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1 Introduction

Effective field theories (EFTs) are the standard language that describes the dynamics of

low-energy degrees of freedom in terms of a series of increasingly higher dimension opera-

tors,
∑

i,n c
(n)
i /ΛnO(n)

i . Only a finite set of the (a priori unknown) low-energy coefficients

(LECs) c
(n)
i enters in the physical observables at any given order in (p/Λ)n. When the

theory is invariant under a symmetry group H, the LECs are further restricted by de-

manding invariant O(n)
i . Chiral perturbation theory in QCD is the EFT prototype for the

dynamics of pions at low-energies: the leading O(p2) Lagrangian is controlled by just two

parameters, namely the pion decay constant and the pion mass. Beyond leading order,

higher derivative operators become relevant and several other LECs need to be included.

While symmetry restrictions are crucial for the EFT to make sense and be predictive,

they do not exhaust all physical conditions that the LECs must satisfy whenever the

underlying ultraviolet (UV) theory has a Lorentz invariant, unitary, analytic, and crossing

symmetric S-matrix. These requirements translate into dispersion relations that relate the

LECs in the infrared (IR) to certain integrals over the energy of total cross-sections. For

example, the theory L = (∂µπ)2/2 + c/Λ4(∂µπ∂
µπ)2 + . . . for one Goldstone Boson (GB)

π, invariant under a shift symmetry π → π + c, admits sensible UV completions only for

c ≥ 0 because the forward elastic scattering amplitude A(s) satisfies [1]

A′′(0) =
4

π

∫ ∞
0

ds
σtot(s)

s2
≥ 0 . (1.1)

The left-hand side can be calculated within the EFT in terms of c, whereas the right-hand

side is the total cross-section integrated all the way up to the UV where the EFT is not

valid. This UV-IR connection provides additional constraints on the LECs. The recent

proof of the a-theorem [2] is actually based on such a twice-subtracted dispersion relation

for the dilaton elastic scattering where c ∼ aUV − aIR ≥ 0. Analogously, for the SU(2)

chiral Lagrangian one can derive dispersion relations that provide positivity constraints

on the LECs `4,5 [1, 3, 4]. In fact, for ππ scattering in QCD one can even go beyond

the forward limit and implement unitarity, crossing symmetry, and analyticity in a set

of twice-subtracted dispersion relations known as Roy equations [5], see e.g. refs. [6, 7]

for recent discussions. Similar twice-subtracted dispersion relations have been derived in

the context of particle physics beyond the Standard Model (SM). For example, ref. [4]

studied twice-subtracted dispersion relations for the scattering of longitudinally polarized

Electroweak (EW) vector bosons W and Z in the EW chiral Lagrangian.

All the examples above set constraints on LECs at O(p4). Indeed, the twice-subtracted

dispersion relations ensure the UV convergence of the integral of the total cross-sections

that cannot exceed the Froissart bound σ(s) ∼ log2 s [8]. However, as it was noticed in

ref. [9], certain linear combinations of the scattering amplitudes may still be convergent

with just one subtraction and thus give sum rules for the leading LECs at O(p2). In

particular, inspired by the results of ref. [10], the authors of ref. [9] derived the sum rule

1− a2 =
v2

6π

∫ ∞
0

ds

s

(
2σtot

I=0 + 3σtot
I=1 − 5σtot

I=2

)
, (1.2)
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where I is the weak isospin. This is a constraint for the O(p2) coupling constant a of a

Higgs-like singlet h coupled to the GBs emerging from the spontaneous breaking SU(2)L×
SU(2)R → SU(2)V with an interaction term a h ∂µπ

i∂µπi/v. Within chiral perturbation

theory in QCD, this equation with a = 0 is known as Olsson sum-rule [11], and it is

convergent because the combination of cross-sections under the integral does not couple

to the pomeron [12]. Indeed, the amplitudes that saturate the Froissart bound at high

energies drop in that linear combination. More recently, ref. [13] derived a sum rule for the

elastic forward scattering of 4-plets πa = (π1,2,3, h) of an approximate custodial SO(4) in

composite Higgs models, while ref. [14] studied perturbative unitarity sum rules in weakly

coupled models with several Higgs bosons.

In this paper we build on these previous results and consider the elastic forward 2→ 2

scattering of an arbitrary real, unitary representation r of an internal symmetry group

H. Using unitarity, analyticity, and crossing symmetry we derive universal sum rules for

the scattering amplitudes that encompass and generalize all previous examples, including

once-subtracted dispersion relations, shedding light on the underlying general structure of

the coefficients of the scattering amplitudes at any order, as well as on the LECs at O(p2).

EFTs for GBs associated with a coset G/H (where G may or may not be compact) are the

prototypes of theories where our sum rules apply. But in fact, our approach is also valid for

arbitrary spins and masses. We discuss in detail the sum rules for the scattering of longitu-

dinally polarized EW gauge bosons WL’s, and carefully compare the results to the gauge-

less limit with GBs. We prove positivity constraints on the coefficients of the scattering

amplitudes that generalize those found in ref. [1] for the shift symmetry to arbitrary groups.

In particular, we show that the amplitude coefficients must lie within a convex polyhedral

cone. We describe how to identify the cone edges, which determine the ‘strongest’ positivity

constraints that, linearly combined with positive coefficients, generate the entire cone.

Sneak preview and summary of the results In the remaining part of the introduction

we outline the main ideas and part of the results of this paper while skipping most of the

technical details related e.g. to the massless limit, the IR convergence, the possible IR

residues, and the good analytic behavior of the scattering amplitudes around, say, s = 0.

The main ideas and results presented here carry over the general case as we show in the

bulk of the paper.

The sum rules for the 2 → 2 elastic scattering are derived from dispersion relations

that relate the low-energy forward (t = 0) eigen-amplitudes AI(s) within each irreducible

representation (irrep) rI found in r⊗ r

AI(s) ∼ a(0)
I + a

(1)
I s+ a

(2)
I s2 + . . . , (1.3)

to certain linear combinations of integrals of total cross-sections. For example, in an index-

free matrix notation, the sum rules for massless states for one and two subtractions are

P− a
(1) =

2

π

∫ ∞
0

ds

s
P− σ

tot(s) , (1.4a)

P+ a
(2) =

2

π

∫ ∞
0

ds

s2
P+ σ

tot(s) , (1.4b)
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where P± = (1±X)/2 are the projection operators into the ±1-eigenspace of the involutory

crossing matrix X that acts on the eigen-amplitudes by exchanging s ↔ u channels as

AI(u) =
∑

J XIJAJ(s). Moreover, the amplitudes are not all independent because satisfy

the constraints

P− a
(2n) = 0 , P+ a

(2n+1) = 0 , (1.5)

which do not rely on unitarity but depend only on the symmetry structure of the theory and

crossing symmetry. The crossing matrix is completely independent of the dynamics and

fully determined by the symmetry H. The left-hand side of the sum rules (1.4) represents

the IR side where the coefficients a
(1,2)
I can possibly be calculated within an EFT in terms

of the LECs, whereas the integrals over the total cross sections encode information from

any energy scale up to the UV, where the EFT is no longer valid. The presence of P− in

the sum rule with one subtraction in eq. (1.4) is crucial to project out the UV divergent

contribution of the integral in eq. (1.4a), making it thus convergent, analogously to the

Olsson sum rule in QCD. We show that in absence of degeneracy the number of linearly

independent sum rules with an even (odd) number of subtractions equals the number of

(anti-)symmetric irreps in r ⊗ r. Explicit expressions for these linearly independent sum

rules can simply be obtained by diagonalizing the crossing matrix.

We also provide an algorithm to systematically construct the strongest positivity

constraints on the scattering coefficients a
(n)
I when n is even. In particular, we show

that the crossing matrix is unitary with respect to the positive definite (diagonal) met-

ric GIJ = dim rI δIJ made of the dimensions dim rI of the irreps. Equation (1.4b) can

thus be written in terms of a scalar product 〈v, a(2)〉 =
∑

IJ v
∗
IGIJa

(2)
J that involves only

positive quantities

〈v, a(2)〉 =
2

π

∫ ∞
0

ds

s2
〈v, σtot(s)〉 =⇒ 〈v, a(2)〉 ≥ 0 , (1.6)

whenever the +1-eigenvector v of X has positive real components vI . In fact, we show that

there always exist dimV+ 6= 0 linearly independent such positivity constraints (where V±
is the ±1-eigenspace) provided by vectors v that live in a convex polyhedral cone whose

edges are the intersection of V+ and the positive quadrant Rm+ where m = dimX. The

strongest positivity constraints 〈vedge, a
(2)〉 ≥ 0 on the a

(2)
I are those associated with the

scalar product along the edge generators vedge of the polyhedral cone.

For odd n, we show that no such general positivity constraints can be obtained. There-

fore, one cannot univocally determine the sign of the associated O(p2) LECs from eq. (1.4a).

Nevertheless, it turns out that the sum rules often allow us to pin down the quantum num-

bers of the states that are needed to obtain specific signs for the LECs.

Let us briefly discuss a concrete example. Taking e.g. H = SO(N 6= 4) and r = N,

i.e. the fundamental representation (for N ≥ 3). The product decomposes as N ⊗ N =

1 ⊕ A ⊕ S, where (A) S is the traceless (anti-)symmetric representation. The crossing

matrix X has one −1-eigenvalue and two +1-eigenvalues. Hence eq. (1.4a) gives one (once

subtracted) sum rule

2a
(1)
1 +Na

(1)
A − (N + 2)a

(1)
S =

2

π

∫ ∞
0

ds

s

[
2σtot

1 +Nσtot
A − (N + 2)σtot

S

]
, (1.7)
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eq. (1.5) gives the constraints

a
(1)
S = −a(1)

A = − 1

N − 1
a

(1)
1 , 2a

(2)
1 +Na

(2)
A − (N + 2)a

(2)
S = 0 , (1.8)

while eq. (1.4b) gives two other (twice-subtracted) sum rules — see the text for their

explicit form — leading to the two strongest positivity constraints

a
(2)
A + a

(2)
S ≥ 0 , a

(2)
1 + (N − 1)a

(2)
S ≥ 0 , (1.9)

which correspond to the conditions 〈viedge, a
(2)〉 ≥ 0 where v1

edge = (0, N,N + 2)T and

v2
edge = (N + 2, 2, 0)T are the edge generators of polyhedral convex cone in which the

amplitude coefficients must lie. Using the constraints (1.8), the positivity constraints (1.9)

imply a
(2)
S ≥ 0.

The power of the sum rules emerges when one calculates the coefficients a
(n)
I in terms

of the LECs of an EFT. Let us take for example the theory of GBs coming from the

symmetry breaking pattern SO(N + 1) → SO(N) (a sphere) or SO(N, 1) → SO(N) (a

hyperboloid), and let us add to this theory of GBs extra light Higgs-like states h ∈ 1 and

hab ∈ S coupled as (ahδab + bhab) ∂µπ
a∂µπb/fπ. Equation (1.7) therefore becomes a sum

rule that constrains the LECs:(
±1− a2 +

N + 2

2N
b2
)

=
f2
π

2πN

∫ ∞
0

ds

s

[
2σtot

1 +Nσtot
A − (N + 2)σtot

S

]
. (1.10)

The signs + and− correspond to the sphere and hyperboloid respectively. For SO(4)/SO(3)

∼ SU(2)L × SU(2)R/SU(2)V one recovers the sum rule of ref. [9], and the original Olsson

sum rule for a = b = 0.

The scattering of 4’s of SO(4) is relevant in every custodially symmetric composite

Higgs model. It is quite special because the anti-symmetric 6 ∈ SO(4) is further reducible

into two anti-symmetric representations (3,1) and (1,3) of SU(2)L×SU(2)R. In turn, this

theory admits two sum rules for odd n and other two for even n as we show in detail in

section 4.2. In particular, we find a new once-subtracted sum rule in addition to the sum

rule found in ref. [13].

For WLWL → WLWL scattering, one would be tempted, by invoking the Equivalence

Theorem (ET) in the custodial limit g′ = 0, to directly extrapolate the result (1.10)

obtained for GBs in SO(4)/SO(3). However, when using the ET one has to carefully take

into account the t-channel W -exchange diagram, since the squared mass m2
W cannot be

discarded in the forward limit t = 0 due to a pole 1/(t−m2
W ). In fact, such a term gives

a finite contribution ∼ g2/(2m2
W ) = 2/v2 independent of the gauge coupling g which thus

affects the left-hand side of the sum rule (1.10) that gets replaced as (1− a2) → (3− a2).

Alternatively, one can work directly with WL as external states and reproduce, in the

forward limit, the same result in agreement e.g. with ref. [15]. However, as we show in

section 5, the additional contribution to the left-hand side of the sum rule is exactly canceled

by an additional finite contribution to the right-hand side, coming from the integral of the

amplitude along a big circle at infinity in the complex s plane. This subtle point boils down

to identifying the correct analytic structure of the theory and has often been overlooked

– 5 –
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in previous works. Moreover, the sum rule has been previously derived with g′ = 0, where

no photon exchange in the t-channel occurs.1 In fact, the t-channel exchange of a massless

spin-1 boson has a Coulomb singularity at t = 0, and one may question the validity of the

sum rule (1.10) for the SM with a small but finite g′. Nevertheless, even in this case, we

show in subsection 5.3 that a cancellation between these extra gauge contributions on both

sides of the sum rule (derived departing from the strict forward limit) occurs, again thanks

to analyticity. In light of these results, we are able to show that the sum rules obtained

for GBs at vanishing gauge couplings do actually carry over to the full gauge theory in the

approximation of small, but finite, g′ � 1.

We suggest the reader interested in physical applications to go directly to section 4

where we provide a self-contained summary of the tools developed in the previous sections,

as well as detailed examples thoroughly worked out.

The paper is organized as follows. In section 2 we introduce our general approach,

discuss on general grounds the UV and IR convergence of the sum rules, and describe

the relation with EFTs. In section 3 we derive the positivity constraints emerging from

even-subtracted dispersion relations. In section 4 we give several examples of the appli-

cation of our general approach to particularly interesting physical cases. We study the

scattering of fundamentals of SO(N 6= 4) and of adjoints of SU(N ≥ 4) for every N . We

analyze in detail the special cases of SO(3) and SO(4) which are relevant for the EW chi-

ral Lagrangian and composite Higgs models, as well as SU(2) and SU(3) for chiral QCD.

We finally devote section 5 to longitudinal WW scattering in the EW chiral Lagrangian

and show the cancellation of the contributions from t-channel gauge boson exchange. In

section 6 we draw our conclusions and highlight possible interesting applications of our

results. Appendix A contains an extensive discussion of the crossing matrix X and its

general properties. Appendix B is devoted to a discussion of the analytic structure of the

amplitude in the presence of light unstable resonances. In appendix C we go beyond the

forward limit and discuss the sum rules at t 6= 0. Appendix D describes the construction

of the crossing matrix for SO(N) and SU(N). Appendix E reports the full expression of

the WLWL →WLWL scattering amplitude at tree level.

2 Sum rules

Let us focus on the 2 → 2 elastic scattering |a〉 |b〉 → |c〉 |d〉 with a, b, c, d = 1 . . . ,dim r

belonging to the real (non necessarily irreducible) representation r = r of a symmetry group

H. For concreteness we focus on real particles but the same arguments can be extended

by properly including charge conjugation. Two-particle states can be decomposed into

irreps rI(ξ)

r⊗ r =
⊕
I(ξ)

rI(ξ) (2.1)

where I is a (collective) index that identifies inequivalent irreps, while ξ labels possible

degenerate identical irreps appearing in the decomposition. For example, in the scattering

1We thank Adam Falkowski for remarking this point.
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of triplets 3 under SO(3) ∼ SU(2), we have 3⊗3 = 1⊕3⊕5. For SU(3), the scattering of

adjoints 8 decomposes as 8⊗ 8 = 1⊕ 81⊕ 82⊕ 10⊕ 10⊕ 27 so that the 8 are degenerate

because appear twice on the right-hand side of eq. (2.1). Equation (2.1) allows us to

decompose |a〉 |b〉 ≡ |ab〉 ∈ r⊗ r, a, b = 1 . . . ,dim r, as

|ab〉 =
∑
I(ξ),i

CabI(ξ)i|I(ξ), i〉 , (2.2)

where |I(ξ), i〉 (i = 1, . . . ,dim rI) is a basis of rI(ξ) and CabI(ξ)i denote the Clebsch-Gordan

(CG) coefficients relating the two bases.

