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1 Introduction

Effective field theories (EFTs) are a key tool in many areas of theoretical physics: the restriction
to the relevant degrees of freedom simplifies calculations that would be difficult or even
impossible to perform based on the underlying ultraviolet (UV) theory. The explicit separation
of scales also enables the resummation of large logarithms, thus improving perturbation
theory. The interest in EFTs describing the low-energy effects of heavy particles beyond the
Standard Model (SM) has considerably increased due to the absence of signals of new physics
in direct collider searches. Under the assumption of linear realization of the electroweak
symmetry, the appropriate EFT at energies above the electroweak scale is the SMEFT [1, 2].
The low-energy EFT below the electroweak scale (LEFT) is obtained by integrating out the
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heavy SM particles.1 The operator bases of the SMEFT [1, 2, 15–20] and LEFT [13, 21–23]
are known to high dimensions and the complete one-loop renormalization of the two theories
up to dimension six was performed in refs. [24–27]. The renormalization beyond one loop is
partially known, for some sectors of the LEFT even up to four loops [28–44]. Some results
for the SMEFT renormalization beyond dimension six have been obtained as well [16, 45–56].
The status of SMEFT and LEFT was discussed in recent reviews [57, 58].

In order to elevate these EFTs to next-to-leading-logarithmic (NLL) accuracy, match-
ing and matrix elements at one loop and renormalization-group equations (RGEs) at two
loops are required. The one-loop matching between SMEFT and LEFT was computed in
ref. [14] and automated tools enable the one-loop matching of UV models to SMEFT either
diagrammatically or using functional methods [59–63], while a broad effort is ongoing to
compute the complete two-loop RGEs [61, 64–77]. At NLL, scheme dependences start to
show up, which need to cancel between finite one-loop terms in matching contributions and
matrix elements and the two-loop RGEs when NLL resummation is performed. In ref. [71],
we advocated the use of the ’t Hooft-Veltman (HV) scheme [78] for the LEFT starting at
NLL. It is the only scheme proven to be algebraically consistent to all loop orders [79–81]
and sometimes it is also called Breitenlohner-Maison/’t Hooft-Veltman (BMHV) scheme.2

It comes with the difficulty of an extended evanescent sector and that the restoration of
symmetries broken by the regulator requires finite counterterms [85–93]. Our NLL scheme
for the LEFT avoids a spurious breaking of chiral symmetry and separates the physical and
evanescent sectors by including such finite renormalizations [71].

Although the computation of higher-order RGEs is well established, the completion
of this program for SMEFT and LEFT is computationally demanding due to the large
number of effective operators. In addition, the dimensional split in the HV scheme typically
leads to a very large number of terms in intermediate results, necessitating an efficient
algorithm and a high degree of automation for these calculations. Some aspects of the
computations can be simplified by making use of the background-field method [94, 95], which
in the LEFT preserves manifest gauge invariance. In the background-field method, gauge-
variant nuisance operators appear in the renormalization of quantum-field sub-amplitudes
as dictated by BRST symmetry [96–100]. For this reason, in previously used approaches
the advantages of the background-field method were partially lost at higher loop orders
and many calculations were instead performed in standard Rξ gauges. We discuss two
methods that avoid the explicit construction of gauge-variant nuisance operators, even when
computing off shell: the first is based on the well-established local R-operation, which
automatically subtracts all sub-divergences from a given two-loop diagram. As an alternative,
we introduce a variant of the infrared (IR) rearrangement, which separates UV and IR

1The LEFT does not make any assumptions about electroweak symmetry breaking, hence it is also
the correct low-energy theory in case of a nonlinear realization of the electroweak symmetry [3–9]. In a
linear realization there exist additional constraints on LEFT operators [10–12], encoded in the matching
conditions [13, 14].

2The simpler naive dimensional regularization (NDR) scheme in general leads to ill-defined γ5-odd traces,
see ref. [82] for a review. As an alternative to the HV scheme, one could give up the cyclicity of the trace [83, 84],
but we are not aware of a proof of the consistency of such a prescription that applies to non-renormalizable
theories.
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divergences without the need to introduce auxiliary-mass counterterms [39, 91, 101–104].
When combined with the background-field method, we show that the correct renormalization
of the non-redundant physical operators can be obtained from an off-shell calculation without
computing counterterm diagrams with insertions of redundant operators. This method
simplifies alternative approaches based on a global renormalization that require the explicit
construction of gauge-variant operators and their insertion into counterterm diagrams. We
compare this method with the local R-operation and find full agreement.

The article is structured as follows. In section 2, we discuss the role of nuisance operators
in gauge theories, both gauge-invariant redundant operators that vanish by the equations of
motion (EOM) and gauge-variant (class-IIb) nuisance operators, using the examples of QED
and QCD augmented by dimension-five operators. In section 3, we discuss two variants of
the IR rearrangement and we show that the expansion of loop integrands allows us to ignore
redundant operators. In section 4, we provide details on our calculation of the two-loop RGEs
for the LEFT at dimension five. Explicit results for the two-loop counterterms of one-flavor
QED and QCD with CP -even dimension-five operators are given in appendix A, whereas the
RGEs for the full LEFT at dimension 5 in the HV scheme can be found in appendix B.

2 Nuisance operators in gauge theories

In this section, we discuss some well-known properties of so-called nuisance operators. These
operators do not contribute to observables and hence they are redundant. In section 2.1,
we review the different types of operators in gauge theories. In section 2.2, we illustrate
the case of gauge-invariant operators that vanish by the EOM with an abelian example,
recalling the connection to field redefinitions and the reason why the redundant operators
do not contribute to the S-matrix. In section 2.3, we extend the discussion to BRST-exact
gauge-variant operators. We will later use these properties to show how the counterterms
of physical operators can be obtained from an off-shell calculation without insertion of
redundant operators.

2.1 Nuisance operators, the background-field method, and sub-divergences

The renormalization of gauge theories in general requires the following operators [96–99].

• class I: physical operators, i.e., gauge-invariant operators that do not vanish by the EOM,

• class IIa: gauge-invariant nuisance operators that vanish by the EOM,

• class IIb: gauge-variant, BRST-exact nuisance operators.

The nuisance operators of class IIb can be constructed as BRST variations of operators with
ghost number −1 [99]. They consist of gauge-variant operators that contain ghost terms or
vanish by the EOM. In the background-field method [94, 95], the one-particle-irreducible
(1PI) effective action can be computed without fixing the gauge of the background fields,
hence manifest gauge invariance is preserved with respect to background-gauge transforma-
tions. Green’s functions of background fields do not require class-IIb operators as overall
counterterms. However, sub-diagrams are given by Green’s functions of quantum fields: the
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cancellation of sub-divergences therefore in general still requires the introduction of class-IIb
operators [100, 101]. The explicit construction of these nuisance operators can be avoided
when using the local R-operation [105–108], which however typically leads to a large number
of sub-diagrams that need to be computed.

In addition to using the local R-operation, in section 3 we will present a variant of the
IR rearrangement that allows us to disregard class-II nuisance operators in sub-diagrams for
the calculation of the two-loop counterterms in the physical sector. Although this procedure
is based on the observation that nuisance operators do not contribute to the S-matrix, the
calculation can be done off shell and does not require a transformation to the mass basis.

2.2 Gauge-invariant redundant operators

We consider an EFT consisting of single-flavor QED augmented by CP -even dimension-five
operators,

L[ψ, J ] = −1
4FµνF

µν + ψ̄ (i /D −m)ψ + L ψ̄ σµνF
µνψ +R ψ̄ (i /D −m)2ψ

+ J̄ψ + ψ̄J + JµA
µ + Lgf , (2.1)

where the argument ψ denotes collectively the fields ψ, ψ̄, and Aµ, and J stands for the
corresponding external sources J̄ , J , and Jµ. We provide the two-loop counterterms and
anomalous dimensions for eq. (2.1) in appendix A.1. The covariant derivative is Dµ =
∂µ + ieqAµ, the field-strength tensor is given by Fµν = ∂µAν − ∂νAµ, and the gauge-fixing
Lagrangian is

Lgf = −
1
2ξ (∂

µAµ)2 , (2.2)

which does not lead to interaction vertices. In QED, ghosts decouple and can be ignored.
Therefore, in the present case no gauge-variant class-IIb counterterms are generated. The
class-IIa EOM operator with coefficient R in eq. (2.1) is redundant, as it can be removed
by a field redefinition.

