masses,
neutrinos form only a fraction of a percent of the total energy density of the universe. The

2We are not aware of published constraints on 7, from current galaxy survey data in which we can directly
compare Planck.
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presence of cosmic neutrinos has been robustly established during the era of nucleosynthe-
sis [92] (BBN) and recombination [20] (CMB), through the measurement of N.g and therefore
their small but measurable impact on the late universe was to be expected. As we have no
simple path to a direct measurement of cosmic neutrinos on earth, cosmological observations
provide a novel window into the universe, capable of revealing new secrets.

The recent BAO measurements from DESI enrich this story. Allowing > m, < 0, as
an indication of enhanced of clustering, we find data from CMB+DESI constrains > m, =
—160 £ 90 meV (68%), excluding at about 30 even the minimum neutrino masses consistent
with neutrino oscillation experiments. Yet, we showed that this measurement can be naturally
explained by new physics in the neutrino and/or dark sectors that is otherwise weakly
constrained by other experiments and observations. A measurement consistent with > m, =0
could be naturally explained by neutrino decays, cooling, or time-dependent neutrino masses,
pointing to new physics coupled to neutrinos and potentially dark matter (sectors). Achieving
>~ my < 0 requires physics beyond the neutrino sector but could be explained by new long
range forces for dark matter or changes to the primordial statistics. Each class of models
naturally suggests signals that could be present in existing data or testable with near term
experiments or observations.

It is important that the measurement of Y m, from the CMB and DESI is incompatible
with a wide range of proposals for BSM physics that are also otherwise unconstrained. Light
but massive relics [146] are extremely common in models of BSM physics, including many
approaches to the hierarchy problem, explanations of dark matter, models including light
gravitinos [147, 148], etc. These necessarily contribute positively to Neg and Y m, and thus
would further exacerbate the tension with the minimum sum of neutrino masses. As a result,
any such model would have to incorporate additional physics, of the kind discussed in this
paper, in addition to the new physics relevant to these problems. It is interesting that our
results from neutrino decay point to a possible origin from new physics at 10-100 TeV, which
could provide a common origin for both effects.
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A The suppression of clustering

In this appendix, we review the calculation of the linear growth of structure in a universe
with massive neutrinos. This calculation explains the suppression of small scale power due
to neutrino free streaming, which is the dominant cosmological signal responsible for the
constraints on ) m,.

Following [30], we define the density contrasts of the dark matter and baryons as
dchb = %, and the neutrinos, 4, = %. Energy and momentum conservation of these
species after recombination is then described by the coupled equations

ben(kyt) — a kPug, = 0, o, (kyt) —a Yk?u, =0, (A1)

and

1 2

1
ey + Huey = ——®, i+ Hu, =~~~ %@. (A.2)

a

Here we have defined the scalar velocity potential u; for each species as v; = Vu;. Finally,
® is the Newtonian gravitational potential, which obeys

Ve = drG (PebOcb + Puby) - (A.3)

In a matter dominated universe, H? « a~> which implies that a(t) o< t*/% and py, oc t2.
Differentiating these equations allows us to eliminate the velocity potential to find two
second-order equations

. 4 . 2
o1 = 5.9 Jvov 1-— v)0Ocb] » A4

6Cb+3t(scb 342 [f(s +( f)(sb] ( )
“ 4 . 2c 2

v 5.0v — — 550 50 JvOov 1-— v)Yb] » A.
By + 50 = =500 + o [y + (L= £)3) (A.5)

where ) 9. )
_3k el _k _<pl/> _Qu
Q_W—k?s, Cy_my’ fV_Qm (AG)

From here, one can solve these equations numerically to understand the influence of the
neutrinos on the matter fluctuations in the linear regime.

In the regime « > 1, it easy to understand the solutions as follows: the homogeneous
equation for §, (i.e. 6o, ~ 0) can be solved to find that 4, oc t=%/% — 0 as t — co. We can
also solve the inhomogeneous equation with §, = {dcp, to find £ < 1/a — 0. Therefore we
can focus on ., with §, = 0. Taking the ansatz d., = t” and J, = 0, we get

2(1-f) 2 2

4
7(771)+§77#20%7:§—gf1,+(9(f3) (A7)

where we kept only the growing solution with v > 0. In a matter-dominated universe,
H? « a3 which implies that a(t) o< t*/3, and therefore

S (K, 1) ~ Oa (K, 1, )a(t) =35/ (A.8)
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where 1+ z, = a(t,)~!. Finally, since p,, = peb + pv, the total matter density contrast
Om = 0pm/pm is given by

= (5 C +5 1 = = —
Giot) = LLELE (1) (1 fo)bn(Ft)al) 2
3 1+ 2,
~ 1—f,—=f,1 . A.
bon (1= £, = 2 log ) (A.9)
This gives rise to the suppression of the power spectrum

(Zm ) 6 ].+ZV (Zm :0)

P vk > ks, 2) & 1—2fl,—5fl,log1+z P vk > ks, 2) (A.10)

In this regard, we see that the suppression is a straightforward consequence of the linear
evolution.
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