By the Wigner-Eckart theorem the scattering amplitudes among different irreps can

be written just in terms of eigen-amplitudes AI(ξξ′)(s, t):

AI(ξ)i→J(ξ′)j(s, t) = δijδIJAI(ξξ′)(s, t) . (2.3)

Here s, t and u are the standard Mandelstam variables s = (pa + pb)
2, t = (pa − pc)2,

u = (pa − pd)2 with s + t + u = 4m2. Notice that the mixed eigen-amplitues AI(ξξ′)(s, t)
between degenerate irreps with ξ 6= ξ′, can be in principle non-vanishing unless other

selection rules can be invoked. We come back to this point later on.

Hereafter, unless stated otherwise, we refer to forward scattering only

AI(ξξ′)(s) ≡ AI(ξξ′)(s, t = 0) . (2.4)

Furthermore, we assume throughout this paper that the amplitudes obey the ordinary first

principles of:

(1) Analyticity, which allows us to extend AI(ξξ′)(s) to an analytic function over the

complex plane, with poles and branch cuts corresponding to the contributions of

stable particles and of the continuum to the scattering process, as for instance in

figure 1.

(2) Unitarity, which gives the optical theorem

ImAI(ξξ)(s) = s

√
1− 4m2

s
σtot
I(ξξ)(s) (2.5)

for s on-shell and where m is the mass of the particles r and also implies, via analytic

continuation, that

AI(ξξ′)(s)∗ = AI(ξ′ξ)(s∗) , (2.6)

which generalizes the Schwarz reflection principle.

(3) Crossing symmetry, which relates e.g. s- and u-channel amplitudes

Aab→cd(s) = Aad→cb(u) , (2.7)

where u = 4m2− s. In addition to s↔ u we can also completely exchange the initial

and final states, s ↔ s, for which crossing symmetry implies the following relations

between the eigen-amplitudes

AI(ξξ′)(s) = AĪ(ξ′ξ)(s) . (2.8)

– 7 –
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We often adopt an index-free notation for the eigen-amplitudes:

A(s) ≡


...

AI(ξξ′)(s)
...

 , (2.9)

where the collective index I(ξξ′) is now restricted to independent eigen-amplitudes,

i.e. eigen-amplitudes which are unrelated by eq. (2.8). For example, for the scattering

8 ⊗ 8 = 1 ⊕ 81 ⊕ 82 ⊕ 10 ⊕ 10 ⊕ 27 in chiral SU(3) eq. (2.8) gives A812 = A821 and

A10 = A10 and then only A812 (or A821) and A10 (or A10) appear in the index-free

vector A(s).

In appendix A it is shown that the s ↔ u crossing symmetry acts on the eigen-

amplitudes via a constant involutory crossing matrix X,2

A(u) = XA(s) , X2 = 1 . (2.10)

The entries XI(ξξ′)J(ζζ′) of the crossing matrix are constructed in terms of the CG coeffi-

cients defined in eq. (2.2) and we refer to the appendix for their detailed description. Let

us stress that, consistently with eq. (2.10), the indices of XI(ξξ′)J(ζζ′) must be restricted to

those labeling the independent eigen-amplitudes which enter the index-free vector A, as

discussed after eq. (2.9). Also notice that, since X2 = 1, all the eigenvalues of X are either

+1 or −1.

While we leave a detailed discussion of X to appendix A and to the following sections,

we mention here one of its important properties. One of the +1-eigenvectors of X is given

by the vector v with components

vI(ξξ′) =

{
1 if ξ = ξ′

0 if ξ 6= ξ′
. (2.11)

Let us also anticipate that we encounter several cases in which X is block-diagonal in

non-mixed and mixed indices, i.e.

X =

(
X̂

Xmix

)
, (2.12)

where X̂ has only non-mixed entries X̂I(ξξ)J(ζζ). Even though most of the following dis-

cussion is general and does not require eq. (2.12), in most physical applications it could

be convenient to work with X̂ instead of X. For instance this is the case for chiral SU(3).

We refer to X̂ as the reduced crossing matrix. It clearly satisfies X̂2 = 1 and then it has

eigenvalues ±1. Furthermore, the vector in eq. (2.11) restricts to a +1-eigenvector v̂ of X̂

with identical components v̂I(ξξ) = 1.

2More explicitly, the crossing matrix carries two collective indices XI(ξξ′)J(ζζ′) and eq. (2.10) in com-

ponents reads AI(ξξ′)(u) =
∑
Jζζ′ XI(ξξ′)J(ζζ′)AJ(ζζ′)(s). For scattering amplitudes of non-real particles,

one should include in X the charge conjugation operator.

– 8 –
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Re s

Im s

4m2
ÊÊ Ê

2m2

Ê

Μ
2

C

s"plane

Figure 1. Analytic structure of the amplitude A(s) in the (Re s, Im s) plane. The contour C corre-

sponding to the Cauchy integral formula (2.14), encloses the point µ2 around which the amplitude

is expanded and the poles at s = si (red points) corresponding to propagating particles with masses

lighter than 4m2. The analytic structure of A(s) is symmetric under reflection around 2m2.

2.1 Dispersion relations

By analyticity, expanding the amplitude A(s) around a certain (complexified) scale s = µ2

A(s) =
∑
n

A(n)(µ2)(s− µ2)n , (2.13)

one can use the Cauchy integral formula to express the coefficients A(n)(µ2) as

A(n)(µ2) +
∑
si

Res

[
A(s)

(s− µ2)n+1

]
=

1

2πi

∮
C

ds
A(s)

(s− µ2)n+1
, (2.14)

where the left-hand side is the contribution from the residues at the poles s = si (and their

crossed) and s = µ2 enclosed by a contour C in the complex s-plane that does not cross any

singular point, see figure 1. For convenience we introduce the notation a(n) ≡ A(n)(µ2 = 0)

or, more explicitly

a
(n)
I(ξξ′) ≡ A

(n)
I(ξξ′)(µ

2 = 0) . (2.15)

We consider the following analytic structure of the amplitude A(s): there is a branch

cut running on the real axis from s = 4m2 (corresponding to the physical threshold of r’s

pair production) to +∞. Crossing symmetry at t = 0, i.e. s → u = −s + 4m2, enforces

another cut from −∞ to s = 0. In addition, there may be mass poles for s = si and,

by crossing symmetry, for s = 4m2 − si on the real axis below 4m2 associated to light

propagating particles. Heavier resonances do not give poles in the physical Riemann sheet.

Should the light poles at s = si be unstable as well, they would move to another Riemann

sheet hidden by a longer cut, see figure 5. The analytic structure in this case is discussed

in appendix B.
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We can now smoothly deform the integration contour C as in figure 2. The right-hand

side of eq. (2.14) can be written as the sum of two terms: one comes from the big circle of

radius Λ2 centered around 2m2

cΛ(n) =

∫ 2π

0

dθ

2π

|sΛ|eiθA(|sΛ|eiθ)

(|sΛ|eiθ − µ2)
n+1 , |sΛ| = 2m2 + Λ2 , (2.16)

with Λ eventually going to infinity, and the other from the integrals along the branch cuts:∫ Λ2+2m2

4m2

ds

2πi

[
A(s+ iε)−A(s− iε)

(s− µ2)n+1
+ (−1)n

A(−s+ 4m2 − iε)−A(−s+ 4m2 + iε)

(s− 4m2 + µ2)n+1

]
.

(2.17)

By the crossing symmetry (2.10), we can rewrite eq. (2.14) as follows:

A(n)(µ2) +
∑

si

Res

[
A(s)

(s− µ2)n+1

]
= (2.18)

cΛ (n) +

∫ Λ2+2m2

4m2

ds

2πi

[
1

(s− µ2)n+1
+ (−1)n

X

(s− 4m2 + µ2)n+1

]
[A(s+ iε)−A(s− iε)] .

In general, the condition (2.6) implied by unitarity gives

A(s+ iε)−A(s− iε) = 2 ReA−(s+ iε) + 2 i ImA+(s+ iε) , (2.19)

where, in components,

A±I(ξξ′)(s) ≡
1

2

[
AI(ξξ′)(s)±AI(ξ′ξ)(s)

]
(2.20)

are the symmetric and anti-symmetric combinations with respect to the degeneration in-

dices ξ and ξ′. In absence of degeneracy we clearly have A+ = A and A− = 0, but this

can easily happen also in the degenerate case. For instance, the mixed amplitudes may

vanish by means of other selection rules which in fact remove the degeneracy3 so that

AI(ξξ′) = AIδξξ′ and then A+ = A. Moreover, A+ = A is granted whenever degenerate

irreps are all real, as it must be the case for small enough real representations r, because

of crossing symmetry (2.8). In all these cases we can identify A+ with A and write

∑
(residues)(n) =cΛ (n)+

∫ Λ2+2m2

4m2

ds

π

[
1

(s−µ2)n+1
+(−1)n

X

(s−4m2+µ2)n+1

]
ImA(s+iε),

(2.21)

where the left-hand side is a shorthand for∑
(residues)(n) = A(n)(µ2) +

∑
si

Res

[
A(s)

(s− µ2)n+1

]
. (2.22)

In the following we assume that A− = 0 and therefore that eq. (2.21) holds, bearing in mind

that whenever A− can be non-vanishing one needs to use eq. (2.18) instead of eq. (2.21).

3For example, a tiny mass splitting, angular momentum conservation or extra quantum numbers. For

instance, this is the case for adjoints of SU(3) where A812 = 0 at t = 0 for angular momentum conservation

(see subsection 4.3).
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Figure 2. The contour C of figure 1 deformed to a path along the branch cuts plus a big circle

at s = Λ2.

2.2 Convergence

Equation (2.21) represents a set of general dispersion relations with n subtractions. It

is well known that for n ≥ 2, the integrals are convergent and cΛ(n) → 0 for Λ → ∞,

i.e. when the radius of the big circle is sent to infinity, thanks to the Froissart bound

|A(s)| ≤ contst × s log2 s for s → ∞ [8]. For example, ref. [16] derived such a dispersion

relation with two subtractions for the particular case of chiral SU(2) in QCD. For n = 1 one

would instead expect no convergence when the amplitude saturates the Froissart bound.

However, only definite directions in the amplitude space may grow maximally fast so that

even for n = 1 one can find certain linear combinations which are convergent. For n = 1,

the integral at large s in eq. (2.21) is indeed dominated by

2

π

∫ ∞ ds

s2
P− ImA(s) , (2.23)

where P± denote the projection operators associated with the ±1-eigenspaces of the cross-

ing matrix X:

P± ≡
1

2
(1±X) . (2.24)

As we will presently see, it follows from eq. (2.23) that in order to draw conclusions

about the once-subtracted (n = 1) dispersion relations it is sufficient to add to the three

first principles listed above one further assumption:

(4) Universal asymptotic behavior of the amplitude, that is the asymptotic scattering

amplitude at large s is the same for all irreps. More precisely we assume the following

leading asymptotic behavior

AI(ξξ′)(s) ∼ const× s δξξ′ , for s→∞ (modulo factors of log s) , (2.25)

where the constant factor is independent of I(ξξ′).
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This condition refines the way an amplitude can saturate the Froissart bound: A(s) and

hence cΛ(1) are allowed to grow maximally fast but in a universal way. Indeed, the condi-

tion (2.25) is equivalent to demanding that A(s), and then cΛ(1), is asymptotically propor-

tional to the +1-eigenvector v of the crossing matrix X defined in eq. (2.11). This means

that the leading asymptotic contribution to A(s) and cΛ(1) is annihilated by P−.

We then see that eq. (2.25) is sufficient for guaranteeing that eq. (2.23), and hence the

integral in eq. (2.21) for n = 1, converges for Λ → ∞. Moreover, if we project the entire

sum rule (2.21) with n = 1 onto the −1-eigenspace of the crossing matrix X, we get rid of

the big circle contribution since P−c
∞(1) = 0. We then arrive at the expression

P−
∑

(residues)(1) =

∫ ∞
4m2

ds

π

[
1

(s− µ2)2
+

1

(s− 4m2 + µ2)2

]
P− ImA(s+ iε) , (2.26)

which represents a set of once-subtracted dispersion relations involving only finite quan-

tities. (Notice that the same argument can be repeated starting from the more general

dispersion relations in eq. (2.18).) In fact, by crossing symmetry and analyticity alone

we know that A(2m2 + s) = XA(2m2 − s), and thus P+c
∞(1) = 0 too. Therefore, under

the assumption of universal asymptotic growth (2.25) of the AI , the integral contribution

along the big circle averages to c∞(1) = 0 and we can write another dispersion relation,

P+

∑
(residues)(1) =

∫ ∞
4m2

ds

π

[
1

(s− µ2)2
− 1

(s− 4m2 + µ2)2

]
P+ ImA(s+ iε) . (2.27)

For µ2 = 2m2, this equation represents just the constraints P+
∑

(residues)(1) = 0 im-

posed by crossing symmetry rather than a genuine once-subtracted sum rule as opposed

to the eq. (2.26).

Let us discuss now the validity of the condition (2.25). Strongly coupled theories

can have amplitudes which saturate the Froissart bound and could in principle violate

the condition (2.25). However, whenever the fastest growth is reached by exchanging

an H-singlet object in the t-channel, the corresponding eigen-amplitude does satisfy the

condition (2.25) because of unitarity of the CG coefficients

Aab→cd ∼ s δacδbd =⇒ AI(ξξ′) ∼ s δξξ′ . (2.28)

QCD, for example, satisfies the condition (2.25) because the Froissart bound is indeed

saturated by the exchange of the pomeron, a completely neutral composite object with the

quantum numbers of the vacuum. It is in fact the universality expressed by eq. (2.25) that

gives rise to the Pomeranchuk’s theorem [17]. Reference [18] has indeed formally shown

that, whenever the imaginary part of the amplitude is independent of the quantum numbers

of the scattering states, the H-singlet exchange alone dominates the amplitude. Moreover,

any model that respects the Regge theory is also satisfying the condition (2.25) since the

leading Regge trajectory is again due to a neutral object exchanged in the t-channel giving

the behavior in eq. (2.28) [17]. The condition (2.25) is very general and, to the best of our

knowledge, there exists no strongly coupled counter-example that violates it.

Weakly coupled theories in the UV require more care. On the one hand, one would

expect scattering amplitudes to fall with energy or, at most, become constant or admit
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perhaps a mild logarithmic growth. For those, const = 0 in eq. (2.25) (meaning that the

amplitude does not saturate the Froissart bound) and the convergence of the dispersion

relations with one subtraction holds. On the other hand, the amplitudes involving propa-

gating massive spin-1 states in the UV may grow faster than log s. Indeed, spontaneously

broken gauge theories contain spin-1 bosons with masses mV that, propagating in the t-

channel, contribute to the real forward scattering amplitudes with a term δA ∼ c2
∗s: even

though the integral over the imaginary amplitudes (that is total cross-sections) remains

finite, δA gives a finite contribution, coming from the big circle in the UV (see eq. (2.16)),

δc∞(1) = c2
∗, which is not necessarily projected out by P−, as stressed e.g. in ref. [9]. In

principle, one should therefore add this finite contribution P−δc
∞(1) to the right-hand side

of eq. (2.26). Nevertheless, despite appearances, such an extra P−δc
∞(1) from t-channel

exchange is actually harmless when the massive gauge degrees of freedom in the IR and

the UV are the same. The massive gauge bosons contribute indeed to the left-hand side

(the IR-side) of the sum rules too, and by the very same amount δA(1) = c2
∗ (see section 5

for an explicit example). This is the case whenever the extra contribution to the amplitude

is the same in the UV and in the IR, so that trivially, by analyticity, its integral is the

same along the contours C and the big circle at Λ2 (see figures 1 and 2). This reasoning is

not spoilt by the running of the gauge coupling or higher loops contributions because the

exchanged momentum t is zero while s = Λ2 →∞.

The net contribution from the massive gauge bosons propagating in the t-channel, if

they are stable, is thus only through the IR residues at s = m2
W and its crossed point,

which is however negligible when µ2 � m2
W , see section 2.4 for details.