Green’s functions are obtained from the generating functional

Z[J ] = eiW [J ] =
∫
DψDψ̄DA exp

{
i

∫
dDxL[ψ, J ]

}
(2.3)

by taking functional derivatives with respect to the sources,

⟨ψ(x1)ψ̄(x2)Aµ(x3) · · · ⟩ =
1

Z[0]
−iδ

δJ̄(x1)
iδ

δJ(x2)
−iδ

δJµ(x3)
· · · Z[J ]

∣∣∣∣
J=0

. (2.4)

Field redefinitions, such as those that remove redundant operators, simply reparametrize
the path integral Z[J ], and thus leave Z[J ] manifestly invariant.3 Therefore, the Green’s
functions of the original fields can be computed with a redefined Lagrangian, provided that
the transformation of the source terms is taken into account [109, 110]. Explicitly, under
a field redefinition

ψ = F [ψ̂] , (2.5)
3In dimensional regularization, the Jacobian is equal to identity for local field redefinitions.
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the Green’s functions of the original fields computed with the original Lagrangian

⟨ψ · · · eiS[ψ]⟩ = ⟨F [ψ̂] · · · eiS[F [ψ̂]]⟩ (2.6)

are the same as Green’s functions of the original fields computed with the redefined Lagrangian,
which in terms of the new fields correspond to Green’s functions of operators F [ψ̂].

Considering the QED example, we make a field redefinition to remove the redundant
operator,

ψ = F [ψ̂] = ψ̂ − R

2 (i
/D −m)ψ̂, (2.7)

keeping track of the source terms,

L[ψ, J ] = L[F [ψ̂], J ] = L′[ψ̂, J ]

= L[ψ̂, J ] −R ˆ̄ψ (i /D −m)2ψ̂ − R

2
ˆ̄ψ (i /D −m)J − R

2 J̄ (i /D −m)ψ̂ +O(dim-6) .

(2.8)

The redundant operator drops in the difference of the first two terms, but additional source
terms have arisen. We can perform another field redefinition

ψ̂ = ψ̃ + R

2 J , (2.9)

which brings them back into canonical form,

L′′[ψ̃, J ] = L[ψ̃, J ] −R ˜̄ψ (i /D −m)2ψ̃ +R J̄J +O(dim-6) , (2.10)

but introduces a quadratic source term R J̄J . When one takes functional derivatives with
respect to the sources to calculate the two-point function in momentum space, this term
gives a constant contribution proportional to R. Upon amputation of external legs, such a
contribution is proportional to EOM terms /p −m and thus vanishes for on-shell external
states. In an off-shell renormalization, it corresponds to an overall contact contribution
of the EOM operator.
L′′ must give the same off-shell Green’s function as L, since during the field redefinitions

we have kept track of the source terms. When renormalizing the theory at some loop order
l, a given subdivergence-subtracted connected graph has some remaining local divergence.
The same divergence is found with either L or L′′. But L′′ has no EOM operator, only the
R J̄J term, which has no effect on loop diagrams. Therefore, when using L′′ there are no
insertions of the redundant operator into loop diagrams; there is only the contact term at
tree level, which determines R at l loops.

Putting everything together, eq. (2.10) states that, using field redefinitions, we can
remove the redundant operator R ψ̄ (i /D −m)2ψ at the cost of introducting a term R J̄J ,
which does not enter loops. The procedure must leave Z[J ] (which generates all diagrams)
and W [J ] (which generates connected diagrams) invariant, since the field redefinition is
merely a change of variables in the path integral. Renormalization calculations are usually
performed in terms of the 1PI effective action Γ[J ], which is the Legendre transform of W [J ].
It turns out that in general Γ[J ] does change, since non-linear field redefinitions can turn a
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1PI diagram into a one-particle-reducible diagram and vice versa. Nevertheless, we argue
that leaving out redundant operators in Γ[J ] is still possible, see section 3.3.

Having stated the general argument, we would like to explicitly test field-redefinition
invariance for W [J ] in a toy calculation for connected diagrams. The result that we find
is that, as expected, connected Green’s functions agree when using L versus L′′ up to the
two-loop level covered by our check. Starting at tree level, in the following we briefly discuss
this check. Using crosses for external currents, with L′′ we find

= −iR amp.−−−→ iR(/p−m)2 , (2.11)

where the arrow means amputation, i.e. multiplication with (/p−m)/i from left and right.
The (−1) in the vertex rule of the contact term is due to the Grassmann algebra,

δ

δJ̄

δ

δJ
RJ̄J = −R . (2.12)

The same result is found using L, where at tree level we obtain

= i

/p−m
iR(/p−m)2 i

/p−m
amp.−−−→ iR(/p−m)2 , (2.13)

with the box denoting insertions of effective operators, which in this case means an insertion
of R ψ̄ (i /D −m)2ψ. At one loop, the diagrams obtained from L′′ are

+ + . (2.14)

There are no two-point insertions from L′′, since the R term contributes only at tree level.
When working with L there are three more diagrams with two-point insertions (which can
be on external legs)

+ + . (2.15)

After adding up all diagrams, we find agreement for the ψ propagator at one loop. When
assuming the redundant operator to be generated through renormalization, so R ∼ O(1-loop),
the two-loop propagator will automatically agree, since it is calculated from interactions
with R = 0 (so vertices between L and L′′ agree). This verifies that up to the two-loop
order, the ψ propagator does not depend on wether one uses L or L′′. We performed the
same check for the ψψ̄A vertex.

2.3 Gauge-variant sub-divergences

In the case of non-abelian gauge theories, we encounter class-IIb nuisance operators, which
are not gauge invariant but only constrained by BRST symmetry. As an illustration, we use
single-flavor QCD augmented by dimension-five operators [101]

L[ψ, J ] = −1
4G

A
µνG

Aµν + ψ̄ (i /D −m)ψ + L ψ̄ σµνG
µνψ

+R1 ψ̄ (i /D −m)2ψ +R2

(
ψ̄ /Q(i /D −m)ψ − ψ̄(i

←−
/D +m)/Qψ

)
+ Lgf + Lgh

+ J̄ψ + ψ̄J + JAµ Q
Aµ , (2.16)

– 6 –



J
H
E
P
0
6
(
2
0
2
5
)
0
0
7

where Dµ = ∂µ + igGµ, Gµ = tAGAµ , Gµν = tAGAµν , and the SU(Nc) gauge field is split
into background and quantum fields

GAµ = BA
µ +QAµ . (2.17)

The gauge-fixing term in the background-field method is

Lgf = −
1
2ξ (G

A)2 , GA = ∂µQ
µ − gfABCBB

µ Q
Cµ (2.18)

and Lgh is the ghost Lagrangian. The form of the single gauge-variant nuisance operator with
coefficient R2 is restricted by BRST and CP symmetry, hermiticity, as well as by background-
gauge invariance. Both redundant operators can be removed by a field redefinition, which
modifies the source terms according to

L′[ψ, J ] = −1
4G

A
µνG

Aµν + ψ̄ (i /D −m)ψ + L ψ̄ σµνG
µνψ

+ Lgf + Lgh

+ J̄(1−R2 /Q)ψ + ψ̄(1−R2 /Q)J +R1J̄J +O(dim-6) . (2.19)

In contrast to the abelian case, the sources couple non-linearly to the new fields, hence
after the field redefinition the original Green’s functions correspond to Green’s functions of
composite operators. Since any interpolating field with the correct quantum numbers can
be used in the LSZ formula, this field redefinition shows that both the gauge-invariant and
gauge-variant nuisance operators only lead to effects that are compensated by external-leg
corrections, hence they do not affect the S-matrix.

We compute the off-shell renormalization of this EFT at two loops in the modified
minimal-subtraction (MS) scheme. The complete results for the renormalization constants
and RGEs up to two loops are given in appendix A.2. We will use it in the next section as
a test case of different variants of the IR rearrangement. In particular, we will show that
redundant operators do not only leave the S-matrix invariant, but that there is also a way to
obtain the correct RGEs for the coefficients of physical operators from an off-shell calculation
without considering the insertion of redundant class-II operators.

3 Expansion of loop integrands and infrared rearrangement

Although EFTs contain a tower of higher-dimension operators, they are renormalizable
order by order in the power counting, which is most transparent when using dimensional
regularization. As in ordinary renormalizable theories, the counterterms for local EFTs are
polynomials in masses and momenta, and can be determined recursively at each loop order
after the cancellation of non-local sub-divergences of lower loop orders. This cancellation can
be achieved globally at the level of Green’s functions by computing separately the diagrams of
lower loop order with counterterm insertions, or at the level of individual Feynman diagrams by
making use of the R-operation. In section 3.1, we briefly discuss these methods as well as the
Taylor expansion of integrands before integration, which introduces spurious IR divergences.
In sections 3.2 and 3.3, we explain two different approaches to treat these IR divergences.
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3.1 Renormalization, R-operation, and expansion of integrands

In the approach of global renormalization, counterterms are identified with terms in the
Lagrangian and constructed at the level of Green’s function. Counterterm graphs, which
cancel sub-divergences, are most conveniently obtained through shifts in the couplings
C 7→ C + δC and multiplication with wave-function renormalization factors, which are
performed after the perturbative expansion. The perturbative expansion is thus carried out
in terms of the bare parameters. The counterterms that need to be explicitly inserted into
counterterm diagrams are extracted from lower-loop Green’s functions of both background
and quantum fields. While the identification with terms in the Lagrangian provides a strong
consistency check across different correlators, it can be cumbersome to perform these steps,
in particular because the counterterms to sub-graphs with quantum fields involve class-IIb
operators. The need to construct a potentially large number of gauge-variant operators (see,
e.g., ref. [111]) and to determine their counterterms is in contrast to the original motivation
of the background-field method.

These complications are avoided in the R̄-operation [106–108, 112], which can be employed
to automatically subtract sub-divergences from individual graphs.4 It does so by identifying
superficially divergent subgraphs and adding countergraphs. The countergraphs are obtained
from the original graph by contracting the subgraph into a point and insertion of a counterterm,
which is simply minus the divergence of R̄ applied to the subgraph itself.

At the two-loop order there are two generic topologies of Feynman diagrams contributing
to 1PI Green’s functions: the sunset and the figure-eight topologies with three and two
possible sub-divergences, respectively. Schematically, the action of R̄ is

R̄

1
2
3

=
1
2
3

+
1

+
2

+
3
,

R̄

1 2

=
1 2

+
1

+
2

, (3.1)

where the graphs can have any number of external lines (which are not drawn) and arbitrary
particles in the loops (all of which are drawn as solid lines). The crosses denote insertions
of counterterms into the contracted original graphs, labeled by the propagator chain i with
i = 1, 2, 3. These chains contain loop momenta k1, k2, and k3 = k1 + k2, respectively. While
the sum of one-loop countergraphs to all two-loop diagrams reproduces the sum of one-loop
counterterm diagrams (including wave-function renormalization) in a global renormalization,
the R̄-operation splits up the counterterm contributions in such a way that each two-loop
diagram together with its countergraphs gives a local divergence. In the R̄-operation, all
counterterms including evanescent operators as well as class-II operators, are automatically
generated from the divergent subgraphs, and inserted back into countergraphs. The R̄-
operation is therefore simpler to use than global renormalization. The drawback is that there
is no direct consistency check on counterterms.

4R̄ only subtracts subdivergences, giving the local divergence. R without the bar also adds the overall
local counterterm, leading to a finite value.
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We are interested in the UV divergent parts of eq. (3.1), which is a polynomial in masses
and external momenta of a degree limited by the superficial degree of divergence of the graph.
Therefore, we can apply a Taylor expansion directly at the level of the Feynman integrands,
denoted by an operator T , without changing the overall UV poles,

R̄

1
2
3

= TR̄

1
2
3
− (spurious IR poles) + finite . (3.2)

Since we consider off-shell 1PI Green’s functions, the original diagram has no IR singularities.
The expansion of the integrands renders all integrals scaleless, so we can directly set to zero
any integral which is not overall logarithmically divergent.5 The expansion turns the original
non-local finite parts of the subdivergence-subtracted graph into spurious IR divergences,
while leaving the overall UV divergence unaltered. The original non-local sub-divergences
of the two-loop graph become local as well and are both UV and IR divergent. However,
non-local divergences are subtracted by R̄ before the Taylor expansion. The same cancellation
happens after expansion, i.e., R̄ cancels terms that are at the same time UV and IR divergent
and leaves only terms that are either UV or IR divergent. In order to determine the UV
counterterms, we need to drop the IR divergences. In practice, the separation of UV and
IR divergences is non-trivial if both are dimensionally regulated. This problem is solved by
so-called IR rearrangement, which can be performed in many different ways, see, e.g., ref. [104].

3.2 Auxiliary mass as IR regulator

3.2.1 Separation of UV and IR singularities

Our first method for extracting UV poles is along the lines of refs. [75, 91]. It is based on
the introduction of an auxiliary dummy mass m as an IR regulator [102], which is inserted
in all propagator denominators after Taylor expansion and after dropping integrals that are
not overall log-divergent. We call this operation m̂. Application of m̂ leaves the UV poles
unchanged, as they stem from logarithmically divergent integrals, but it regulates the IR
divergences and replaces them by logarithms of m. Putting everything together, we have

R̄

1
2
3

= m̂ T R̄

1
2
3
− (logs of m) + finite

= m̂ T

1
2
3

+ m̂ T

1

+ m̂ T

2

+ m̂ T
3
− (logs of m) + finite . (3.3)

It is crucial that the exact same m̂ and T operators be used across all terms in eq. (3.3),
especially since different natural choices for m̂ exist. E.g., for fermionic propagators one
could define

m̂ : i

/k
7→ i

/k −m
= i(/k +m)
k2 −m2 or instead m̂ : i

/k
= i/k

k2 7→
i/k

k2 −m2 . (3.4)

5In the auxiliary mass method this step affects the deformed theory, as explained in section 3.2.2.
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We choose the latter definition of m̂, but both are equally valid, as long as they are used
consistently across all contributions.

A sublety of the method concerns cancellations of loop momenta k2. Generally terms
k2/k2, which can appear after Taylor expansion, should be simplified to speed up the
calculation. But cancelling before application of m̂ gives a different result than cancelling
afterwards, with the difference being terms proportional to the dummy mass,

k2

k2 −
k2

k2 −m2 = − m2

k2 −m2 . (3.5)

In other words, cancellation does not commute with m̂. Again, different natural choices for
cancellation prescriptions exist. Here, we apply m̂ directly after Taylor expansion, without
any prior cancellations, which is a simple prescription that ensures a consistent definition of m̂
across all contributions. Cancellations are then carried out against denominators containing m.

Finally we end up with two-loop vacuum integrals with a single scale m. Due to the
absence of external momenta in denominators, the tensor decomposition is simple. The result
is thus written in terms of scalar integrals of the form

I(n1, n2, n3) =
∫

dDk1
(2π)D

dDk2
(2π)D

1
(k2

1 −m2)n1(k2
2 −m2)n2(k2

3 −m2)n3
, (3.6)

which can be reduced via recursion relations to the well-known case I(1, 1, 1) [102].

3.2.2 Theory deformation due to m̂

Application of m̂ T changes individual terms in eq. (3.3) but leaves the overall UV divergence
of the sum invariant. The individual terms change because m̂ introduces a dummy mass.
At the level of the Lagrangian these terms correspond to a theory deformation ∆Lm by
additional counterterms proportional to powers of m. Such counterterms can violate gauge or
even BRST symmetry. When working in global renormalization with a dummy mass, these
counterterms need to be constructed and determined at lower loop levels, see, e.g., ref. [103].