In summary, the once-subtracted dispersion relations (2.26) are theoretically on a

firm ground. There is however a last important caveat: we have always assumed that it is

possible to take the forward limit t = 0. When massless spin-1 states are propagating in the

t-channel this may not be the case and one should add an IR regulator that provides a mass

gap, or alternatively move away from the strict forward limit as done in the Roy equations,

that exploit the partial wave expansion [5–7]. We come back to this point when discussing

the sum rules for gauge theories in section 5 where we make use of dispersion relations at

finite t (presented in appendix C) that are needed to avoid the Coulomb singularity from

the photon exchange. Anticipating the final result, by analyticity, a cancellation similar to

that of massive gauge bosons discussed above takes place. In fact, the extra contribution

from the massless vectors cancels between the two sides of the dispersion relation before

taking the limit t→ 0.

2.3 The sum rules

Let us come back to the general dispersion relations (2.21). For n ≥ 2, by using the

projectors P± introduced in eq. (2.24), they can be projected onto the ±1-eigenspaces of

X as

P±
∑

(residues)(n) =

∫ ∞
4m2

ds

π

[
1

(s− µ2)n+1
± (−1)n

(s− 4m2 + µ2)n+1

]
P± ImA(s+ iε) .

(2.29)
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Under the conditions discussed in subsection 2.2, this equation holds for n = 1 too (and

in fact, projected with P− only, it holds at the crossing symmetric point µ2 = 2m2 for

n = 0 as well).

These dispersion relations involve integrals over the physical region s ≥ 4m2. We want

now to link them to physical observables such as the total cross-section. Indeed, unitarity

implies the optical theorem (2.5) for the elastic forward scattering. Notice, however, that

we cannot always focus just on the elastic forward amplitudes AI(ξξ), since the crossing

matrix X, and hence the projectors P±, may bring non-elastic terms from mixed amplitudes

AI(ξξ′) with ξ 6= ξ′ into the game. In such a case, we cannot write

ImA(s+ iε) = s

√
1− 4m2

s
σtot(s) (2.30)

in eq. (2.29).

However, such a problem is often absent or can easily be circumvented. For example,

whenever non-trivial mixed amplitudes are absent, AI(ξξ′) = AI(ξξ)δξξ′ , as for instance in

the presence of additional selection rules, eq. (2.30) holds and then from eq. (2.29) one gets

the sum rules

P±
∑

(residues)(n) =

∫ ∞
4m2

ds

π

[
s

(s− µ2)n+1
± (−1)ns

(s− 4m2 + µ2)n+1

]√
1− 4m2

s
P±σ

tot(s) .

(2.31)

Clearly, the same sum rules hold when the crossing matrix has the block-diagonal struc-

ture (2.12), up to restricting to the non-mixed amplitudes and replacing X → X̂.

Furthermore, even when X does not have the form (2.12) and the mixed amplitudes

are non-vanishing, one could still obtain sum rules involving physical observables. Indeed,

we can consider the elastic scattering amplitude between mixed states 1/
√

2(|I(ξ)〉+|I(ξ′)〉)

AI(ξ)+I(ξ′) =
1

2
AI(ξ) +

1

2
AI(ξ′) +

1

2
[AI(ξξ′) +AI(ξ′ξ)] =

1

2
AI(ξ) +

1

2
AI(ξ′) +AI(ξξ′) (2.32)

and define σtot
I(ξξ′) for ξ 6= ξ′ as

σtot
I(ξξ′) ≡

ImAI(ξξ′)

s
√

1− 4m2

s

= σtot
I(ξ)+I(ξ′) −

1

2

(
σtot
I(ξ) + σtot

I(ξ′)

)
, (2.33)

so that the sum rules (2.31) still hold and involve only physical cross-sections.

2.4 Sum rules and EFT

So far we have not used the freedom of choosing µ2. Apart from where the singularities

are located in the s-plane we can choose µ2 in eq. (2.14) as we like, although some choices

may be more useful than others. There are two choices that recommend themselves.

The first choice corresponds to take the crossing symmetric point µ2 = 2m2 that allows

one to nicely disentangle, in eq. (2.31), the actual sum rules

P−
∑

(residues)(2k+1) =
2

π

∫ ∞
4m2

ds
s

(s− 2m2)2k+2

√
1− 4m2

s
P−σ

tot(s) , k ≥ 0 , (2.34a)

P+

∑
(residues)(2k) =

2

π

∫ ∞
4m2

ds
s

(s− 2m2)2k+1

√
1− 4m2

s
P+σ

tot(s) , k ≥ 1 , (2.34b)
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from the constraints

P−
∑

(residues)(2k) = 0 , k ≥ 0 , (2.35a)

P+

∑
(residues)(2k+1) = 0 , k ≥ 0 . (2.35b)

Actually, these constraints (2.35) follow directly from the definition (2.22) and eq. (2.10).

Notice that eq. (2.35b) for k = 0 implies P+c
∞(1) = 0 and therefore, should the assump-

tion (2.25) be satisfied, c∞(1) = 0.

The sum rules have two crucial properties: they are IR and UV convergent,4 and all

the quantities on the right-hand side except for the projectors are real and have positive

definite sign. The definite sign turns out to be crucial to derive positivity constraints that

we discuss in the next section.

The other useful choice corresponds to µ2 much bigger than all IR mass scales, namely

Reµ2 ∼ Imµ2 � m2
IR ≈ m2, s2

i . With such a choice, the dispersion relations (2.21) and the

sum rules (2.31) take a simpler form by dropping all the IR structures. In particular, we

do not need to keep track of the IR residues. For instance (2.21) can be approximately

written as

A(n)(µ2) = cΛ (n) +

∫ Λ2

4m2

ds

π

[
1

(s− µ2)n+1
+ (−1)n

X

(s+ µ2)n+1

]
ImA(s+ iε), (2.36)

which holds up to small corrections of O(m2/µ2,m2
i /µ

2,m2/Λ2
IR) where ΛIR is the cutoff of

the EFT. Note, however, that unless the IR masses are really small this is possible only for

the first few subtractions, i.e. for n = 1, 2 or so. Indeed, if we want to be able to calculate

the left-hand side within the EFT, |µ|2 is bounded from above by the IR cutoff Λ2
IR, while

the coefficients A(n)(µ2) are generically suppressed by higher powers of Λ2
IR. For example,

the choice |µ|2 . Λ2
IR/4π represents a compromise that works reasonably well for n = 1, 2.

In any case, as long as the IR side of the sum rule is calculable within the EFT one can

always check whether this approximation is valid. If it is not, then one should keep the

residues on the left-hand side.

The scale µ2 acts essentially as the scale where we probe the scattering process [1]. By

truncating the EFT at O(p2n) we are tolerating errors of O((µ2/Λ2
IR)n+1) in our calcula-

tions. For example, in a theory of GBs in the IR, the left-hand side calculated with the

O(p2) Lagrangian is practically µ2 independent, whereas the µ2-dependence on the right-

hand side accounts only for higher order terms (such as the neglected O(p4) which includes

loops and the logarithmic running of the O(p2) LECs) and/or the small IR deformations

that enter e.g. as m2
i /µ

2.

The approximate dispersion relations (2.36) assume a neater form by projecting them

with P± as done above. For instance, the once-subtracted dispersion relations become

P−A(1)(µ2) =
2

π

∫ ∞
4m2

ds
(s2 + µ4)

(s2 − µ4)2
P−ImA(s+ iε) , (2.37a)

P+A(1)(µ2) =
2

π

∫ ∞
4m2

ds
2µ2s

(s2 − µ4)2
P+ImA(s+ iε) , (2.37b)

4Let us recall that only for one subtraction, k = 0 in eq. (2.34a), the UV convergence of the integral in

eq. (2.34a) is not automatically guaranteed and that there could be an additional constant c(1)∞ appearing

on the right-hand side of eq. (2.34a), as discussed in subsection 2.2.
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where again we are neglecting the masses with respect to µ2. Moreover, should the masses

be very small or vanishing, we can take µ2 small as well, or effectively vanishing, while

keeping m2
i /µ

2 � 1. Take for instance the sum rules (2.31). In this limit they simplify

even further in actual sum rules

P− a
(2k+1) =

2

π

∫ ∞
0

ds

s2k+1
P− σ

tot(s) , k ≥ 0 , (2.38a)

P+ a
(2k) =

2

π

∫ ∞
0

ds

s2k
P+ σ

tot(s) , k ≥ 1 , (2.38b)

and constraints

P+ a
(2k+1) = 0 , k ≥ 0 , (2.39a)

P− a
(2k) = 0 , k ≥ 0 , (2.39b)

assuming they are IR convergent for the given integer k. This is again a condition that one

can explicitly verify with the EFT at hand. For example, a generic theory of GBs from

a non-linear sigma model gives an IR convergent once-subtracted sum rule in the limit

µ2 → 0. Theories with a shift-symmetry πa → πa + ca give convergent twice-subtracted

sum rules for µ2 → 0.

If instead µ2 → 0 is a singular limit, one can not only resort to the regular expressions

with finite µ2, but can actually try to isolate all the sources of IR divergence on the same

side, and then take the limit µ→ 0 at the end: since one side of the sum rule is convergent

by construction the other must be so too.

A more explicit version of the sum rules (2.34) and (2.38) is obtained by expressing

them in a basis adapted to the ±1-eigenspaces V± of the matrix X. Let us denote by m the

rank of the matrix X, so that m = m+ +m−, where m± = dimV±. One can then construct

a matrix M which diagonalizes the matrix X. In particular we can choose M such that, if

we split {I(ξξ′)} = {α, a}, with α = 1, . . . ,m− and a = 1, . . . ,m+, the projectors P± take

the block-diagonal form

MP−M
−1 =

(
1m− 0

0 0

)
, MP+M

−1 =

(
0 0

0 1m+

)
. (2.40)

Then eqs. (2.38) give the following explicit set of sum rules

[Ma(2k+1)]α =
2

π

∫ ∞
0

ds

s2k+1
[Mσtot(s)]α , α = 1, . . . ,m− , k ≥ 0 , (2.41a)

[Ma(2k)]a =
2

π

∫ ∞
0

ds

s2k
[Mσtot(s)]a , a = 1, . . . ,m+ , k ≥ 1 , (2.41b)

while the constraints (2.39) take the form

[Ma(2k+1)]a = 0 a = 1, . . . ,m+ , k ≥ 0 , (2.42a)

[Ma(2k)]α = 0 α = 1, . . . ,m− , k ≥ 0 . (2.42b)

Analogously, eqs. (2.34) and (2.35) provide very similar sum rules and constraints for the

choice µ2 = 2m2 up to the replacing

1

sn
→ s

(s− 2m2)n+1

√
1− 4m2

s
, a(n) → A(n)(µ2 = 2m2) (2.43)
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into the eqs. (2.41) and (2.42), integrating from 4m2, and retaining all the residues on the

left-hand side.

3 Positivity constraints

In order to derive positivity constraints from our sum rules (2.31), one needs to choose a

real µ2. In practice any point on the real axis below the branch cut threshold at s = 4m2

could be a good choice. To be definite, let us take the crossing symmetric point µ2 = 2m2

that has been considered to set analogous positivity constraints on the LECs `4,5 of the

QCD chiral Lagrangian [3]. We can then use the sum rules (2.34). Let us also assume for

simplicity that there are no poles below the cut. Therefore, the sum rules (2.34) and the

constraints (2.35) for even n = 2k take the form

P+A(2k)(2m2) =
2

π

∫ ∞
4m2

ds
s

(s− 2m2)2k+1

√
1− 4m2

s
P+σ

tot(s) , (3.1a)

P−A(2k)(2m2) = 0 . (3.1b)

Analogous expressions for odd n = 2k + 1 are obtained simply by replacing P± → P∓. By

using the positivity of the cross sections and the properties of the projectors we are able

to systematically analyze the existence of positivity constraints on linear combinations of

the coefficients A(n)(2m2) that can be related to the LECs of the EFT one is interested

in. Should the limit m,µ → 0 be regular, we can even remove all the mass scales, so

that the above some rules and constraints reduce to the form (2.38) and (2.39), and we

can thus study a(n) = A(n)(0) as it is done e.g. for n = 2 in the theory of GBs with a

shift symmetry [1], as well as for the dilaton in the proof of the a-theorem [2]. In fact,

should the cut actually extend all the way down to s = 0, the limit m,µ→ 0, whenever it

exists, would be the only sensible choice to discuss positivity constraints on the amplitude

coefficients.

In the following, for notational convenience, we take µ = 2m2 → 0 and use eqs. (2.38)

and (2.39), bearing in mind that the exact same arguments can be repeated by working

with finite masses and eq. (3.1) or its odd-n counterpart.

3.1 Positivity for even n

Let us first restrict to even n = 2k. In order to simplify the discussion, in this subsection we

assume that the crossing matrix X has the block-diagonal structure (2.12). Then we can

focus on the real reduced matrix X̂. We can correspondingly project all vectors appearing

in eqs. (2.38) and (2.39) to the non-mixed components, adding a hat to distinguish them.

The (real) ±1-eigenspaces of X̂ are then denoted by V̂± and have dimensions m̂±, while

m̂ = m̂+ + m̂− gives the rank of X̂. It follows from the discussion of appendix A that the

matrix X̂ is orthogonal with respect to a metric Ĝ, which can be obtained by reducing to

non-mixed indices the metric G, see eqs. (A.19) and (A.20). This reduction is important

in the following.

Let us first consider the eq. (2.39b). This just says that the vector â(2k) is constrained

to lie in complexified V̂+. Furthermore, the reality of the right-hand side of the (reduced)
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eq. (2.38b) implies that â(2k) is actually real. This is clear if we reinstate finite masses and

use µ2 = 2m2, since the non-mixed amplitudes are real below the branch cut. Hence we

can conclude that

â(2k) ∈ V̂+ . (3.2)

On the other hand, eq. (2.38b) explicitly relates â(2k) to the projected cross section vector

P+σ
tot(s). In order study its implications, let us denote by 〈·, ·〉 the inner product associated

with Ĝ, for instance 〈v̂1, v̂2〉 = v̂1 TĜv̂2.5 Then eq. (2.38b) can be written as

〈v̂, â(2k)〉 =
2

π

∫ ∞
0

ds

s2k
〈v̂, σ̂tot(s)〉 , ∀v̂ ∈ V̂+ . (3.3)

Remember that the vector σ̂(s) has all non-negative entries and suppose that v̂ has real

non-negative entries too. Then

〈v̂, σ̂tot(s)〉 ≥ 0 . (3.4)

In more geometrical terms, which are useful for later generalizations, the vector σ̂(s)

takes values in a convex polyhedral cone C ' Rm̂+ and requiring that v̂ has only non-negative

entries is equivalent to requiring that v̂ lies in the dual cone C∗ ' Rm̂+ . Notice that the

+1-eigenvector v̂ introduced below eq. (2.12) lies inside C∗. Hence, V̂+ ∩C∗ is a non-empty

m̂+-dimensional convex polyhedral cone.

From eq. (3.3) we immediately get the following positivity constraints

〈v̂, â(2k)〉 ≥ 0 for v̂ ∈ V̂+ ∩ C∗ , (3.5)

which must be accompanied by eq. (3.2), which in fact reduces the number of possible inde-

pendent (even) amplitude coefficients to m̂+. Then eq. (3.5) identifies an m̂+-dimensional

cone V̂+ ∩ C∗ of positivity constraints for such m̂+ independent amplitude coefficients.

To make these positivity constraints (3.5) more explicit, we can select a set of vectors

v̂A, with A = 1, . . . , q and q ≥ m̂+, which generate the edges of the polyhedral cone V̂+∩C∗.
Such a convex polyhedral cone with all the “generating” vectors lying on the faces of the Rm̂+
space is shown in a 3-dimensional cartoon in figure 3. In practice v̂A are generators with

all non-negative entries of the one-dimensional subspaces resulting from the intersection of

V̂+ with all the m̂ − m̂+ + 1 planes obtained by setting m̂+ − 1 components of Rm̂ equal

to zero. In other words, they are identified by the equation P−v̂
A = 0 together with the

vanishing of all the possible subsets of m̂+−1 components. With such a choice, v̂ ∈ V̂+∩C∗

if and only if v̂ = ρAv̂
A with ρA ≥ 0. Hence, once we have constructed this particular set

of vectors, we can rewrite eq. (3.5) as the q ≥ m̂+ positivity constraints

〈v̂A, â(2k)〉 ≥ 0 A = 1, . . . , q . (3.6)

One can also obtain this set of positivity constraints directly from the sum rules written

in the form (2.41b), restricted to the non-mixed sector. The prescription is the following.