In the R̄-operation, ∆Lm terms are again obtained and inserted automatically, which
renders explicit construction and determination unnecessary. In the end, eq. (3.3) guarantees
that there is no effect on the UV-divergence of the subdivergence-subtracted two-loop graph
R̄G. The result found with the dummy-mass method corresponds to the true result for the
UV divergence of R̄G, which is independent of ∆Lm.

As mentioned in section 3.1 we drop power-divergent two-loop integrals from our calcula-
tion (while retaining power-divergent one-loop integrals which lead to m0 terms). Since after
Taylor expansion the only available scale is m, power-divergent integrals would contribute
only to m-dependent two-loop counterterms. Therefore, this step drops ∆Lm at the two-loop
level, while leaving our physical theory of interest invariant.

3.2.3 Scheme definitions and the R-operation

The R-operation must be adapted to the specific definitions of the employed scheme. In
our work, this means that R has to account for (A) finite renormalizations and (B) for the
definition of the complete operator basis, including evanescent operators.
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We discuss issue (A) first. In MS, R̄ applied to a two-loop graph subtracts the sub-
divergences by inserting the divergent part of the subgraphs into countergraphs. Since we
are not using MS in the LEFT (see section 4), we need to modify R̄ to account for finite
renormalizations. Let us define R as the MS operator and Rf as the version in our scheme with
divergent and finite parts of renormalization constants, denoted as δC = δCdiv+δCfin. Putting
loop orders in superscripts, the renormalized value of a two-loop diagram in our scheme is

Rf = + δC(1) + . . .+
(
δC(2) + (δC(1))2

)
= +

(
δC

(1)
div + δC

(1)
fin

)
+ . . .+

(
δC(2) + (C(1)

div + C
(1)
fin )2

)
= R̄ + δC

(1)
fin + . . .+

(
δC

(2)
div + C

(1)
divC

(1)
fin

)
+ finite . (3.7)

In the last equality we have written the result in terms of the MS R̄ operator, which suggests
a simple way of dealing with finite renormalizations in context of the R-operation: to find
the result in our scheme, we apply the MS operator R̄, which is easier to implement and
produces the first term. In the second term, only the divergent part of the one-loop diagram
contributes, since it multiplies a finite counterterm δC

(1)
fin . The diagram can be replaced with

the negative of the respective tree-level diagram, with δC
(1)
div inserted. Thus, we add the

effects of finite renormalizations separately, as these effects can be obtained from the one-loop
counterterms. We perform this last step globally at the level of the Green’s functions.

Concerning issue (B), we point out that while in the R-operation the counterterms are
constructed automatically, they still need to match the definition of the evanescent operators.
Specifically, if a first evanescent scheme with a physical operator O and an evanescent
operator E is related to a second scheme by

O = O′ , E = E ′ + εO′ , (3.8)

an MS subtraction in the first scheme
a

ε
O + b

ε
E =

(
a

ε
+ b

)
O′ + b

ε
E ′ (3.9)

does not correspond to MS in the second scheme. Since in the R-operation one usually
does not explicitly map the counterterms to operators, one has to be careful to apply the
subtractions in agreement with the operator definitions. In the LEFT, this becomes relevant
at dimension six, as we will discuss in an upcoming publication [113].

3.3 Dimensional regularization of IR singularities

3.3.1 Separation of UV and IR singularities

The main goal of the IR rearrangement is to disentangle UV from IR singularities in eq. (3.2),
i.e., in integrals obtained by a Taylor expansion of the integrands before integration. In pure
dimensional regularization in D = 4− 2ε dimensions, both singularities are treated by the
same regulator ε, hence the difficulty consists in distinguishing εUV from εIR. The method
described in section 3.2 circumvents the complication by introducing by hand the auxiliary
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mass as an alternative IR regulator. This changes the theory and in particular the UV
sub-divergences at lower loop levels, however without affecting the overall UV divergences. In
the following, we present a new variant of the IR rearrangement that does not modify the UV
structure at all, but rather achieves the IR rearrangement by separating the UV-divergent
from IR-divergent contributions in eq. (3.2) and thereby allows us to distinguish εUV from
εIR. We find this approach particularly useful in combination with global renormalization
and the background-field method. Parts of our method have been presented in appendix A
of ref. [69]. As many other existing variants, it is based on the partial-fraction relation called
tadpole decomposition, which for scalar propagators reads [101, 102]:

DM (k + p) = Dm(k)−Dm(k)
(
D−1
M (k + p)−D−1

m (k)
)
DM (k + p)

= Dm(k)− iDm(k)
(
M2 −m2 − p2 − 2k · p

)
DM (k + p) , (3.10)

where m is an auxiliary dummy mass, k denotes a generic loop momentum and p an external
momentum, and where

DM (p) = i

p2 −M2 . (3.11)

In the case of fermionic propagators with generic non-Hermitian and non-diagonal mass
matrices in flavor space, the decomposition reads [71]

Sψ(k + p) = Sm(k)− iSm(k)
(
MψPL +M †

ψPR −m− /p
)
Sψ(k + p) . (3.12)

where

Sψ(p) = i
(
/p−MψPL −M †

ψPR
)−1

, Sm(p) = i
(
/p−m

)−1
=
i(/p+m)
p2 −m2 . (3.13)

For a two-loop diagram with loop momenta k1, k2, and k3 = k1 +k2, we also use the following
disentanglement identities [69]

Sψ(k3 + p) = Sm(k1)− iSm(k1)
(
MψPL +M †

ψPR −m− /p− /k2

)
Sψ(k3 + p) ,

Sψ(k3 + p) = Sm(k2)− iSm(k2)
(
MψPL +M †

ψPR −m− /p− /k1

)
Sψ(k3 + p) ,

Sψ(k1 + p) = Sm(−k2)− iSm(−k2)
(
MψPL +M †

ψPR −m− /p− /k3

)
Sψ(k1 + p) . (3.14)

Green’s functions at two-loop accuracy are obtained from the sum of two-loop diagrams,
one-loop diagrams with an insertion of a one-loop counterterm (or a one-loop wave-function
renormalization factor), as well as tree-level diagrams with an insertion of a two-loop counter-
term or two one-loop counterterms (or wave-function factors). At the level of amplitudes,
we denote this by

iANNLO = iA2-loop + iA1-loop,ct(1) + iAct(2) . (3.15)

In order to extract the RGEs, we are interested in the 1/ε divergence of the two-loop
counterterms as well as the one-loop counterterms in case of finite renormalizations, see
section 4. In a global renormalization, the counterterm is determined by calculating the
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divergences of the sum of all two-loop diagrams and all the one-loop diagrams with counterterm
insertion. While these two contributions are separately non-local, the sum of the two needs
to be a polynomial in masses and momenta.

To start the discussion of our IR rearrangement procedure, we consider the application
of tadpole decompositions (3.10) and (3.12) and disentanglement identities (3.14) before
any Taylor expansion, i.e., the decomposition consists of the application of exact identities.
Following the algorithm described in appendix A of ref. [69], these relations allow us to split
each two-loop diagram into a sum of massive divergent two-loop tadpole (vacuum) integrals,
products of two one-loop diagrams, and UV-finite terms, which can be discarded. Next, we
apply the tadpole decomposition both in the product of two one-loop diagrams as well as
the one-loop counterterm diagrams, schematically:

ANNLO = A2-loop
tadpole +A

1-loop
A ×A1-loop

B +A1-loop
C ×Act(1) +Act(2) + finite

= A2-loop
tadpole +

(
A1-loop
A,tadpole +A

1-loop
A,finite

)
×

(
A1-loop
B,tadpole +A

1-loop
B,finite

)
+

(
A1-loop
C,tadpole +A

1-loop
C,finite

)
×Act(1) +Act(2) + finite . (3.16)

We split off the UV divergences as follows:

A2-loop
tadpole =

N
(2,2)
tadpole
ε2 +

N
(2,1)
tadpole
ε

+ finite ,

A1-loop
tadpole =

N
(1,1)
tadpole
ε

+A1-loop
tadpole,finite ,

Act(2) = N
(2,2)
ct
ε2 + N

(2,1)
ct
ε

,

Act(1) = N
(1,1)
ct
ε

, (3.17)

which results in

N
(2,2)
ct = −N (2,2)

tadpole −N
(1,1)
A,tadpole ×N

(1,1)
B,tadpole −N

(1,1)
C,tadpole ×N

(1,1)
ct ,

N
(2,1)
ct = −N (2,1)

pure tadpoles −N
(2,1)
rest , (3.18)

where

N
(2,1)
pure tadpoles = N

(2,1)
tadpole +N

(1,1)
A,tadpole ×A

1-loop
B,tadpole,finite +N

(1,1)
B,tadpole ×A

1-loop
A,tadpole,finite

+N
(1,1)
ct ×A1-loop

C,tadpole,finite ,

N
(2,1)
rest = N

(1,1)
A,tadpole ×A

1-loop
B,finite +N

(1,1)
B,tadpole ×A

1-loop
A,finite +N

(1,1)
ct ×A1-loop

C,finite . (3.19)

The counterterm N
(2,1)
ct is a polynomial in the physical masses and momenta. N (2,1)

pure tadpoles is
already manifestly a polynomial in the physical masses and momenta, but it also depends
on the auxiliary dummy-mass parameter m introduced by the tadpole decomposition. It
follows that also N (2,1)

rest is a polynomial in the physical masses and momenta, i.e., non-local
(logarithmic) contributions need to cancel between the different terms in N

(2,1)
rest . Since N (2,1)

rest
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is given by finite integrals, it must be a rational function of m and the same then applies to
N

(2,1)
pure tadpoles, because the sum of N (2,1)

pure tadpoles and N
(2,1)
rest is independent of m.

An important simplification of the calculation results from the fact that the integrands
of N (2,1)

rest can be expanded in all the physical masses and momenta before integration: this
is allowed provided that no overall IR divergences are generated. Without expansion, IR
divergences are manifestly absent, or naturally regulated by the masses and momenta. Terms
resulting in IR divergences manifest themselves as singularities in the physical scales. While
individual integrals do contain such singularities, they cancel in the sum of all integrals
in N

(2,1)
rest , which is a polynomial in the physical scales. Likewise, upon expansion the IR

divergences have to cancel in N
(2,1)
rest and expanding the integrands before performing the

loop integral does not change the result for N (2,1)
rest . This works even if IR divergences in the

expanded N (2,1)
rest are regulated dimensionally, provided that no εUV-dependence is erroneously

turned into an εIR-dependence. The correct results are obtained if in N (2,1)
rest one first performs

the Laurent expansion around εUV = 0 and evaluates the residues N (1,1) of the 1/εUV poles.
The contraction of these residues with the finite one-loop integrals can be performed before
applying the Taylor expansion. Since this expression is finite, one can remove the regulator,
i.e., the residues of the 1/εUV poles and all possible contractions are evaluated for D = 4.
In a final step, one continues the finite integrals again to D = 4− 2εIR dimensions, applies
a Taylor expansion of the integrands and performs all the remaining algebra, including the
tensor decomposition of the UV-finite one-loop integrals, with the regulator εIR.

Since the tadpole decompositions in this procedure are identities, they commute with
the Taylor expansion. The same results for the UV-divergences are obtained if the Taylor
expansion is performed in the very beginning, which simplifies further the entire computation.
As a result, the IR rearrangement takes the following form.

1. expand all integrands of two-loop diagrams and one-loop counterterm diagrams in
masses and external momenta

2. keep only overall log-divergent integrals

3. apply the two-loop tadpole decomposition and disentanglement identities to split the
scaleless two-loop integrals into massive divergent two-loop tadpoles, products of one-
loop integrals, and UV-finite integrals

4. drop UV-finite integrals

5. apply the one-loop tadpole decomposition to the product of one-loop diagrams as well
as the one-loop counterterm diagrams

6. drop UV-finite terms in the products of one-loop integrals

7. evaluate pure (two-loop and one-loop) tadpole contributions as usual

8. evaluate the residue of 1/εUV poles in N
(2,1)
rest , performing all possible contractions and

sending εUV → 0 in the residue

9. evaluate the final UV-finite one-loop integrals in D = 4− 2εIR dimensions, including
any potentially remaining tensor decomposition or integration-by-part reduction
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We checked that this procedure leads to the same results as the one of section 3.2 for the
theories discussed in sections 2.2 and 2.3. In contrast to the method with auxiliary-mass IR
regulator, no additional m-dependent counterterms are generated. The method also does not
rely on a specific uniform choice of momentum routing, hence it is straightforward to treat
two-loop diagrams and one-loop counterterm diagrams separately in a global renormalization.
This can lead to a reduction of the computational cost compared to the local R-operation.
We expect that the procedure can be generalized to higher loop orders, which we leave
for future work.

3.3.2 Omission of class-II operators

Using the described IR rearrangement within a global renormalization instead of the local
R-operation seems to reintroduce the need to consider class-II operators, in particular gauge-
variant class-IIb nuisance operators appearing as sub-divergences. However, it turns out
that the entire renormalization of the physical sector can be performed without considering
nuisance operators.

As discussed in section 2, redundant operators do not influence the calculation of S-matrix
elements: neglecting them would lead to incorrect 1PI Green’s functions, but the discussed
field redefinitions make clear that the modifications affect also the external-leg corrections in
such a way that they drop out upon amputation in the LSZ formula. Hence, it is common
practice to neglect redundant operators in the on-shell calculation of S-matrix elements.
While it is possible to renormalize the physical sector directly on shell, the computation of
S-matrix elements is in general more involved than the computation of the 1PI effective action.

In contrast to S-matrix elements, the situation is different in the calculation of the 1PI
effective action. In this case, the divergences arising in off-shell 1PI Green’s function need to
be mapped to the complete basis of the theory, including on-shell-redundant operators. In
the background-field method, this includes only correlators of background fields, which are
gauge invariant. However, this is only true for the highest considered loop level: in order to
cancel sub-divergences, one has to consider class-IIb operators as explained in section 2.1.
If one neglects the counterterms to redundant operators, one does not obtain the correct
off-shell 1PI Green’s function and the result will contain uncanceled sub-divergences, which
are non-local. A priori, it is not clear how these spurious non-local divergences could be
unambiguously mapped to the operator basis in a way that does not affect the physical sector.

The solution is provided by the procedure described in section 3.3.1. The Taylor expansion
turns the result manifestly into a polynomial in masses and momenta, which can always be
mapped onto the operator basis. The IR rearrangement splits UV divergences from spurious
IR singularities. In the sum of two-loop diagrams and one-loop counterterm diagrams, the
dependence on the dummy mass m drops out. If the full operator basis is included, also all
spurious IR singularities vanish in the UV-divergent part. IR singularities only remain in the
UV-finite part, which is split off by the IR rearrangement. If we do not include the full operator
basis, but neglect the insertion of redundant operators, the result for the UV-divergent part
of the 1PI effective action contains spurious IR singularities, i.e., terms proportional to
1/(εUV × εIR). However, due to the prior Taylor expansion, the result is still a polynomial in
masses and momenta that can be mapped onto the operator basis. Doing so, the spurious IR
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singularities reside in the unphysical sector of the theory, i.e., they affect the counterterms to
redundant operators as well as wave-function renormalization factors, which are not physical.
The counterterms of the coefficients of physical operators are not affected by the uncanceled
IR singularities and they are unaltered from the correct result of the full calculation. If it
were different, ignoring redundant operators would also affect the S-matrix, which can be
composed from vertices of the 1PI effective action inserted into tree-level topologies.

We have verified this procedure in the two-loop renormalization of the theories described in
sections 2.2 and 2.3. Indeed, using the IR rearrangement of section 3.3.1 we find that neglecting
the insertion of redundant operators only modifies the counterterms of the redundant operators
and wave-function renormalization factors, while leaving the physical counterterms unchanged,
which also fully agree with the results obtained with the R-operation.