Take the generic linear combination τa[M̂â(2k)]a, with m̂+ parameters τa. This gives a

linear combination of the m̂ components of â(2k). Choose m̂+−1 out of these m̂ components

5More explicitly, v̂1TĜv̂2 clearly stands for
∑
I(ζζ′)

∑
J(ξξ′)(v̂

1)I(ζζ′)ĜI(ζζ′)J(ξξ′)(v̂2)J(ξξ′)(s).
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Figure 3. Example of a convex polyhedral cone with six faces in three dimensions. All the edges

of the cone and the orange faces lie on one of the faces of the first quadrant R3
+, while the yellow

faces are internal to the quadrant. When the ambient space is generalized to m̂ dimensions and

the convex polyhedral cone to an m̂+ < m̂ dimensional one with q ≥ m̂+ edges, the q edge vectors

lying on the faces of the Rm̂
+ space represent the unique choice of basis vectors that can generate

the entire cone through linear combinations with only positive coefficients. We call the positivity

constraints represented by these vectors the strongest positivity constraints.

and impose that their coefficients in τa[M̂â(2k)]a are vanishing. This gives m̂+−1 equations

which fix the m̂+ parameters τa in terms of a single one. If we can choose these constrained

τa’s so that τa[M̂â(2k)]a has all positive coefficients, then it gives one of the combinations

appearing on the left-hand side of the positivity constraints (3.6). Otherwise we discard

it. Then, to obtain all the other positivity constraints in eq. (3.6), one should repeat the

procedure for all the other subsets of m̂+ − 1 out of the m̂ components of â(2k). Finally,

recall that these conditions are supplemented by (3.2), which is more explicitly given by

the set of equations (2.42b) restricted to the non-mixed sector.

In the following sections we show how this prescription practically works in several

examples.

3.2 Non-positivity for odd n

One can now wonder whether the above procedure outlined for even n = 2k could be

mimicked for isolating some positivity constraints for odd n = 2k+1 as well. Unfortunately,

it is easy to see that this is never possible.

Let us again assume eq. (2.12) and restrict to the non-mixed sector. First of all, by

repeating the above argument starting from eq. (2.39a), one would be lead to the conclusion

that â(2k+1) ∈ V̂− and 〈ŵ, â(2k+1)〉 ≥ 0 for any ŵ ∈ V̂−∩C∗ (with k ≥ 1). Now the key point

is that, being the matrix X̂ Ĝ-orthogonal, the eigenspaces V̂+ and V̂− are Ĝ-orthogonal in

the sense that 〈v̂, ŵ〉 = 0 for any v̂ ∈ V̂+ and ŵ ∈ V̂−. In particular, we know that the
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vector v̂ introduced below eq. (2.12) belongs to V̂+. Then 〈v̂, ŵ〉 = 0 for all ŵ ∈ V̂−.

But, being Ĝ diagonal (and with positive definite entries), 〈v̂, ŵ〉 is a linear combination

of the components of ŵ with just positive coefficients. Hence, 〈v̂, ŵ〉 = 0 implies that at

least one component of ŵ is negative and then ŵ cannot belong to C∗. Therefore the set

V̂− ∩ C∗ is empty and there are no positivity constraints coming from the same argument

used for even n.

3.3 Inclusion of the mixed sector

The above derivation of the positivity constraints for even n can be extended to the case

in which X does not take the form of eq. (2.12) and mixed amplitudes are included. We

just briefly outline the general idea without spelling out the details.

First, analogously to the case discussed above, eq. (2.39b) says that

a(2k) ∈ V+ , (3.7)

while eq. (2.38b) can be rewritten as

〈v, a(2k)〉 =
2

π

∫ ∞
0

ds

s2k
〈v, σtot(s)〉 , ∀v ∈ V+ . (3.8)

Here we have to take into account that v ∈ V+ cannot be generically restricted to be real

and the pairing 〈·, ·〉 corresponds to the complete metric G, for instance 〈v1,v2〉 = v1 †Gv2.

We observe that now the vector σ(s) can be seen as a linear combination with positive

coefficients of the form

σtot(s) =
∑
Iξ

σtot
I(ξ)(s)uI(ξξ) +

tot∑
Iξ 6=ξ′

σI(ξ)+I(ξ′)(s)uI(ξξ′) . (3.9)

As one can easily check, the vectors uI(ξξ) have one component equal to 1, a number (given

by the degeneration of rI(ξ)) of components equal to −1
2 , and the other entries equal to

zero. On the other hand, the vectors uI(ξξ′), with ξ 6= ξ′, have one component equal to 1

and the others vanishing. Since σtot
I(ξ)(s) and σtot

I(ξ)+I(ξ′)(s) are positive, we see that σtot(s)

lie in the convex polyhedral cone C ⊂ Rm whose edges are generated by the vectors uI(ξξ′).

We can now repeat the arguments above almost verbatim. The main difference is that

one has to divide real and imaginary contributions to eq. (3.8). Suppose now that Rev is

such that 〈Rev,uI(ξξ′)〉 ≥ 0 for all uI(ξξ′)’s. In more formal terms, assume that Rev ∈ C∗,
where C∗ is the dual cone to C. In such a case, Re〈v, σ(s)〉 ≥ 0 and then from eq. (3.8) we

get the positivity constraints

Re〈v, a(2k)〉 ≥ 0 for v ∈ V+ and Rev ∈ C∗ . (3.10)

Analogously, for the imaginary component we get

Im〈v, a(2k)〉 ≥ 0 for v ∈ V+ and Imv ∈ C∗ . (3.11)

One could then proceede as described is subsection 3.1 to extract a minimal set of inde-

pendent positivity constraints from eqs. (3.10) and (3.11).
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4 Examples

So far we have been completely general and did not restrict to any specific symmetry group

H. Let us now summarize the algorithm to extract the sum rules for the scattering of two

(identical and real) representations r of H:

• do the CG decomposition r⊗r =
⊕

I,ξ rI(ξ) into irreps rI(ξ), and calculate the crossing

matrix X that acts on the independent eigen-amplitudes AI(ξξ′), by using e.g. the

expressions (A.1) and (A.18);

• diagonalize X with a non-singular matrix M that brings it to a canonical form

MXM−1 =

(
−1m− 0

0 1m+

)
; (4.1)

• read off the sum rules’ coefficients from the rows of M . In particular, for massless

particles, when no degenerate irreps occur in the CG decomposition, the sum rules

for one and two subtractions are

[Ma(1)]α =
2

π

∫ ∞
0

ds

s
[Mσtot(s)]α , α = 1, . . . ,m− , (4.2a)

[Ma(2)]a =
2

π

∫ ∞
0

ds

s2
[Mσtot(s)]a , a = 1, . . . ,m+ , (4.2b)

[Ma(1)]a = 0 a = 1, . . . ,m+ , (4.2c)

[Ma(2)]α = 0 α = 1, . . . ,m− , (4.2d)

where a(n) = A(n)(0) are the expansion coefficients around s = 0. When instead

degenerate irreps appear in the CG decompositions, one should work as described

in section 2. The last two eqs. (4.2) actually represent a constraint that follows

directly from the symmetry structure of the theory and crossing symmetry, without

relying on unitarity. They imply that not all the amplitudes coefficients are linearly

independent.

• derive the positivity constraints that follow from eq. (4.2b) by taking linear combina-

tions of the last m+ rows of M that return only non-negative entries. The strongest

positivity constraints obtained in this way take the form
∑

I v
A
I dim rIa

(2)
I ≥ 0, and

can be derived by following the algorithm outlined at the end of subsection 3.1

that finds the edge generators of a convex polyhedral cone vA that belong to the

+1-eigenspace and have m+ − 1 vanishing entries (with the remaining ones being

strictly positive).

For massive particles it is useful to study the behavior of the eigen-amplitudes at scales

s ≈ µ2 through the expansion

A(s) = A(0)(µ2) +A(1)(µ2)(s− µ2) +A(2)(µ2)(s− µ2)2 + . . . (4.3)
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with µ2 larger than the squared masses and any other IR structure such as extra light poles

or small widths: m2
IR � Reµ2 ∼ Imµ2 � Λ2

IR. For example, within this approximation,

the sum rules and the constraints from diagonalizing eq. (2.31) are

[MA(1)(µ2)]α =
2

π

∫ ∞
4m2

ds
(s2 + µ4)s

(s2 − µ4)2

√
1− 4m2

s
[Mσtot(s)]α , α = 1, . . . ,m− , (4.4a)

[MA(1)(µ2)]a =
2

π

∫ ∞
4m2

ds
2µ2s2

(s2 − µ4)2

√
1− 4m2

s
[Mσtot(s)]a , a = 1, . . . ,m+ , (4.4b)

[MA(2)(µ2)]a =
2

π

∫ ∞
4m2

ds
(s2 + 3µ4)s2

(s2 − µ4)3

√
1− 4m2

s
[Mσtot(s)]a , a = 1, . . . ,m+ , (4.4c)

[MA(2)(µ2)]α =
2

π

∫ ∞
4m2

ds
(3s2 + µ4)sµ2

(s2 − µ4)3

√
1− 4m2

s
[Mσtot(s)]α , α = 1, . . . ,m− . (4.4d)

They reproduce eqs. (4.2) in the limit µ2,m2 → 0 with |µ|2 � m2 if this limit exists.

If it does not, one should collect all the IR divergent terms on one side and take the

limit afterwards so that the convergence of one side enforces the convergence of the other.

Alternatively, one can work with A(n)(µ2) with a finite and real µ2 smaller than 4m2,

e.g. setting it at the crossing symmetric point µ2 = 2m2. In such a regime the sum rules

are given by eqs. (4.2) up to the replacement (2.43). They are guaranteed to be real

and IR convergent as in eq. (3.1). One can thus extract positivity constraints from the

even-subtracted sum rules as discussed in section 3.

The sum rules with two or more subtractions are UV convergent. Once-subtracted sum

rules are also UV convergent under the general assumptions discussed in subsection 2.2

about the universality behavior of the amplitudes saturating the Froissart bound.

In this section we go through detailed examples and show concretely the powerful

information carried by the sum rules. For simplicity we assume that the expansion around

µ2 = 0 does not give rise to any IR singularity and work directly with the expansion

coefficients a(n) (at least for n = 1, 2), bearing in mind the simple modifications a(n) →
A(n)(µ2) for the sum rules and the positivity constraints at finite µ2. In case IR residues

are present and cannot be neglected with respect to µ2, they should also be included in

the left-hand side of eqs. (4.2), see e.g. eq. (2.31).

4.1 Fundamentals of SO(N)

We consider first the case of the forward elastic scattering of two particles transforming

as fundamental representations of SO(N) with N 6= 4. The case N = 4 is discussed in

subsection 4.2.

The tensor product of fundamental representations decomposes as N⊗N = 1⊕S⊕A

into a singlet, the symmetric and anti-symmetric representations, whose dimensions are

∆1 = 1 , ∆S =
1

2
N(N + 1)− 1 , ∆A =

1

2
N(N − 1) . (4.5)
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The crossing matrix is given by (see appendix D.1 for details about the construction of X)

X =

 1
N

∆S
N −∆A

N
1
N

α
∆S

∆A
∆S

(1
2 + 1

N )

− 1
N

1
2 + 1

N
1
2

 , (4.6)

with α = N(N − 1)/4 − 1 + 1/N . The states are ordered as 1, S, and A. One can

simply verify that this matrix satisfies all the properties discussed in appendix A and in

particular X2 = 1, detX = −1, and TrX = m+ −m− = 1. Since m = m+ +m− = 3, we

get that the number of independent once-subtracted and twice-subtracted sum rules are

respectively m− = 1 and m+ = 2, consistently with the general discussion of appendix A,

which relates these numbers to the number of (anti)-symmetric representations appearing

in the decomposition. As expected by eq. (2.11), the +1-eigenspace contains the vector

(1, 1, 1)T and the columns sum up to 1 for each row.

We diagonalize X with a non-singular matrix M

M =

 1
2N −N+2

4N
1
4

− 1
2N

N+2
4N

3
4

1
2N

6N−4
8N

1
4

 , MXM−1 =

(
−11 0

0 12

)
. (4.7)

Its first row gives the coefficients of the sum rule with an odd number of subtractions,6 e.g.

2a
(1)
1 − (N + 2)a

(1)
S +Na

(1)
A =

2

π

∫ ∞
0

ds

s

[
2σtot

1 (s)− (N + 2)σtot
S (s) +Nσtot

A (s)
]
. (4.8)

The convergence for one subtraction is guaranteed by the fact that the coefficients in front

of the cross-sections add up to zero being orthogonal to the vector (1, 1, 1)T . The other

two rows set instead the constraints on the a
(1)
I ’s that we can write as

a
(1)
S = −a(1)

A = − 1

N − 1
a

(1)
1 , (4.9)

and apply to the once-subtracted sum rule (4.8) that in terms of just one eigen-amplitude,

e.g. a
(1)
A , takes the form

a
(1)
A =

1

2πN

∫ ∞
0

ds

s

[
2σtot

1 (s)− (N + 2)σtot
S (s) +Nσtot

A (s)
]
. (4.10)

Let us pass to two subtractions. The first row of M tells us which combination of even

scattering amplitude coefficients must vanish, e.g.

2a
(2)
1 − (N + 2)a

(2)
S +Na

(2)
A = 0 . (4.11)

Any (linearly independent) combination of the other two rows gives sum rules with an even

number of subtractions. If the coefficients are arranged to be positive these sum rules imply

6We have implicitly taken all masses to zero at the end of the computation, as we are allowed to do if no

massless mode propagates in the t-channel. This is the case for the theory of GBs discussed below where

no IR divergence arises with one subtraction.

– 23 –



J
H
E
P
0
9
(
2
0
1
4
)
1
0
0

inequalities because of the positivity of the total cross-sections. For example, summing the

second and third row of the matrix (4.7) we get that a
(2)
S + a

(2)
A equals an integral over

positive combination of cross-sections, hence a
(2)
S + a

(2)
A ≥ 0.

More systematically, we can apply the prescription of section 3 where the edge generators

v’s of the positivity convex polyhedral cone satisfy 2v1 − (N + 2)vS + NvA = 0, and

have (m+ − 1) vanishing components, while the remaining ones are positive. In this way

we find two edges in a three dimensional space generated by v1 = (0, N,N + 2)T and

v2 = (N+2, 2, 0)T . The associated cone is depicted in figure 4. We can thus determine the

coefficients that set the strongest positivity constraints
∑

I,J v
A
I GIJa

(2)
J ≥ 0 with A = 1, 2

by contracting with the metric G = diag(∆1,∆S,∆A),

a
(2)
S + a

(2)
A ≥ 0 , (4.12a)

a
(2)
1 + (N − 1)a

(2)
S ≥ 0 . (4.12b)

Notice that the constraint (4.11) allows one to single out two independent amplitude co-

efficients, for instance a
(2)
S,A, and to recast the associated positivity constraints in the form

a
(2)
S + a

(2)
A ≥ 0 , (4.13a)

3a
(2)
S − a

(2)
A ≥ 0 , (4.13b)

that immediately imply a
(2)
S ≥ 0. Equality in the expressions (4.12) and (4.13) is reached

only for trivial non-interacting theories where the cross-sections are vanishing. Analogous

positivity constraints from twice subtracted sum rules in the specific case of SO(3) ∼ SU(2)

have been studied also in refs. [4, 16, 19, 20].