The described method provides an efficient procedure to renormalize the physical sector
in an off-shell calculation. Using the background-field method, no gauge-variant class-IIb
operators need to be considered.

4 Renormalization-group equations of the LEFT at two loops

In this section, we discuss the two-loop RGEs of the LEFT up to dimension five in the
power counting. Our calculation is carried out in the scheme defined in ref. [71], which we
first briefly review in section 4.1. In section 4.2, we mention some details of the calculation.
We discuss a few aspects of our results in section 4.3, whereas the entire two-loop RGEs
are provided in appendix B.

4.1 Operator basis and scheme definition

The Lagrangian for the LEFT is

LLEFT = LQCD+QED + Lν +
∑
d≥5

∑
i

L
(d)
i O

(d)
i , (4.1)

with the leading-order terms

LQCD+QED = −1
4G

A
µνG

Aµν − 1
4FµνF

µν + θQCD
g2

32π2G
A
µνG̃

Aµν + θQED
e2

32π2FµνF̃
µν

+
∑

ψ=u,d,e
ψ
(
i /D −MψPL −M †

ψPR
)
ψ (4.2)

and covariant derivative Dµ = ∂µ + igTAGAµ + ieQAµ. The LEFT power counting is dictated
by the expansion parameter p/v or m/v, where v denotes the electroweak scale, p an external
momentum, and m a mass of the degrees of freedom in the theory. The effective operators
up to dimension five are given in table 1 (physical and on-shell redundant operators) and
table 2 (evanescent operators). We work with the basis defined in ref. [71]. Note that in
contrast to the sample theories in sections 2.2 and 2.3, the redundant operators are not
written in manifest EOM form, i.e., in our basis the actual class-IIa operators consist of linear
combinations of physical, on-shell redundant, and evanescent operators.

We splitGAµ into background and quantum gluons and implement the standard background-
field gauge fixing [94, 95]. The field-strength tensors and dual field-strength tensors for
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(νν)X + h.c.

Oνγ (νTLpCσ̄µννLr)Fµν

(LR)X + h.c.

Oeγ ēLpσ̄
µνeRr Fµν

Ouγ ūLpσ̄
µνuRr Fµν

Odγ d̄Lpσ̄
µνdRr Fµν

OuG ūLpσ̄
µνTAuRr G

A
µν

OdG d̄Lpσ̄
µνTAdRr G

A
µν

(νν)D2 + h.c.

O(5)
νD νTLpC(i/̄∂)2νLr

(LR)D2 + h.c.

O(5)
eD ēLp(i /̄D)2eRr

O(5)
uD ūLp(i /̄D)2uRr

O(5)
dD d̄Lp(i /̄D)2dRr

Table 1. Physical operators in the LEFT at dimension five (columns 1 and 2), as well as on-shell
redundant operators, which can be removed via field redefinitions (columns 3 and 4), reproduced from
ref. [71].

(νν)D + h.c.

EνD νTLpC(i/̂∂)νLr

(LR)D + h.c.

EeD ēLp(i /̂D)eRr

EuD ūLp(i /̂D)uRr

EdD d̄Lp(i /̂D)dRr

X2

Eγ FµνF
µν − FµνFµν

EG GAµνG
Aµν −GAµνGAµν

Eγ′ F̂µν F̂
µν

EG′ ĜAµνĜ
Aµν

X2

Eγ FµνF
µν − FµνFµν

EG GAµνG
Aµν −GAµνGAµν

Eγ′ F̂µν F̂
µν

EG′ ĜAµνĜ
Aµν

(LL)D2

ELνD ν̄Lp[(i/̂∂), (i/̄∂)]νLr

ELeD ēLp[(i /̂D), (i /̄D)]eLr

ELuD ūLp[(i /̂D), (i /̄D)]uLr

ELdD d̄Lp[(i /̂D), (i /̄D)]dLr

(RR)D2

EReD ēRp[(i /̂D), (i /̄D)]eRr

ERuD ūRp[(i /̂D), (i /̄D)]uRr

ERdD d̄Rp[(i /̂D), (i /̄D)]dRr

(νν)D2 + h.c.

ERLνD νTLpC(i/̂∂)(i/̂∂)νLr

(LR)D2 + h.c.

ELReD ēLp(i /̂D)(i /̂D)eRr

ELRuD ūLp(i /̂D)(i /̂D)uRr

ELRdD d̄Lp(i /̂D)(i /̂D)dRr

(LL)X

ELνγ (ν̄Lpiγ̂µγ̄ννLr)Fµν

ELeγ (ēLpiγ̂µγ̄νeLr)Fµν

ELuγ (ūLpiγ̂µγ̄νuLr)Fµν

ELdγ (d̄Lpiγ̂µγ̄νdLr)Fµν

ELuG (ūLpiγ̂µγ̄νTAuLr)GAµν

ELdG (d̄Lpiγ̂µγ̄νTAdLr)GAµν

(RR)X

EReγ (ēRpiγ̂µγ̄νeRr)Fµν

ERuγ (ūRpiγ̂µγ̄νuRr)Fµν

ERdγ (d̄Rpiγ̂µγ̄νdRr)Fµν

ERuG (ūRpiγ̂µγ̄νTAuRr)GAµν

ERdG (d̄Rpiγ̂µγ̄νTAdRr)GAµν

(νν)X + h.c.

ERLνγ (νTLpCσ̂µννLr)Fµν
(LR)X + h.c.

ELReγ (ēLpσ̂µνeRr)Fµν

ELRuγ (ūLpσ̂µνuRr)Fµν

ELRdγ (d̄Lpσ̂µνdRr)Fµν

ELRuG (ūLpσ̂µνTAuRr)GAµν

ELRdG (d̄Lpσ̂µνTAdRr)GAµν

Table 2. Evanescent operators in the LEFT at dimension four (first row) and five (second and third
row), reproduced from ref. [71].
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photons and gluons are

Fµν = ∂µAν − ∂νAµ , F̃µν = 1
2ϵ

µνλσFλσ ,

GAµν = ∂µG
A
ν − ∂νGAµ − gfABCGBµGCν , G̃Aµν = 1

2ϵ
µνλσGAλσ , (4.3)

with the Levi-Civita sign convention ϵ0123 = +1. For the definition of Lν and the remaining
conventions used we refer to ref. [71]. We work in D = 4− 2ε dimensions and we use the HV
scheme for γ5 [78]. Our operator basis defines effective operators from the physical basis over
four (instead of 4− 2ε) space-time dimensions, for instance the electron dipole operator is

L = Leγ
pr
ēLp σ̄

µν eRr Fµν + h.c. + . . . , (4.4)

with flavor indices p, r and the bar restricting the Lorentz indices to µ, ν ∈ {0, 1, 2, 3}. Using
a D-dimensional σµν instead corresponds to an evanescent shift, which is a scheme change
under which the one-loop RGE is invariant. The two-loop RGE however is not: in general,
it depends on the scheme, including the γ5 prescription, the operator definition, and the
renormalization conditions. In particular, it is affected by finite counterterms. In our scheme,
the parameters Xi of the theory are renormalized at one loop according to

Xi = µniε(Xr
i (µ) +Xct

i ), Xct
i = Xi,div +Xχ

i,fin +Xev
i,fin , (4.5)

where Xi,div cancel all one-loop divergences and in addition we define finite renormalizations
to take care of two effects: the compensation of evanescent-operator insertions through
Xev
i,fin, as well as the restoration of chiral symmetry in the spurion sense through Xχ

i,fin. Both
the divergent and the finite counterterms Xi,div, Xev

i,fin, and Xchi
i,fin are provided explicitly in

ref. [71]. The finite one-loop renormalizations affect both the finite parts of one-loop Green’s
functions as well as the two-loop RGEs, as will be discussed below. We treat gauge couplings,
masses, and Wilson coefficients on an equal footing. In general, the counterterms Xct

i are
expanded in loops and powers of ε,

Xct
i =

∞∑
l=1

l∑
n=0

1
εn

1
(16π2)lX

(l,n)
i ({Lrj(µ)}, {Kr

k(µ)}) , (4.6)

where Li and Ki denote physical and evanescent Wilson coefficients. Note that we do not
perform finite renormalizations in the evanescent sector, i.e., K(l,0)

i = 0.

4.2 Loop calculation

We compute the renormalization of the LEFT diagrammatically. At dimension five and
two loops, this involves the computation of 1491 Feynman diagrams. A breakdown into
different Green’s functions is given in table 3. As an example, we show in figure 1 explicitly
the topologies for the gluon propagator.

We use QGRAF [114] for diagram generation and our own routines for the derivation and
application of Feynman rules. Small expressions are processed in Mathematica. For critical
steps with large expressions we make heavy use of FORM [115, 116] and Symbolica. The
slowest step in the calculation is Dirac-algebra simplification: in the HV scheme, due to the
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AA GG ee uu dd eeA uuA ddA uuG ddG GGG AAδζ GGδζ total
21 83 6 41 41 17 80 80 207 207 487 79 142 1491

Table 3. Number of diagrams for the different Green’s functions computed for the two-loop
renormalization of the LEFT at dimension five. The labels mean e = lepton, u = up-type quark, d =
down-type quark, A = photon, G = gluon, and δζ = dummy field used in the calculation of the θ
terms. The GGG Green’s function is not independently needed at dimension five but serves as a
cross-check.

1 2 3

4 5 6 7 8

9
10 11 12 13

14 15 16 17 18

19 20 21 22 23

24 25 26 27 28

29 30 31 32

33 34 35

Figure 1. The two-loop diagrams for the gluon propagator in dimension-five LEFT. Diagrams
obtained from those by exchange of external legs or reflection of a fermion loop are not displayed.
There exist also diagrams with different fermions in loops, and diagrams with internal photons, totaling
to 83 diagrams (see table 3). Some diagrams vanish trivially, e.g., due to the EFT power counting.
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presence of γ5 in Dirac chains and traces, the required dimensional split results in a large
number of terms. A comparable calculation using NDR is found to be two to three orders
of magnitudes faster. In the HV scheme, the calculation is considerably faster when one
uses Hermitian mass matrices instead of generic masses: due to the absence of projectors
from mass insertions, the bulk of the Dirac simplification can then be carried out without a
dimensional split, thus speeding up the calculation by one to two orders of magnitudes.

The RGEs are derived from the UV countertems. In the presence of finite renormalizations,
the relation at two loops is [71]

L̇ = 4L(2,1)
i −

∑
j

2L(1,0)
j

∂L
(1,1)
i

∂Lj
−

∑
j

2L(1,1)
j

∂L
(1,0)
i

∂Lj
−

∑
j

2K(1,1)
j

∂L
(1,0)
i

∂Kj
, (4.7)

where for MS only the first term contributes. In our scheme with finite shifts the remaining
terms also contribute: they cancel (A) the dependence on the coefficients Ki of evanescent
operators and (B) chiral-symmetry-breaking terms, both of which can be present in the
first term of eq. (4.7). The cancellation (A) was not checked as it would require evanescent
insertions into two-loop diagrams.6 Instead, we assign a loop counting to evanescent operators
and assume their coefficients to be one-loop generated, hence we neglect all dependence on
the coefficients Ki in two-loop terms and the two-loop RGEs are only affected by evanescent-
operator insertions into one-loop diagrams. The cancellation (B) can be verified explicitly and
provides a useful check of the consistency across loop orders: indeed, all symmetry-breaking
terms are absent in our results for the RGEs.

The cancellation of sub-divergences is done automatically with the R-operation in MS;
finite renormalizations were accounted for separately and globally, see section 3.1. As a result,
counterterms and RGEs were obtained in MS as well as in our scheme with finite shifts.

The complete calculation is based on two independent implementations of the R-operation
(one in FORM, the other in Symbolica) described in section 3.2 and a cross-check of the
resulting counterterms and RGEs. In addition, we performed partial cross-checks based on
a global renormalization and the IR rearrangement presented in section 3.3. The entire
calculation was done with generic QED and QCD quantum gauge parameters ξγ and ξg.
Gauge-parameter independence of the RGEs of physical operators provides another useful
check on the calculation.

4.3 Results

In appendix B, we provide the results for the LEFT RGEs in our chirally symmetric scheme
at dimension five, i.e., including all effects from a single insertion of a dimension-five operator
suppressed by 1/v in the power counting. The results are given for the physical sector of the
theory after having performed the field redefinitions that remove redundant operators.

Our chirally symmetric HV scheme has a more complicated counterterm structure than
MS. However, it is interesting to note that Green’s functions and RGEs are more compact due
to the absence of evanescent and chiral-symmetry-breaking terms. We emphasize that in the
LEFT, which is a vector-like gauge theory, these finite renormalizations are a scheme choice

6This is expected to be a computationally expensive task due to the large number of evanescent operators.
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and one could consistently calculate as well in the MS scheme. While MS is the natural choice
for pure QED and QCD, the presence of chiral structures in higher-dimension operators makes
our chirally symmetric scheme much more appealing: without the finite symmetry-restoring
counterterms, one needs to take into account chiral-symmetry-breaking terms in matching
contributions, in RGEs, as well as matrix elements. Overall, these effects have to cancel
each other in relations between observables. In our scheme, chiral-symmetry-breaking terms
are manifestly absent not only in relations between observables, but also in intermediate
steps, such as matching contributions or RGEs.

As an example, omitting from eq. (B.8) the contribution of quarks, the two-loop RGE
for the electric charge in MS is (see eq. (B.1) for the notation)

[ė]MS
2 = 4 nee5q4

e + 48 e4q3
e

(
⟨LeγM †

e ⟩+ ⟨L†
eγMe⟩

)
− 224

3 e4q3
e

(
⟨LeγMe⟩+ ⟨L†

eγM
†
e ⟩
)
, (4.8)

where ⟨·⟩ denotes the trace in flavor space, ne is the number of charged lepton flavors, and
qe = −1 the electron charge. In contrast, our scheme with finite shifts leads to the simpler
and chirally symmetric result

[ė]2 = 4 nee5q4
e − 80e4q3

e

(
⟨LeγMe⟩+ ⟨L†

eγM
†
e ⟩
)
, (4.9)

which is free of spurion-symmetry-breaking terms of the form LM †, L†M , as expected.
We note that the QED parts of eqs. (4.8) and (4.9) agree, as they should. The reason is
that this term can be extracted from a single-parameter calculation, for which the scheme
dependence starts at three loops.

In addition to the gauge couplings e and g, we compute the RGEs for the QED and QCD
θ-parameters, using the method of ref. [117]. The results are given in eqs. (B.10) and (B.11).
Considering the linear combinations

τQED = i
4π
e2 + θQED

2π , τQCD = i
4π
g2 + θQCD

2π , (4.10)

we find that our scheme respects holomorphy at two loops and dimension five in the case
of τQED [27, 118], but we observe a violation of holomorphy in τQCD proportional to Nc,
leading to a dependence of the RGE for τQCD on the anti-self-dual gluonic dipole-operator
coefficients L†

uG and L†
dG. However, we note that these are scheme-dependent statements,

which are affected by finite renormalizations and the definition of physical and evanescent
operators. We expect that one could perform an additional finite renormalization that
restores holomorphy of τQCD at dimension five.