4.1.1 Goldstone bosons from SO(N, 1)/SO(N) and SO(N + 1)/SO(N)

As we stressed in the Introduction, the sum rules become useful when the IR side can

be calculated using the LECs of an EFT. We consider now the theory of GBs emerging

from the spontaneous breaking patterns SO(N + 1)→ SO(N) or SO(N, 1)→ SO(N). The

Lagrangian at O(p2) is given by

L =
1

2
∂µπ

a∂µπa ∓ 1

6f2
π

[
(πbπb)(∂µπ

a∂µπa)− (∂µπ
aπa)(∂µπbπb)

]
, (4.14)

where the GBs live on a N -dimensional sphere (upper sign) or hyperboloid (lower sign)

respectively. We also add two light states, h ∈ 1 and hab ∈ S, that are coupled as

1

fπ
(ahδab + bhab) ∂µπ

a∂µπb . (4.15)

We can think of them as Higgs-like states. The LECs are the decay constant fπ, and the

couplings a and b. With these ingredients we can calculate the amplitudes for the scattering

at low-energy

A(πaπb → πcπd) = (±1− a2 +
N + 2

2N
b2)

s

f2
π

(
δabδcd − δcbδad

)
, (4.16)
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Figure 4. Two dimensional convex polyhedral cone in three dimensions (i.e. planar cone or sector

of a plane) generated by
∑

I v
A
I GIJ which are the coefficients of the strongest positivity constraints

for SO(N 6= 4) for N = 3, 5, 6, . . ..

and the corresponding eigen-amplitude coefficients

a
(1)
1 =

(N − 1)

f2
π

(
±1− a2+

N + 2

2N
b2
)
,

a
(1)
S = − 1

f2
π

(
±1− a2+

N + 2

2N
b2
)
,

a
(1)
A =

1

f2
π

(
±1− a2+

N + 2

2N
b2
)
,

(4.17)

which, as expected, satisfy the constraints (4.9). Substituting these coefficients into

eq. (4.8) the once-subtracted sum rule takes now an explicit expression in terms of the

LECs of the EFT:(
±1− a2 +

N + 2

2N
b2
)

=
f2
π

2πN

∫ ∞
0

ds

s

[
2σtot

1 (s) +Nσtot
A (s)− (N + 2)σtot

S (s)
]
. (4.18)

The two signs + and − correspond to the sphere and the hyperboloid respectively. For

SO(4)/SO(3) ∼ SU(2)L × SU(2)R/SU(2)V we recover the sum rule of ref. [9] for b = 0, and

the original Olsson sum rule of QCD for a = b = 0. The sum rule for SO(3) improves the

one proposed for U(1) ∼ SO(2) in ref. [10] in the context of composite Higgs models since

the deep UV contribution c∞(1) from the big circle is projected out by P−.

More generally, in a non-linear sigma model defined by the constraint
∑N

i=1 φ
2
i +

cφ2
N+1 = f2

π (ellipsoid) where H = SO(N) is unbroken, one needs just to rescale the

+1 of the sphere in eq. (4.18) by a factor 1/c. This shows that the sum rule with no

Higgses is insensitive to the geometric structure of the coset as long as we deform it in a

way that respects H and rescale fπ.

– 25 –



J
H
E
P
0
9
(
2
0
1
4
)
1
0
0

4.2 Composite Higgs models and SO(4)

We now move on to consider the case H = SO(4) ∼ SU(2)L×SU(2)R that is important for

custodially symmetric composite Higgs models, see e.g. ref. [21] for a recent comprehensive

review. The scattering of two 4 ∈ SO(4) is special because the anti-symmetric 6 is further

reducible into (1,3) ⊕ (3,1) of SU(2)L × SU(2)R. An immediate consequence is that

there are two sum rules for an odd number of subtractions, rather than just one like for

SO(N 6= 4), and two sum rules for an even number of subtractions.

Let us work directly with SU(2)L × SU(2)R where every irrep carries pairs of indices

in the irreps of SU(2). In particular, we have (2,2) ⊗ (2,2) = (1,1) ⊕ (1,3) ⊕ (3,1) ⊕
(3,3). The CG coefficients are thus the product of the well known CG coefficients for

3-dimensional rotations. We can therefore calculate the crossing matrix X directly from

its definition (A.1) and get

X =
1

4


1 −3 −3 9

−1 −1 3 3

−1 3 −1 3

1 1 1 1

 , M =
1

8


−1 −1 −1 3

1 −3 5 −3

1 1 1 5

−1 3 3 3

 , (4.19)

where M is the matrix that diagonalizes X as MXM−1 = diag (−1,−1, 1, 1). The crossing

matrix has two linearly independent −1-eigenvectors, and therefore there are two indepen-

dent sum rules with an odd number of subtractions. Taking e.g. linear combinations of the

first two rows of M we get the sum rules

a
(1)
(1,1)+a

(1)
(1,3)+a

(1)
(3,1)−3a

(1)
(3,3) =

2

π

∫ ∞
0

ds

s

[
σtot

(1,1)(s)+σtot
(1,3)(s)+σtot

(3,1)(s)−3σtot
(3,3)(s)

]
,

(4.20a)

a
(1)
(1,3) − a

(1)
(3,1) =

2

π

∫ ∞
0

ds

s

[
σtot

(1,3)(s)− σ
tot
(3,1)(s)

]
. (4.20b)

The last two rows of M provide the constraints on the a
(1)
I that we can write as

a
(1)
(3,3) = −1

3
a

(1)
(1,1) = −1

2

(
a

(1)
(1,3) + a

(1)
(3,1)

)
, (4.21)

and use to recast eq. (4.20a) in terms of a single eigen-amplitude, e.g. a
(1)
(3,3):

a
(1)
(3,3) = − 1

4π

∫ ∞
0

ds

s

[
σtot

(1,1)(s) + σtot
(1,3)(s) + σtot

(3,1)(s)− 3σtot
(3,3)(s)

]
. (4.22)

The first two rows of M provide instead the constraints for a
(2)
I :

a
(2)
(1,1) + a

(2)
(1,3) + a

(2)
(3,1) − 3a

(2)
(3,3) = 0 , (4.23a)

a
(2)
(1,3) − a

(2)
(3,1) = 0 . (4.23b)

Following the prescription of section 3, we can derive the strongest positivity conditions

for an even number of subtractions, e.g.

a
(2)
(1,3) + a

(2)
(3,1) + 2a

(2)
(3,3) ≥ 0 , (4.24a)

a
(2)
(1,1) + 3a

(2)
(3,3) ≥ 0 . (4.24b)
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Solving the constraints (4.23), e.g. for a
(2)
(3,1) and a

(2)
(1,1), one can obtain the two strongest

positivity constraints for the two remaining independent amplitudes which immediately

imply a
(2)
(3,3) ≥ 0.

4.2.1 Goldstone bosons and composite Higgs

Let us now assume that the IR theory is well described by GBs from the cosets SO(5)/SO(4)

or SO(4, 1)/SO(4), or more generally by a non-linear sigma model

4∑
i=1

φ2
i +

1

cH
φ2

5 = f2
π . (4.25)

For the Higgs boson at O(p2) it accounts for the deformation

OH =
cH
2f2
π

(∂µ|H|2)2 , (4.26)

which is the leading one in custodially symmetric composite Higgs models [22]. We may

also add a light SO(4) singlet and a light symmetric (traceless) scalar coupled to the GBs

with couplings a and b as in eq. (4.15). The resulting eigen-amplitudes

a
(1)
(1,1) =

3

f2
π

(
cH − a2 +

3

4
b2
)
,

a
(1)
(1,3) = a

(1)
(3,1) =

1

f2
π

(
cH − a2 +

3

4
b2
)
,

a
(1)
(3,3) = − 1

f2
π

(
cH − a2 +

3

4
b2
)
,

(4.27)

satisfy the constraints (4.21) and allow us to evaluate the left-hand side of the sum

rule (4.20a) that now reads(
cH − a2 +

3

4
b2
)

=
f2
π

4π

∫ ∞
0

ds

s

[
σtot

(1,1)(s) + σtot
(1,3)(s) + σtot

(3,1)(s)− 3σtot
(3,3)(s)

]
. (4.28)

The case with a = b = 0 was originally found in ref. [13] that, however, missed the

second sum rule (4.20b). Our construction instead systematically allows one to find all the

independent sum rules.

The second sum rule with one subtraction shows an interesting feature. The IR theory

of GBs has an accidental discrete PLR symmetry atO(p2) that exchanges SU(2)L ↔ SU(2)R
and therefore sets a(1,3) = a(3,1). Higher dimensional operators spoil this symmetry. Yet

the sum rule enforces an averaged PLR∫ ∞
0

ds

s
σtot

(1,3)(s) =

∫ ∞
0

ds

s
σtot

(3,1)(s) , (4.29)

on top of the asymptotic equality

σtot
(1,3)(s→∞) = σtot

(3,1)(s→∞) , (4.30)

analogous to the Pomeranchuk’s theorem or, similarly, to the condition of eq. (2.25). The

averaged PLR relation is a surprising result where the IR/UV connection is clearly at work:

an IR accidental symmetry puts constraints on the theory at all energies.
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4.3 Adjoints of SU(N) and chiral QCD

We now consider the 2→ 2 forward scattering between particles transforming in the adjoint

representation of SU(N) for N ≥ 4. The simpler cases N = 2 and N = 3, relevant for

chiral QCD, are discussed below in a separate subsection.

We have the following decomposition of Adj⊗Adj:

Adj⊗Adj = 1s ⊕Ds ⊕ Fa ⊕Ys ⊕Ta ⊕T
a ⊕Xs , (4.31)

where the s and a labels stand for symmetric and antisymmetric with respect to the two

original adjoints.7 The dimensions of the irreps appearing in the decomposition are

∆1 = 1 , ∆D = N2 − 1 , ∆F = N2 − 1 , (4.32)

∆Y =
N2(N+1)(N − 3)

4
, ∆T = ∆T =

(N2 − 4)(N2 − 1)

4
, ∆X =

N2(N − 1)(N+3)

4
.

The crossing matrix X can be computed as shown in appendix D.2. In this case only X̂ is

relevant8 and is given by

X̂ =



1
N2−1

1 −1 (N−3)N2

4(N−1) 2− N2

2
N2(N+3)
4(N+1)

1
N2−1

N2−12
2(N2−4)

−1
2 − (N−3)N2

4(N−2)(N−1) 1 N2(N+3)
4(N+1)(N+2)

1
1−N2 −1

2
1
2 − (N−3)N

4(N−1) 0 N(N+3)
4(N+1)

1
N2−1

1
2−N − 1

N
1

N−2 + 1
4 + 1

2−2N
N+2
2N

N+3
4N+4

1
1−N2

2
N2−4

0 (N−3)N
4(N2−3N+2)

1
2

N(N+3)
4(N2+3N+2)

1
N2−1

1
N+2

1
N

N−3
4(N−1)

N−2
2N

N2+N+2
4N2+12N+8


, (4.33)

where the entries are ordered as 1,D,F,Y,T,X. One can simply verify that this matrix

satisfies all the properties discussed in appendix A. The matrix M that diagonalizes X̂ as

MX̂M−1 = diag(−1,−1, 1, 1, 1, 1) , (4.34)

is given by

M =



1
2−2N2 − 1

2N+4 −
1

2N
3−N

8(N−1)
2−N
4N

(N+3)(3N+2)
8(N+1)(N+2)

1
2(N2−1)

1
4−N2 0 − (N−3)N

8(N2−3N+2)
1
4 − N(N+3)

8(N2+3N+2)

1
2(N2−1)

1
2N+4

1
2N

N−3
8(N−1)

N−2
4N

1
8

(
− 4
N+2 + 5 + 2

N+1

)
1

2−2N2
1

N2−4
0 (N−3)N

8(N2−3N+2)
3
4

N(N+3)
8(N2+3N+2)

1
2(N2−1)

1
4−2N − 1

2N
1
8

(
− 2
N−1 + 5 + 4

N−2

)
N+2
4N

N+3
8N+8

1
2−2N2 −1

4
3
4 − (N−3)N

8(N−1) 0 N(N+3)
8(N+1)


.

(4.35)

7We adopt for SU(N) the same conventions as in ref. [23].
8The matrix X is block diagonal in the mixed and non-mixed indexes. Moreover, the amplitude cor-

responding to the mixed entry FD (or DF) vanishes due to conservation of angular momentum in the

forward limit.
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We see that the −1-eigenspace has dimension two, leading to two once-subtracted sum

rules and dim X̂ − 2 = 4 twice-subtracted sum rules. These numbers match the number of

(anti)-symmetric irreps appearing in the matrix X̂. The first two rows of M in eq. (4.35)

allow us to read the two independent once-subtracted sum rules

4a
(1)
1

N2−1
+

4a
(1)
D

N+2
+

4a
(1)
F

N
+

(N−3)a
(1)
Y

N−1
+

2(N−2)a
(1)
T

N
−

(N+3)(3N+2)a
(1)
X

(N+1)(N+2)
(4.36a)

=
2

π

∫ ∞
0

ds

s

[
4σtot

1

N2−1
+

4σtot
D

N+2
+

4σtot
F

N
+

(N−3)σtot
Y

N−1
+

2(N−2)σtot
T

N
−

(N+3)(3N+2)σtot
X

(N+1)(N+2)

]
,

4a
(1)
1

N2−1
−

8a
(1)
D

N2−4
−

(N−3)Na
(1)
Y

N2−3N+2
+2a

(1)
T −

N(N+3)a
(1)
X

N2+3N+2

=
2

π

∫ ∞
0

ds

s

[
4σtot

1

N2−1
−

8σtot
D

N2−4
−

(N−3)Nσtot
Y

N2−3N+2
+2σtot

T −
N(N+3)σtot

X

N2+3N+2

]
. (4.36b)

The coefficients aI in these sum rules are not all independent since they satisfy the con-

straints set by the last four rows of M that, taking linear combinations, can be written

e.g. as

a
(1)
1 −Na

(1)
Y − (N2 +N − 2)a

(1)
T = 0 , (4.37a)

2a
(1)
D − (N − 2)a

(1)
T −Na

(1)
Y = 0 , (4.37b)

2a
(1)
F −Na

(1)
Y − (N + 2)a

(1)
T = 0 , (4.37c)

a
(1)
X + 2a

(1)
T + a

(1)
Y = 0 . (4.37d)

Solving these constraints, e.g. for a
(1)
1,D,F,X, the sum rules (4.36) read

2a
(1)
T +a

(1)
Y (4.38a)

= − 2

π

∫ ∞
0

ds

s

[
4σtot

1

N2−1
+

4σtot
D

N+2
+

4σtot
F

N
+

(N−3)σtot
Y

N−1
+

2(N−2)σtot
T

N
−

(N+3)(3N+2)σtot
X

(N+1)(N+2)

]
,

a
(1)
T =

2

π

∫ ∞
0

ds

s

[
4σtot

1

N2−1
−

8σtot
D

N2−4
−

(N−3)Nσtot
Y

N2−3N+2
+2σtot

T −
N(N+3)σtot

X

N2+3N+2

]
. (4.38b)

In the next subsection we relate these a
(1)
I to the LECs of the SU(N)L×SU(N)R/SU(N)V

non-linear sigma model.

The first two rows give rise also to the following constraints for the second derivatives

4a
(2)
1

N2−1
+

4a
(2)
D

N+2
+

4a
(2)
F

N
+

(N−3)a
(2)
Y

N−1
+

2(N−2)a
(2)
T

N
−

(N+3)(3N+2)a
(2)
X

(N+1)(N+2)
= 0 , (4.39a)

4a
(2)
1

N2−1
−

8a
(2)
D

N2−4
−

(N−3)Na
(2)
Y

N2−3N+2
+2a

(2)
T −

N(N+3)a
(2)
X

N2+3N+2
= 0 . (4.39b)

The positivity conditions corresponding to the crossing matrix (4.33) are computed as pre-

scribed in section 3. In this case the procedure is the following: we take linear combinations

with free coefficients of the last four rows of M in eq. (4.35). We obtain a 6-vector depend-

ing on four free coefficients. We set three entries at a time to zero, and express three of
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the coefficients as functions of the remaining one. We then substitute their expression into

the 6-vector linear combination and we check if the three non-zero entries are all positive

(or negative, since they still depend on one free parameter). We repeat the procedure for

all the combinations of three entries of the 6-vector linear combination. In this way we get

the five strongest positivity constraints

2a
(2)
F + (N − 2)a

(2)
T +Na

(2)
X ≥ 0 , (4.40a)

2a
(2)
D + (N + 2)a

(2)
T +Na

(2)
X ≥ 0 , (4.40b)

2a
(2)
1 + (N − 2)(N + 1)a

(2)
Y + (N − 1)(N + 2)a

(2)
X ≥ 0 , (4.40c)

a
(2)
1 + 2(N + 1)a

(2)
F +N(N + 2)a

(2)
X ≥ 0 , (4.40d)

(N + 2)a
(2)
1 + 2(N − 2)(N + 1)a

(2)
D +N3a

(2)
X ≥ 0 . (4.40e)

These equations generate a 4-dimensional convex polyhedral cone with five edges in a 5-

dimensional space. Therefore the positivity conditions are not all linearly independent.

However, they are the minimal set necessary to construct all possible positivity constraints

through linear combinations with only positive coefficients (see figures (3) and (4) for

illustration). Notice that using the constraints (4.39) solved for a
(2)
1 and a

(2)
D , eq. (4.40)

implies the simple positivity constraints a
(2)
F , a

(2)
Y , a

(2)
T , a

(2)
X ≥ 0.

4.3.1 Goldstone bosons from SU(N)L × SU(N)R/SU(N)V

The sum rules (4.36) are completely general and independent of the structure of the IR

effective theory. An interesting case corresponds to the IR effective theory being given by

the non-linear sigma model for the coset SU(N)L×SU(N)R/SU(N)V . The O(p2) effective

Lagrangian can be written as

L(2)
eff =

f2
π

4
Tr
[
(∂µΣ)†∂µΣ

]
, (4.41)

where the non-linear Σ field is defined has

Σ = e
2iπaTa

fπ , Σ→ gRΣg†L , gL,R ∈ SU(N)L,R , (4.42)

with the SU(N) generators T a defined according to eq. (D.2). Expanding the La-

grangian (4.41) in the number of fields up to four we get

L(2)
eff =

δab

2
∂µπ

a∂µπb − 1

6f2
π

fabef cdeπaπc∂µπ
b∂µπd . (4.43)

From this effective Lagrangian we get the four Goldstone bosons scattering amplitude

A
(
πaπb → πcπd

)
(s, t = 0) =

s

f2
π

facef bde . (4.44)

Projecting this amplitude into the space of irreps, by using the projectors given in ap-

pendix D, we obtain

A1 =
Ns

f2
π

, AD =
Ns

2f2
π

, AF =
Ns

2f2
π

,

AY =
s

f2
π

, AT = AT = 0 , AX = − s

f2
π

,
(4.45)
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which nicely satisfy the constraints (4.37). This last equation allows us to write down

the contribution of the non-linear sigma model SU(N)L × SU(N)R/SU(N)V to the sum

rules (4.36):∫ ∞
0

ds

s

[
4σtot

1

N2−1
+

4σtot
D

N+2
+

4σtot
F

N
+

(N−3)σtot
Y

N−1
+

2(N−2)σtot
T

N
−

(N+3)(3N+2)σtot
X

(N+1)(N+2)

]
=− π

2f2
π

,

(4.46a)∫ ∞
0

ds

s

[
4σtot

1

N2−1
−

8σtot
D

N2−4
−

(N−3)Nσtot
Y

N2−3N+2
+2σtot

T −
N(N+3)σtot

X

N2+3N+2

]
= 0 . (4.46b)

4.3.2 Chiral SU(2) and SU(3)

The scattering of two adjoints of SU(2) ∼ SO(3) is covered by the discussion in subsec-

tion 4.1 in the case N = 3. Let us move to the scattering of two 8 ∈ SU(3). In this

case, 8⊗ 8 = 1s ⊕ 8s
1 ⊕ 8a

2 ⊕ 10a ⊕ 10
a ⊕ 27s where we have renamed the irreps with their

dimension. Note that the representation Y of the general decomposition of eq. (4.31) does

not appear. Therefore, after dropping this irrep in the matrix (4.33) we get the following

crossing matrix

X̂ =



1
8 1 −1 −5

2
27
8

1
8 −

3
10 −

1
2 1 27

40

−1
8 −

1
2

1
2 0 9

8

−1
8

2
5 0 1

2
9
40

1
8

1
5

1
3

1
6

7
40


, (4.47)

which agrees with the crossing matrix used in ref. [24]. The matrix M that diagonalizes

X̂ as

MX̂M−1 = diag(−1,−1, 1, 1, 1) (4.48)

is given by

M =


− 1

16 −
1
10 −

1
6 −

1
12

33
80

1
16 −1

5 0 1
4 − 9

80
1
16

1
10

1
6

1
12

47
80

− 1
16

1
5 0 3

4
9
80

− 1
16 −

1
4

3
4 0 9

16

 . (4.49)

This is nothing but the matrix (4.35) for N = 3 where the entry corresponding to the

representation Y has been dropped. The once-subtracted sum rules can therefore be read

off the first two rows of this matrix that give

a
(1)
27 = − 1

120π

∫ ∞
0

ds

s

[
15σtot

1 + 24σtot
81

+ 40σtot
82

+ 20σtot
10 − 99σtot

27

]
, (4.50a)

a
(1)
10 =

1

40π

∫ ∞
0

ds

s

[
5σtot

1 − 16σtot
81

+ 20σtot
10 − 9σtot

27

]
. (4.50b)

On the right-hand side we have solved the constraints set on the a
(1)
I ’s by the last three

rows of M for a
(2)
1 , a

(2)
81
, a

(2)
82

. The non-linear sigma model SU(3)L × SU(3)R/SU(3)V gives

a
(1)
10 = 0 and a

(1)
27 = −1/f2

π , see eq. (4.45).
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The first two rows of M give rise also to

15a
(2)
1 + 24a

(2)
81

+ 40a
(2)
82

+ 20a
(2)
10 − 99a

(2)
27 = 0 , (4.51a)

5a
(2)
1 − 16a

(2)
81

+ 20a
(2)
10 − 9a

(2)
27 = 0 . (4.51b)

The positivity conditions are obtained with the usual procedure from the last three rows

of M and read

2a
(2)
82

+ a
(2)
10 + 3a

(2)
27 ≥ 0 , (4.52a)

2a
(2)
81

+ 5a
(2)
10 + 3a

(2)
27 ≥ 0 , (4.52b)

a
(2)
1 + 8a

(2)
82

+ 15a
(2)
27 ≥ 0 , (4.52c)

5a
(2)
1 + 8a

(2)
81

+ 27a
(2)
27 ≥ 0 . (4.52d)

These are exactly the first two and the last two conditions (4.40) for N = 3. They can

be seen as the generating vectors of a 4-edged 3-dimensional convex polyhedral cone in

five dimensions. Notice that solving the constraints (4.51a) for a
(2)
1 and a

(2)
81

the positivity

constraints imply a
(2)
82
, a

(2)
10 , a

(2)
27 ≥ 0. Certain positivity constraints for the LECs appearing

in twice-subtracted sum rules of chiral SU(3) have been discussed in refs. [3, 24].

5 Longitudinal WW scattering

Some of the once-subtracted sum rules presented in the previous sections for GBs in

SO(4)/SO(3) and SO(5)/SO(4) have been interpreted in the context of the EW chiral

Lagrangian and Composite Higgs models in refs. [9, 10, 13] by means of the Equivalence

Theorem (ET). There are however three caveats:

• As recently noticed in ref. [15] the application of the ET in the forward limit t = 0 or

t� m2
W is questionable since large corrections of the order of m2

W /t can be expected.

• Theories with massive gauge bosons require particular care since they may affect the

sum rules with one subtraction by a finite δc∞(1) coming from the deep UV, as we

discussed already in section 2.2.

• A propagating photon in the t-channel in the forward scattering, t = 0, gives rise to

a Coulomb singularity so that one may wonder whether g′ = 0 and g′ 2 � 1 yield

different sum rules.

In this section we address in steps each of these subtle points, and derive a robust sum rule

for WLWL scattering with arbitrary g and small but finite g′ 2 � 1.

5.1 Longitudinal WW scattering and the equivalence theorem

Let us start with the first point and compare WLWL scattering with ππ scattering. We

focus first on SU(2)L broken completely with g 6= 0, and g′ = 0 strictly so that the photon

is not included. We come back to the case of finite g′ in subsection 5.3. We also include a
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propagating singlet Higgs-like state h coupled to the longitudinal components of the gauge

bosons with a strength a in units of the SM coupling. The relevant part of the Lagrangian

in a Rξ-gauge is given by

L = −1

4
W a
µνW

µν a− 1

2ξ
(∂µW

µa +mW ξπ
a)2+

v2

4
Tr
[
(DµΣ)†DµΣ

](
1+2a

h

v

)
+

1

2
∂µh∂

µh ,

(5.1)

where Σ = eiπaσa/v and mW = gv/2.

The amplitude for the processW a
LW

b
L →W c

LW
d
L receives contributions from the quadri-

linear W interaction, the s, t, u-channel W exchange, and s, t, u-channel h singlet exchange.

There is no πWW vertex, so that there is no contribution from Goldstone exchange. The

exact form of the eigen-amplitudes is given in appendix E. Here we are interested in the

limit s� m2
IR � t with m2

IR = m2
W , m2

h since we eventually need the forward amplitude.

From the first row of the matrix M in eq. (4.7) with N = 3 we extract the left-hand side

of the sum rule

lim
µ2�m2

IR�t
[MA(1)(µ2)]1 =

(
3− a2

)
v2

. (5.2)

This result should be contrasted with the usual limit s, t� m2
IR that gives instead

lim
s,t�m2

IR

[MA(1)(s, t)]1 =

(
1− a2

)
v2

. (5.3)

The latter result clearly agrees with the prediction of the ET for the ππ scattering in that

kinematical region. But in fact, we want to emphasize that even eq. (5.2) agrees with the

prediction of the ET at t � m2
IR. Indeed, the diagrams contributing to the πaπb → πcπd

scattering are exactly the same as in the previous case with all the external WL legs replaced

by the corresponding Goldstone bosons. In particular, they include the contribution of a

t-channel exchange of a W boson which has a pole of the form g2(4m2
W −2s− t)/(t−m2

W ),

where we cannot neglect m2
W compared to t in the forward limit. In other words, at t = 0,

the ππ scattering in a gauge theory with g 6= 0 is different from the ππ scattering in the

gauge-less limit g = 0. The latter does not include the diagram with the t-channel W

boson exchange which, for t = 0, contributes instead to the scattering amplitude A(1) of

the former by an extra 2/v2 factor explaining the mismatch between eq. (5.3) and eq. (5.2).

More explicitly, using the scattering amplitude computed with GBs as external legs given

by eq. (E.13) we get

lim
s�m2

IR

[MA(1)(s, t)]1 =
(1− a2)

v2
− g2

2

1

t−m2
W

. (5.4)

This expression reduces to the correct limits (5.2) and (5.3) for t � m2
W and t � m2

W

respectively. The bottom line is that the ET does provide the correct answer when handled

properly and when all relevant contributions are taken into account.
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5.2 The sum rule for g′ = 0

From the matrix M that diagonalizes the crossing matrix for SO(3) ∼ SU(2), see eqs. (4.6)

and (4.7), we can read off the sum rule with one subtraction9 at s = µ2 with Reµ2 � m2
W(

3−a2
)

v2
=

1

6π

∫ ∞
4m2

W

ds
(s2+µ4)s

(s2−µ4)2

√
1−

4m2
W

s

[
2σtot

1 (s)+3σtot
3 (s)−5σtot

5 (s)
]
+[Mδc∞(1)]1 .

(5.5)

The left-hand side supports the claim of ref. [15]. However, the right-hand side contains a

finite contribution coming from the massive gauge boson exchange, if they are still prop-

agating degrees of freedom in the deep UV.10 In this case, the very same terms that are

responsible for the mismatch between (5.2) and (5.3) also affect the contribution from the

big circle c∞(1), and by exactly the same amount

δc
∞(1)
1 =

4

v2
, δc

∞(1)
3,5 = ± 2

v2
=⇒ [Mδc∞(1)]1 =

2

v2
. (5.6)

We therefore recover the original sum rule

(
1− a2

)
=
v2

6π

∫ ∞
4m2

W

ds
(s2 + µ4)s

(s2 − µ4)2

√
1−

4m2
W

s

[
2σtot

1 (s) + 3σtot
3 (s)− 5σtot

5 (s)
]
, (5.7)

up to the finite mass terms, and the µ2 factor. Notice that µ2 can not be generically sent

to zero while keeping mW finite. Moreover, µ2 regularizes the otherwise divergent integral

in the IR in the general formula (2.31).11

Notice that we used the same gauge coupling on the IR side and on the big circle (where

s = Λ2 →∞) because t = 0 and thus the exchanged momentum and the scattering angle

are zero. More concretely, the eikonal approximation that resums all the ladder diagrams

(including the crossed ones that enforce crossing symmetry) [25–27]

δAI = −2is

∫
d2b⊥e

iq⊥b⊥
(
eiχI − 1

)
, χI(b⊥) =

1

2s

∫
d2q⊥
(2π)2

e−iq⊥b⊥δABorn
I (q⊥) , (5.8)

returns for s→∞ and t = 0 the Born amplitude A = ABorn, as can be explicitly checked

with the extra gauge contribution to the full tree-level amplitude given in eq. (E.13). Since

the extra contribution to the amplitude is the same in the UV and in the IR, the δc∞(1)

from the big circle is the same, by analyticity, of the δA(1) returned by the contour integral

along any C in the IR.

The punch line is that the sum rule for WW scattering at g′ = 0 agrees with the one

for GBs scattering because the extra gauge boson contributions are the same on both sides

of the sum rule.
9There are in fact two additional dispersion relations that we could write, see eq. (4.4b). However, we

are eventually interested in the case µ2 = 2m2
W , see eq. (5.12), where these extra equations are nothing

but the trivial constraints set by crossing symmetry, A(1)
5 (2m2

W ) = −A(1)
3 (2m2

W ) = −A(1)
1 (2m2

W )/2.
10For the other contributions to c∞(1) we assume that eq. (2.25) holds and hence they are projected out.
11The integral on the right-hand side of eq. (2.31) is indeed generically IR divergent for massive gauge

bosons as µ → 0 since the longitudinal polarisations εLµ(k) do not vanish as s → 4m2
W . This should be

contrasted with the case of GBs where the εLµ(k) of the gauge bosons is replaced by the GB momentum kµ
which does instead go to zero at the IR boundary s = 0.
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5.3 The sum rule for g′ 2 � 1

We now extend the discussion of the previous subsection and allow for a small electric-

charge and a propagating photon while we still neglect the mass splitting among the massive

gauge bosons. In other words, we now focus on the limit g′ 2 � 1.

First, we regulate the IR with a finite t and a finite photon mass m2
γ , to be sent to

zero later. The sum rules at finite t are discussed in appendix C. Analogously to the case

of massive W ’s the contribution from the photon exchange gives an extra IR term to the

left-hand side of the sum rule of the form

δA(s, t) =
c∗s+ c̃∗t

t−m2
γ

−→ δA(1) =
c∗

t−m2
γ

(5.9)

where c∗ and c̃∗ are proportional to the square of the electric charge. The photon also

generates an extra contribution to cΛ(1) that can be computed by expanding in the size of

the radius of the big circle: since eiθ always multiplies such a radius, apart from the first

term that is finite, the others average to zero (see eq. (2.16))

δcΛ(1) =
c∗

t−m2
γ

. (5.10)

As expected, the IR contribution and the one from the big circle are equal, δc∞(1) = δA(1),

and thus they cancel, disappearing from the sum rules. Again, c∗ is the same coefficient

on both sides since we are working at finite but small t (in fact, we send t → 0 at the

end) so that the exchanged momentum seen from the photon is always small, even though

the center of mass energy for the big circle is large. Therefore, analyticity ensures that

δc∞(1) = δA(1).

After removing these terms we can take the limits mγ → 0 and t → 0, in any order,

getting the same expression as for the gauge-less limit g′ = 0. In particular, the limit t→ 0

allows us to link ImA in (C.5) to the total cross-section so that the sum rules essentially

reduce to those of GBs discussed in the previous sections. For example, in the SM with

a light Higgs-like singlet coupled to the W bosons with a coupling constant rescaled by a

factor a we recover again eq. (5.7). Adding a quintuplet coupled to W ’s as in eq. (4.15)

changes the left-hand side as
(
1− a2

)
→
(
1− a2 + 5b2/6

)
.

This result agrees with the sum rule for the GBs living in SO(4)/SO(3) found in

ref. [9] with b, µ2 ,m2
W → 0. The main difference is that our version for WLWL-scattering

has g 6= 0, g′ 2 � 1 and finite masses, see also footnote 11 for the IR convergence. Actually,

we checked in appendix E that keeping all the residues, the left-hand side of eq. (5.7) does

not explicitly depend on µ2 at tree-level. The dependence on µ2 on the right-hand side

thus captures the radiative corrections such as the running of the coupling constants. For

µ2 real and below the cut (but finite and away from the poles) one should also reintroduce

the full dependence on m2
W according to eq. (2.31), that is made by the replacement

(s2 + µ4)s

(s2 − µ4)2
→

(s2 + µ4 − 4m2
W s− 4m2

Wµ
2 + 8m4

W )s

(s− µ2)2(s+ µ2 − 4m2
W )2

(5.11)

in eq. (5.7). As long as µ2 is away from the poles and the IR singularity at µ2 = 0 there is

very little sensitivity to its actual value. Choosing for convenience the crossing symmetric
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point µ2 = 2m2
W one gets

(
1− a2

)
=
v2

6π

∫ ∞
4m2

W

ds
s

(s− 2m2
W )2

√
1−

4m2
W

s

[
2σtot

1 (s) + 3σtot
3 (s)− 5σtot

5 (s)
]
, (5.12)

which can be used, thanks to the reality of µ2, to argue that a Higgs coupling a bigger than

one would require sizable contributions to longitudinal WW -scattering from quintuplets [9]

that contain doubly charged states [10].

Summarizing the result, we have proved that the sum rule for the GBs survives after

gauging. In particular, the sum rule for SO(4)/SO(3) carries over WLWL scattering with

finite g and small g′ 2 � 1. This is a non-trivial result since the theory contains gauge

bosons that contribute to c∞(1), as well as a photon exchanged in the t-channel at or near

the forward limit. While the forward amplitudes are not continuous in the gauge couplings

at g = 0 or g′ = 0 (as opposed to the continuity in the non-forward scattering [28]), the

resulting sum rules are actually continuous.

6 Conclusions and discussion

We derived dispersion relations that provide universal sum rules for the 2 → 2 forward

scattering amplitudes of real particles transforming in a unitary representation r = r of

an arbitrary internal symmetry group H. The sum rules represent identities between an

IR side where the amplitudes are presumably calculable, e.g. within an EFT, and a UV

side that encodes information about the asymptotic behavior of the amplitudes at very

high energy. The theory of GBs living in a coset space G/H represents the typical system

where our sum rules can be used to set non-trivial constraints on the low-energy coupling

constants in addition to the usual symmetry requirements. But in fact our approach applies

also to more general systems, e.g. with massive and spinning particles, as long as H is a

good symmetry linearly realized on the states.

The sum rules, aside from the usual ingredients of unitarity, analyticity and crossing

symmetry are crucially based on two general properties of the s↔ u crossing matrix X that

acts on the space of the eigen-amplitudes A(s). First, the crossing matrix is involutory,

X2 = 1. Second, it admits (at least) one +1-eigenvector v, Xv = v, that for non-degenerate

irreps has all identical entries. Since X2 = 1, one can construct two projectors P± = (1±
X)/2. We showed that the eigen-amplitudes projected on the +1-eigenspace admit disper-

sion relations that can be regarded as a multidimensional generalization of the ordinary dis-

persion relations for non-symmetric theories (where X is trivial). In practice, along certain

directions provided by the eigenvectors of X, we are able to recast the usual dispersion re-

lation arguments to prove, e.g., positivity constraints that generalize those found in refs. [1,

3, 4]. We provided a systematic and simple way to construct all such positivity constraints

for the coefficients a
(n)
I with even n of the low-energy expansion of the eigen-amplitudes.

Projecting instead on the −1-eigenspace with P− we studied once-subtracted disper-

sion relations. The resulting sum rules are very interesting since they can be used to put

constraints on the low-energy coupling constants of EFTs at O(p2). Under very general

assumptions discussed in section 2.2, and summarized by the universality condition (2.25)
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on the saturation of the Froissart bound, we showed that the sum rules based on once-

subtracted dispersion relations are UV convergent. Indeed, amplitudes that grow maxi-

mally fast as A(s) ∼ s log2 s turn out to be proportional to v, i.e. a +1-eigenvector of X,

and are thus projected out by P−. Again, our method allows us to systematically find all

the sum rules and the associated constraints on the LECs.

We discussed several illustrative examples that are relevant for theories of GBs such

as SO(N + 1)/SO(N) and SO(N, 1)/SO(N) that appear in composite Higgs models, and

SU(N)L × SU(N)R/SU(N)L+R for e.g. chiral QCD. In the context of composite Higgs

models respecting the custodial SO(4) symmetry, we obtain two once-subtracted sum rules,

see eqs. (4.28) and (4.29) in section 4.2, one of which constrains the operator OH of the

SILH Lagrangian [22].

Finally, we discussed the once-subtracted sum rule for longitudinal WW -scattering

with finite g and small g′, that is in the custodial SO(3) limit of the SM. We carefully com-

pared the resulting sum rule to the one obtained for GBs of SO(4)/SO(3) in the gauge-less

limit. We showed that even though the amplitudes in the forward limit are not continuous

in the gauge couplings at g = g′ = 0, the resulting sum rule for GBs does actually carry over

to the scattering of longitudinal W ’s. While the same conclusion could be reached with a

naive use of the equivalence theorem, we emphasized that in fact a non-trivial cancellation

between two extra contributions on both sides of the sum rule takes place.

There are various directions that are worth exploring further. One immediate option

would be to use the positivity conditions on the a
(2)
I coefficients to set constraints on

the dimension six operators that deform the SM but respect custodial symmetry. More

speculative directions involve extensions of the space-time symmetry. For example, it would

be interesting to look more carefully at the way our arguments adapt to higher or lower

dimensions, as well as to curved space-times. Finally, even though we have restricted our

analysis to internal symmetries, it would be very interesting to extend our approach to

space-time symmetries such as supersymmetry.
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A Crossing matrix and its properties

In this appendix we explain how to construct the crossing matrix X in eq. (2.10) and derive

some of its properties. We start by using the CG coefficients in eq. (2.2) to construct the

matrix Q with elements

QI(ξξ′)J(ζζ′) =
1

dim rI

∑
abcd

P ab,cdI(ξξ′) P
cb,ad
J(ζ′ζ) , (A.1)

where

P ab,cdI(ξξ′) =
∑
i

CabI(ξ)iC̄
cd
I(ξ′)i . (A.2)

with C̄abI(ξ)i ≡ (CabI(ξ)i)
∗ ≡ Cab

Ī(ξ)i
. We recall that the CG coefficients are unitary matrices∑

a,b

CabI(ξ)iC̄
ab
J(ζ)j = δIJδijδξζ ,

∑
I,ξ,i

C̄abI(ξ)iC
cd
I(ξ)i = δacδbc . (A.3)

In particular P ab,cdI(ξξ) can be regarded as the projector onto the subspace rI(ξ), expressed in

the basis |ab〉. Furthermore, notice that, by definition,

Q̄I(ξξ′)J(ζζ′) = QI(ξ′ξ)J(ζ′ζ) = QĪ(ξξ′)J̄(ζζ′) . (A.4)

A.1 Crossing symmetry in non-minimal notation

The crossing symmetry of eq. (2.7) can be written in terms of the eigen-amplitudes

AI(ξξ′)(s) appearing in (2.3) as

AI(ξξ′)(u) =
∑
Jζζ′

QI(ξξ′)J(ζζ′)AJ(ζζ′)(s) . (A.5)

Let us organize the eigen-amplitudes AI(ξξ′)(s) in a vector

Ã(s) =


...

AI(ξξ′)(s)
...

 (A.6)

where the index I(ξξ′) takes all possible values. Hence, the vector Ã(s) differs from the

vector A(s) introduced in eq. (2.9), since the latter is restricted to eigen-amplitudes which

are not related by eq. (2.8).

The crossing relation (A.5) can then be written in the compact form

Ã(u) = QÃ(s) . (A.7)

This equation shows thatQI(ξξ′)J(ζζ′) are the crossing matrix elements for the unconstrained

eigen-amplitudes (A.6). The matrix Q has the following important properties that follow

directly from unitarity of the CG coefficients

1. Q is involutory:

Q2 = 1 , (A.8)

and then it has only ±1 eigenvalues;
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2. The +1-eigenspace of Q contains the vector ṽ whose components are

ṽI(ζζ′) =

{
1 if ζ = ζ ′

0 if ζ 6= ζ ′
; (A.9)

3. Q is unitary with respect to the diagonal metric ∆ with entries ∆I(ξξ′) = dim rI :

Q†∆Q = ∆ . (A.10)

This condition follows from eq. (A.8) and the symmetry dim rIQ̄I(ξξ′)J(ζζ′) =

dim rJQJ(ζζ′)I(ξξ′) implied by the definition (A.1).

The vector ṽ is related to the vector v defined in eq. (2.11), the only difference being that,

as for Ã, its indices I(ξξ′) are unrestricted. Other properties of Q have been studied in

detail in ref. [29].

In general, we can assign to each irrep rI(ξ) appearing in eq. (2.1) a definite ±1 parity

under the exchange |ab〉 → |ba〉 in r ⊗ r. We indicate such parity by (−)I(ξ), with I(ξ) ∈
Z (mod 2), and we explicitly identify it by the property:

CabI(ξ)i = (−)I(ξ)CbaI(ξ)i . (A.11)

The rows and columns of the matrix Q have q ≡ dimQ indices, labelled by I(ξξ′). We say

that an index I(ξξ′) is even if (−)I(ξ) = 1, while an index I(ξξ′) is odd if (−)I(ξ) = −1.

We can write q = q+ + q−, where q± denote the number of even/odd indices I(ξξ′).

Reference [29] proved that

TrQ ≡
∑
I(ξξ′)

QI(ξξ′)I(ξξ′) = q+ − q− . (A.12)

On the other hand TrQ is also equal to the difference between the number of +1 and −1

eigenvalues of Q. Hence, q± exactly give the number of ±1 eigenvalues of Q.

A.2 Getting rid of redundancies

The matrix Q and eq. (A.7) could directly be used to derive dispersion relations and sum

rules for the eigen-amplitudes, along the lines followed in the main part of the present

paper. On the other hand, the eigen-amplitudes AI(ξξ′)(s) are not all independent and

they are related by eq. (2.8). Hence, in general, there is some redundancy in eq. (A.7) and

it is then convenient to eliminate it.

In order to do that, let us first explicitly distinguish the irreps rI(ξ) appearing in

eq. (2.1) in three independent sets, rIr(ξ), rIc(ξ) and rĪc(ξ), where Ir and Ic label real

and complex representations respectively. (The choice of the separation of the complex

representations into rIc(ξ) and rĪc(ξ) is of course arbitrary.) Then, we can correspondingly

group the indices I(ξξ′) in three sets. The first set contains the indices Ir(ξξ). The

second set contains the indices Ir(ξξ
′) with ξ < ξ′ and the indices Ic(ξξ

′). The third set

contains the indices Ir(ξ
′ξ) and the indices Īc(ξ

′ξ), by using the same ordering of ξ and ξ′
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used for the second set. Using this subdivision the vector Ã(s) splits in three subvectors

A1(s),A2(s),A3(s) as follows

Ã(s) =

A1(s)

A2(s)

A3(s)

 . (A.13)

Correspondingly, we can write the block-decomposition of the matrices Q and ∆ according

to the above index subdivision

Q =

Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

 , ∆ =

∆1 0 0

0 ∆2 0

0 0 ∆3

 . (A.14)

Notice that ∆2 = ∆3 and that, by eq. (A.4),

Q12 = Q13 , Q21 = Q31 , Q23 = Q32 , Q22 = Q33 . (A.15)

The relation (2.8) now reads A2(s) = A3(s). We can therefore consider the minimal

amplitude vector

A(s) =

(
A1(s)

A2(s)

)
, (A.16)

already introduced in eq. (2.9). The crossing relation (A.7) can be written in terms of the

vector A(s) as

A(u) = XA(s) , (A.17)

where X is the matrix

X =

(
Q11 Q12 +Q13

Q21 Q22 +Q23

)
. (A.18)

This is the crossing matrix introduced in section 2, which plays a crucial role in the present

paper. The matrix X inherits some properties from those of Q, as one can check by direct

inspection. They have been already mentioned in section 2, see eqs. (2.10) and (2.11).

Furthermore X is unitary with respect to the diagonal metric

G =

(
∆1 0

0 2∆2

)
, (A.19)

which means

X†GX = G . (A.20)

A.3 Reducibility of the crossing matrix X

In this subsection we discuss some other properties of the matrix X, useful to determine

whether it takes the block-diagonal form (2.12).

From the definition of Q in eq. (A.1) and the property (A.11), it immediately fol-

lows that

QI(ξξ′)J(ζζ′) = (−)I(ξ)+I(ξ′)+J (ζ)+J (ζ′)QI(ξξ′)J̄(ζ′ζ) , (A.21)
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where (−)I(ξ) denotes the parity of rI(ξ) defined above eq. (A.11). This in turn implies that

XI(ξξ′)J(ζζ′) = (−)I(ξ)+I(ξ′)+J (ζ)+J (ζ′)XI(ξξ′)J(ζζ′) . (A.22)

From this identity we see that XI(ξξ′)J(ζζ′) = 0 if (−)I(ξ)+I(ξ′)+J (ζ)+J (ζ′) = −1 and, in

particular, we have

XI(ξξ′)J(ζζ) = XJ(ζζ)I(ξξ′) = 0 if (−)I(ξ) = −(−)I(ξ′) . (A.23)

This provides a useful restriction on the components of X. For instance, it often happens

that degenerate irreps appear only in pairs of opposite parity (see, e.g., the D and F

representations in the decomposition of the product of adjoints of SU(N) in eq. (4.31)).

This immediately implies that X has the block-diagonal structure (2.12).

Another possible restriction on the structure of Q, and then of X, could come from

an additional (possibly discrete) symmetry group K which commutes with the symmetry

group H. To make this argument more concrete, suppose that K is a U(1) symmetry that

acts as |I(ξ), i〉 → eiqI(ξ)θ|I(ξ), i〉, where θ is the U(1) angle. Then from the definition of Q

in eq. (A.1) we get

QI(ξξ′)J(ζζ′) = ei(qI(ξ)−qI(ξ′)+qJ(ζ′)−qJ(ζ))QI(ξξ′)J(ζζ′) . (A.24)

Hence, if for instance qI(ξ) 6= qI(ξ′) for ξ 6= ξ′, then QI(ξξ′)J(ζζ) = QJ(ζζ)I(ξξ′) = 0. This

clearly implies that XI(ξξ′)J(ζζ) = XJ(ζζ)I(ξξ′) = 0 too. In such a case X has the block

diagonal structure (2.12).

B Analytic structure with light unstable resonances

Light poles can turn into unstable resonances in presence of extra light states of mass m2
` in

which they can decay. When this happens the poles move to the unphysical Riemann and

the branch cut extends down to the masses of the light states 4m2
` . The analytic structure

of the amplitude at t = 0 in this case is depicted in figure 5, where the cuts extend from

s = −∞+ iε to s = 4m2 − 4m2
` + iε, and from s = 4m2

` − iε to s = +∞− iε. Notice that

here the iε prescription is important to ensure the correct cross symmetric structure of the

amplitude. The dispersion relation involves now an extra unphysical region of integration,

namely from 4m2
` to 4m2:

A(n)(µ2)=cΛ (n)+

∫ Λ2+2m2

4m2
`

ds

2πi

[
1

(s−µ2)n+1
+(−1)n

X

(s−4m2+µ2)n+1

]
[A(s+iε)−A(s−iε)] .

(B.1)

Moreover, when massless particles are present, e.g. when m` = 0, the dispersion rela-

tions for finite t 6= 0 may be needed, as discussed in appendix C. For m` = 0 and finite t

the cuts go from s = 0− iε to s = +∞− iε, and from s = −∞+ iε to s = 4m2 − t+ iε.

In all such cases, we can discard the unphysical region of integration 4m2
` < s < 4m2

as long as the widths are narrow compared to mi, µ and Λ. This is equivalent to working
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Figure 5. Analytic structure in the presence of light particles of mass ml.

at leading order in the couplings that make the resonance unstable. For example, the

SM Higgs has a tiny width dominated by the small bottom Yukawa coupling, and we can

basically approximate the analytic structure with a pole on the real axis at s = m2
h, which

anyway gives a negligible contribution to the sum rules when µ2 � m2
i .

C Beyond the forward limit

When massless particles can be exchanged in the t-channel one cannot strictly consider the

forward limit t = 0 because of the Coulomb singularity. While this problem does not arise

for GBs, it may be relevant e.g. for massless gauge bosons such as the photon. In such a

case one can work at fixed and finite t 6= 0 and/or add an IR regulator like a mass term.

Consider first the contour integral at fixed and finite t

1

2πi

∮
C

A(s, t)

(s− µ2)n+1
=
∑
si

Res

[
A(s, t)

(s− µ2)n+1

]
+A(n)(µ2, t) , (C.1)

around the cuts running from s = 4m2 to +∞, and from s = −∞ to −t, by s ↔ u =

−s− t+ 4m2 crossing. The case with unstable resonances below the 4m2 slightly changes

the analytic structure as we discussed in appendix B. Adapting the arguments presented

for t = 0, we get the dispersion relations

P−
∑

(residues)(n) =

∫ ∞
4m2

ds

π

[
1

(s−µ2)n+1
−(−1)n

1

(s+t−4m2+µ2)n+1

]
P−ImA(s+iε, t)

(C.2a)

P+

∑
(residues)(n) =

∫ ∞
4m2

ds

π

[
1

(s−µ2)n+1
+(−1)n

1

(s+t−4m2+µ2)n+1

]
P+ImA(s+iε, t)

(C.2b)
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where the convergence for n > 1 is guaranteed by the Froissart bound for t 6= 0 [8]

|A(s, t 6= 0)| ≤ const× s log
3
2 s

(−t)
1
4

, for s→∞ . (C.3)

For n = 1 the convergence could be spoilt by amplitudes that grow maximally fast. How-

ever, as we discussed in section 2.2 for t = 0, if the amplitudes grow maximally fast in a

universal way, that is as

A(s, t 6= 0) ∼ const× s log
3
2 s δξξ′ (C.4)

with const independent of I(ξξ′), then the integral in eq. (C.2a) is UV convergent, and the

contribution c∞(1) from the big circle is projected out by P−. Thus the once-subtracted

sum rule holds too.

We can also take the limit of µ2 much larger than all IR scales, including µ2 � t, so

that, e.g., the first sum rule in eq. (C.2a) for n = 1 can be expressed as

P−A(1)(s = µ2, t) =
2

π

∫ ∞
4m2

ds
(s2 + µ4)

(s2 − µ4)2
P−ImA(s+ iε, t) +O

(
m2

µ2
,
m2
i

µ2
,
t

µ2

)
. (C.5)

In order to relate the non-forward imaginary amplitude to the physical cross-sections

one make an expansion in partial waves that, e.g. for spin-0 particles, reads

A(t, s) =
∑
`

(2`+ 1)P`(1 + 2t/(s− 4m2))A`(s) , (C.6)

where P`(cos θ) are the Legendre polynomials and ImA`(s) = sσ`(s)
√

1− 4m2

s .

D Projectors and crossing matrix for SO(N) and SU(N)

In this appendix we construct the matrices Q, X and X̂ for the product of fundamentals

of SO(N 6= 4) and SU(N ≥ 4).

D.1 SO(N)

In the product of two fundamentals of SO(N), N⊗N = 1⊕ S⊕A, no degenerate irreps

appear and then Q = X = X̂, which can be constructed by eq. (A.1) with the projectors

P ab,cd1 =
1

N
δabδcd ,

P ab,cdS =
1

2
(δacδbd + δadδbc)− 1

N
δabδcd ,

P ab,cdA =
1

2
(δacδbd − δadδbc) .

(D.1)

The result is given in eq. (4.6).
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D.2 SU(N)

In the product (4.31) of two adjoint representations of SU(N) there appear degenerate

irreps and the matrix X is given by the consistent reduction of the matrix Q discussed in

appendix A.2. In order to compute the matrices P ab,cdI(ξξ′) appearing in eq. (A.1) we follow

the conventions

[T a, T b] = ifabcT c , Tr(T aT b) =
δab

2
,

{T a, T b} =
1

n
δab1n + dabcT c , dacedbce =

N2 − 4

N
δab , (D.2)

which imply

fabc = −2iTr([T a, T b]T c) , dabc = 2Tr({T a, T b}T c) , (D.3)

for the SU(N) generators in the fundamental representation T a. Other useful relations are

Tr
(
T aT bT c

)
=

1

4
(ifabc + dabc) ,

Tr
(
T aT bT cT d

)
=

1

4N
δabδcd +

1

8
(ifabe + dabe)(if cde + dcde) ,

fabef cde = dacedbde − dadedbce +
2

N

(
δacδbd − δadδbc

)
,

dabef bce + dacef bde + dcdef bae = 0 .

(D.4)

The matrices P ab,cdI(ξξ′) are then given by12

P ab,cd
1 =

δabδcd

N2−1
, (D.5a)

P ab,cd
D =

N

N2−4
dabedcde , (D.5b)

P ab,cd
DF = − 1√

N2−4
dabef cde , (D.5c)

P ab,cd
FD = − 1√

N2−4
fabedcde , (D.5d)

P ab,cd
F =

fabef cde

N
, (D.5e)

P ab,cd
Y =

N−2

4N

(
δacδbd+δadδbc

)
+

N−2

2N(N−1)
δabδcd− 1

4

(
dacedbde+dadedbce

)
+

N−4

4(N−2)
dabedcde ,

(D.5f)

P ab,cd
T =

N2−4

4N2

(
δacδbd−δadδbc

)
− 1

2N

(
dacedbde−dadedbce

)
− i

4

(
dbcefade+dadefbce

)
, (D.5g)

P ab,cd

T
= (P ab,cd

T )∗ , (D.5h)

P ab,cd
X =

N+2

4N

(
δacδbd+δadδbc

)
− N+2

2N(N+1)
δabδcd+

1

4

(
dacedbde+dadedbce

)
− N+4

4(N+2)
dabedcde .

(D.5i)

12The last term in the projector P ab,cdT differs from the one of ref. [23], which does not square to one

(presumably due to a typo in their equation).

– 44 –



J
H
E
P
0
9
(
2
0
1
4
)
1
0
0

Using these matrices we can construct the matrix Q as in eq. (A.1) getting Q =



1
N2−1

1 0 0 −1 (N−3)N2

4(N−1)
1− N2

4
1− N2

4
N2(N+3)
4(N+1)

1
N2−1

N2−12

2(N2−4)
0 0 − 1

2
− (N−3)N2

4(N−2)(N−1)
1
2

1
2

N2(N+3)
4(N+1)(N+2)

0 0 − 1
2

− 1
2

0 0 1
4
i
√
N2 − 4 − 1

4
i
√
N2 − 4 0

0 0 − 1
2

− 1
2

0 0 − 1
4
i
√
N2 − 4 1

4
i
√
N2 − 4 0

1
1−N2 − 1

2
0 0 1

2
− (N−3)N

4(N−1)
0 0 N(N+3)

4(N+1)
1

N2−1
1

2−N 0 0 − 1
N

1
N−2

+ 1
4

+ 1
2−2N

N+2
4N

N+2
4N

N+3
4N+4

1
1−N2

2
N2−4

− i√
N2−4

i√
N2−4

0 (N−3)N

4(N2−3N+2)
1
4

1
4

N(N+3)

4(N2+3N+2)
1

1−N2
2

N2−4
i√

N2−4
− i√

N2−4
0 (N−3)N

4(N2−3N+2)
1
4

1
4

N(N+3)

4(N2+3N+2)
1

N2−1
1

N+2
0 0 1

N
N−3

4(N−1)
N−2
4N

N−2
4N

N2+N+2
4N2+12N+8



,

(D.6)

where the representations are ordered as they appear in eqs. (D.5). This 9× 9 matrix can

now be consistently reduced to a 7× 7 block diagonal matrix X with the prescriptions of

appendix A.2. These prescriptions here can be simply implemented by summing the two

columns corresponding to the DF and FD entries (columns 3 and 4) and the two columns

corresponding to the T and T entries (columns 7 and 8) and by removing one of each of

the two equal rows so obtained. In this way one gets the block diagonal X matrix

X =



−1 0 0 0 0 0 0

0 1
N2−1

1 −1 (N−3)N2

4(N−1) 2− N2

2
N2(N+3)
4(N+1)

0 1
N2−1

N2−12
2(N2−4)

−1
2 − (N−3)N2

4(N−2)(N−1) 1 N2(N+3)
4(N+1)(N+2)

0 1
1−N2 −1

2
1
2 − (N−3)N

4(N−1) 0 N(N+3)
4(N+1)

0 1
N2−1

1
2−N − 1

N
1

N−2 + 1
4 + 1

2−2N
N+2
2N

N+3
4N+4

0 1
1−N2

2
N2−4

0 (N−3)N
4(N2−3N+2)

1
2

N(N+3)
4(N2+3N+2)

0 1
N2−1

1
N+2

1
N

N−3
4(N−1)

N−2
2N

N2+N+2
4N2+12N+8



, (D.7)

where the first block containing only the −1 entry corresponds to the DF (or equivalently

FD) mixed entry while the block 6× 6 corresponds to the non-degenerate representations

in the order 1,D,F,Y,T,X.

E WLWL →WLWL scattering amplitude

The scattering of two longitudinal W ∈ 3 of SO(3) can be written as

A
(
W a
LW

b
L →W c

LW
d
L

)
= As (s, t, u) δabδdc +At (t, s, u) δacδbd +Au (u, t, s) δadδbc , (E.1)

where u = 4m2
W − s− t. The functions As,t,u are related by crossing symmetry. For t = 0,

crossing symmetry simply acts as s ↔ u and b ↔ d, that is As (s, 0, u) = Au (s, 0, u) and

At (0, s, u) = At (0, u, s). The full tree-level amplitude appearing in eq. (E.1) can be written
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in the c.o.m. frame as

As(s, t, u) = −
a2
(
s− 2m2

W

)2
v2
(
s−m2

h

) +
1

v2
(
s− 4m2

W

)2 (
m2
W − t

) (
s+ t− 3m2

W

)
×
[
768m10

W − 128m8
W (5s+ 4t) + 32m6

W

(
7s2 + 8st+ 4t2

)
(E.2a)

− 8m4
W s
(
5s2 + 11st+ 4t2

)
+m2

W s
2
(
3s2 + 18st+ 14t2

)
− s3t(s+ t)

]
,

At(t, s, u) =
a2
(
st+ 2m2

W s− 8m4
W

)2
v2
(
m2
h − t

) (
s− 4m2

W

)2 +
1

v2
(
s− 4m2

W

)2 (
s−m2

W

) (
s+ t− 3m2

W

)
×
[
− 768m10

W + 64m8
W (4s+ 9t) + 16m6

W

(
3s2 + 3st− 8t2

)
(E.2b)

− 8m4
W s(s+ t)(3s+ 4t) +m2

W s
2
(
2s2 − 2st− 3t2

)
+ s3t(s+ t)

]
,

Au(u, t, s) =
a2
(
8m4

W − 6m2
W s+ s(s+ t)

)2(
s+ t− 4m2

W +m2
h

)
v2
(
s− 4m2

W

)2 − 1

v2
(
s− 4m2

W

)2 (
s−m2

W

) (
m2
W − t

)
×
[
512m10

W − 64m8
W (6s+ 7t) + 16m6

W

(
9s2 + 3st+ 8t2

)
(E.2c)

− 16m4
W s
(
2s2 + st− 2t2

)
+ 3m2

W s
2
(
s2 + 4st+ t2

)
− s3t(s+ t)

]
.

The first one agrees with the one computed in ref. [15] but for the sign of the last two

terms in the last line (presumably due to a typo in their equation).

The function As(s, t, u = −s− t+ 4m2
W ) at fixed t has poles at s = m2

h, s = 3m2
W − t

and s = 4m2
W , while Au(u = −s− t+ 4m2

W , t, s) has poles at s = −t+ 4m2
W −m2

h, s = m2
W

and s = 4m2
W .

The amplitudes can now be decomposed in eigen-amplitudes of 1, 3, and 5 as follows

A1 = 3As (s, t, u) +At (t, s, u) +Au (u, t, s) , A3,5 = At (t, s, u)∓Au (u, t, s) . (E.3)

From these eigen-amplitudes and the first row of the matrix M in eq. (4.7) with N = 3 we

see that the combination of amplitudes and residues that enter on the left-hand side of the

sum rules is given by

[MA(1)(µ2, t = 0)]1 +
∑
si

Res

[
[MA(1)(s, t = 0)]1

(s− µ2)2

]
, (E.4)

where A = (A1,A5,A3)T and

[MA(s, t = 0)] =

 1
2 (As(s, 0, u)−Au(u, 0, s))

At(0, s, u)− 1
2 (As(s, 0, u) +Au(u, 0, s))

At(0, s, u) + 1
2 (As(s, 0, u) +Au(u, 0, s))

 . (E.5)
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Notice that at t = 0 the residues in s = 4m2
W vanish. The other residues in eq. (E.4) give,

for t = 0,

Ress=m2
W

= −
27m4

W

2v2
(
µ2 −m2

W

)2
Ress=m2

h
=
a2
(
m2
h − 2m2

W

)2
2v2

(
µ2 −m2

h

)2
Ress=4m2

W−m
2
h

= −
a2
(
m2
h − 2m2

W

)2
2v2

(
µ2 − 4m2

W +m2
h

)2
Ress=3m2

W
=

27m4
W

2v2
(
µ2 − 3m2

W

)2 ,

(E.6)

while the derivative of the amplitude computed at s = µ2 and t = 0 gives

[MA(1)(µ2, t = 0)]1 =
4a2

(
µ2−2m2

W

)2 (−µ4+3m4
h−12m2

hm
2
W +8m4

W +4µ2m2
W

)
4v2

(
m2
h−µ2

)2 (
µ2+m2

h−4m2
W

)2
−

12
(
−µ8+36m8

W−12µ2m6
W−13µ4m4

W +8µ6m2
W

)
4v2

(
µ4+3m4

W−4µ2m2
W

)2 .

(E.7)

By expanding eqs. (E.6) and (E.7) we get

lim
µ�m2

W ,m2
h

[MA(1)(µ2, t = 0)]1 =
3− a2

v2
+O

(
m2
h

µ2
,
m2
W

µ2

)
,

lim
µ�m2

W ,m2
h

∑
si

Res

[
[MA(s, t = 0)]1

(s− µ2)2

]
= O

(
m2
h

µ2
,
m2
W

µ2

)
.

(E.8)

Intriguingly, these corrections O(m2
h/µ

2) and O(m2
W /µ

2) actually cancel in the sum (E.4)

yielding

[MA(1)(µ2, t = 0)]1 +
∑
si

Res

[
[MA(s, t = 0)]1

(s− µ2)2

]
=

3− a2

v2
(E.9)

as exact result. From eq. (E.9) one obtains the sum rule (5.5) that, after subtraction of

the contributions form the big circle at infinity for finite g � 1, gives eq. (5.7). Notice that

eq. (E.9), i.e. the left-hand side of the sum rule (5.5), does not depend explicitly on µ2,

whereas the right-hand side does. Therefore, our sum rule (5.7) captures information about

the radiative corrections, i.e. about the running of the couplings and their β-functions.

Analogously, one can consider the other two once-subtracted dispersion relations (2.27)

0 = [MA(1)(µ2, t = 0)]2,3 +
∑
si

Res

[
[MA(s, t = 0)]2,3

(s− µ2)2

]

=
2

π

∫ ∞
4m2

W

ds
2(µ2 − 2m2

W )(s− 2m2
W )s

(s− µ2)2(s− 4m2
W + µ2)2

√
1−

4m2
W

s
[Mσtot(s)]2,3 .

(E.10)
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As for the previous sum rule, the left-hand side turns out to be µ2 independent within

our tree-level calculation, and vanishing. At the crossing symmetric point µ2 = 2m2
W , the

residues and [MA(1)]2,3 on the left-hand side are separately vanishing

A(1)
5 (2m2

W ) +A(1)
3 (2m2

W ) = 0 , A(1)
1 (2m2

W ) + 2A(1)
5 (2m2

W ) = 0 , (E.11)

as expected by crossing symmetry, and confirmed by eq. (E.10). For the other values of

µ2, the amplitudes in eqs.(E.2) still nicely combine in simple expressions:

A(1)
5 (µ2) +A(1)

3 (µ2) =
216m6

W

v2µ2

(µ2 − 2m2
W )

(µ4 − 4m2
Wµ

2 + 3m4
W )2

, (E.12a)

A(1)
1 (µ2) + 2A(1)

5 (µ2) =
12a2

v2

(µ2 − 2m2
W )(m2

h − 2m2
W )3

(m2
h − µ2)2(m2

h − 4m2
W + µ2)2

. (E.12b)

The calculation performed with the GBs π on the external legs is totally analogous,

up to the replacement As(s, t, u)→ Aπ(s, t, u) and Au(u, t, s)→ Aπ(u, t, s) where

Aπ(s, t, u) =
s

v2
− s2a2

v2(s−m2
h)

+
g2

4

u− s
t−m2

W

− g2

4

s− t
u−m2

W

. (E.13)
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