We apply our chirally symmetric HV scheme throughout. In the case of pure QED or
QCD, the finite renormalizations lead to unusual RGEs for the masses. In the limit of pure
QED, the anomalous dimension of the electron mass in our scheme is given by

[Ṁe]2 = −e4q4
e(4ne + 3)Me , (4.11)

which is chirally symmetric in the spurion sense. In contrast, the MS result in the HV scheme

[Ṁe]MS
2 = −e4q4

e(4ne + 3)Me + e4q4
e

32
3 neM

†
e (4.12)
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contains a chiral-symmetry-breaking contribution proportional to M †
e . In the case of a

Hermitian mass matrix, me :=Me =M †
e , the MS expression reduces to the well-known result

[ṁe]MS
2 = e4q4

e

(20
3 ne − 3

)
me , (4.13)

which agrees with the NDR scheme because no γ5 appears in QED with a Hermitian mass
matrix. Analogously, in the limit of pure QCD our scheme leads to the quark-mass anomalous
dimension

[Ṁq]2 = −g4CF (3(CF +Nc) + 2nq)Mq , (4.14)

where nq denotes the number of quark flavors, whereas in MS, the HV scheme produces
an additional symmetry-breaking contribution,

[Ṁq]MS
2 = −g4CF (3(CF +Nc) + 2nq)Mq −

8
3g

4CF (11Nc − 2nq)M †
q . (4.15)

For a Hermitian mass matrix mq :=Mq =M †
q , the MS result reduces to the known expression

[ṁq]MS
2 = −g4CF

(
3CF + 97

3 Nc −
10
3 nq

)
mq , (4.16)

which again coincides with the result in the NDR scheme.
The complete results for the two-loop RGEs of the mass matrices are given in appendix B.1.

We stress that these results are not unique: since we are working in a basis of generic non-
diagonal and non-Hermitian mass matrices, there is always the freedom to perform further
chiral rotations in flavor space, which changes the mass matrices, see refs. [14, 27, 71]. Indeed,
we find chirally symmetric and gauge-parameter-independent two-loop RGEs for the mass
matrices only after performing such a chiral field redefinition at the two-loop level. Regarding
the gauge-parameter independence, the same observation was already made in refs. [14, 71].
The necessary chiral field redefinitions turn out to be purely axial rotations, hence they
affect the θ-parameters at the three-loop level. Due to the freedom of performing chiral
rotations, our results in appendix B.1 should be understood as the definition of the field
basis. As in refs. [14, 71], we choose the gauge-parameter-dependent axial rotation to be
proportional to ξγ − 1 or ξg − 1. The ambiguity in the basis choice drops out when one
computes a matrix element: at this point, one has to apply a transformation to the mass
basis, which renders the mass matrices real and diagonal.

The chiral rotation that brings us to the basis in which we report our results is suppressed
by one factor of the LEFT power counting. Therefore, at dimension five it has no effect
beyond the mass matrices. This will no longer be the case at dimension six [119].

5 Conclusions and outlook

In this article, we have presented the first part of a complete calculation of the two-loop
RGEs of the LEFT in a HV scheme that respects chiral symmetry in the spurion sense,
as previously established in ref. [71]. The HV scheme is the only one that is proven to be
consistent to all loop orders [81], but due to the dimensional split it comes with significant
computational challenges.

– 22 –



J
H
E
P
0
6
(
2
0
2
5
)
0
0
7

Here, we have concentrated on several technical aspects of the calculation: we have
elaborated on the advantages of the background-field method and the problem of gauge-
variant nuisance operators in sub-divergences. We have discussed how the construction
and identification of these class-IIb operators can be avoided, either by making use of the
automatic subtraction in the R-operation, or by avoiding their insertion completely, using a
modification of the IR rearrangement. In both cases, one can obtain the renormalization of
the physical sector of the theory from an off-shell calculation of 1PI Green’s functions.

We have subsequently presented the results for the complete LEFT two-loop RGEs up
to dimension five in our scheme. They consist of the two-loop renormalization of the dipole
operators, as well as their mixing into the fermion masses and the gauge couplings, including
the θ-parameters, which in the case of θQCD is of phenomenological interest in the context of
searches for a neutron electric dipole moment [120]. When using our results, it is important
that all parts of the calculation be performed in the same scheme (or scheme changes be
correctly taken into account), in particular matching calculations for the LEFT, either at the
electroweak scale [14] or the hadronic scale [121–123]. Adapting these matching calculations
to our chirally invariant HV scheme is work in progress [124].

The techniques and methods presented here are not restricted to dimension five. The entire
results for the LEFT RGEs at dimension six, which have a wider range of phenomenological
applications, will be presented in forthcoming publications [113, 119]. They are part of a
wider effort to establish a complete EFT framework for physics beyond the SM at next-
to-leading-log accuracy.
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A Counterterms and RGEs for CP -even dipole operators

Below we give the MS renormalization constants and RGEs for the U(1) and SU(3) EFT
models discussed in sections 2.2 and 2.3. We use the short-hand notation {X}1 = X/(16π2)
and {X}2 = X/(16π2)2 for the one-loop and two-loop contributions, respectively. In contrast
to our full LEFT calculation, the results in this appendix are obtained in a scheme where
the dipole operators are defined in D dimensions and pure MS is employed. Since no γ5
shows up in these toy EFTs, no dimensional split is needed and there is no difference between
NDR and HV prescriptions.
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A.1 Single-flavor QED with CP -even dipole

For the theory defined in eq. (2.1) we find the renormalization constants (before field
redefinition)

δZA =
{
−4eq(eq− 12Lm)

3ε

}
1
+

{16e3q3Lm

ε2 − 2e3q3(eq− 24Lm)
ε

}
2
,

δZψ =
{
eq(6Lm− eqξ)

ε

}
1
+

{
e3q3 (eqξ2 + 4Lm(5− 3ξ)

)
2ε2 + e3q3(21eq− 652Lm)

12ε

}
2
,

δm =
{
−3eqm(eq− 4Lm)

ε

}
1
+

{
e3q3m(5eq + 16Lm)

2ε2 + 11e3q3m(eq− 112Lm)
12ε

}
2
,

δe =
{2e2q(eq− 12Lm)

3ε

}
1
+

{2e4q3(eq− 36Lm)
3ε2 + e4q3(eq− 24Lm)

ε

}
2
,

δL =
{17e2q2L

3ε

}
1
+

{119e4q4L

6ε2 − 587e4q4L

36ε

}
2
, (A.1)

δR =
{
−eq(eqRξ − 6L)

ε

}
1
+

{
e3q3 (eqRξ2 + L(38− 6ξ)

)
2ε2 + e3q3(21eqR+ 4L(3ξ − 70))

12ε

}
2
.

The coefficient of the redundant operator R only mixes into R itself and does not affect the
physical sector. The field redefinition sets δR = 0 and leaves the remaining renormalization
constants unchanged. The l-loop anomalous dimensions in MS are simply given by 2l times
the 1/ε poles (using the notation ẋ = µ d

dµx)

ṁ =
{
−6e2q2m+ 24eqLm2

}
1
+

{11
3 e

4q4m− 1232
3 e3q3Lm2

}
2
,

ė =
{4e3q2

3 − 16e2qLm
}

1
+

{
4e5q4 − 96e4q3Lm

}
2
,

L̇ =
{34

3 e
2q2L

}
1
+

{
−587

9 e4q4L

}
2
. (A.2)

A.2 Single-flavor QCD with CP -even dipole

Below, we list the MS renormalization constants and RGEs for the case of QCD with a
CP -even D-dimensional dipole operator, as defined in section 2.3. We treat the theory
using the background-field method.

δZB =
{
g(g(11Nc − 2) + 24Lm)

3ε

}
1

+
{
−
4g3Lm

(
N2
c + 1

)
Ncε2 +

g3 (g (34N3
c − 13N2

c + 3
)
+ 24Lm

(
8N2

c − 3
))

6Ncε

}
2
,

δZQ =
{
g(g(Nc(13− 3ξ)− 4) + 48Lm)

6ε

}
1

+
{
g4Nc(2ξ + 3)(Nc(3ξ − 13) + 4)− 48g3Lm

(
N2
c (2ξ + 5) + 2

)
/Nc

24ε2

+
g3 (g (N3

c (−2ξ2 − 11ξ + 59)− 28N2
c + 8

)
+ 16Lm

(
25N2

c − 12
))

16Ncε

}
2
,
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δZψ =
{
−
g
(
N2
c − 1

)
(gξ − 6(L−R2)m)
2Ncε

}
1

+
{
g3 (N2

c − 1
) (
gξ

(
N2
c (2ξ + 3)− ξ

)
+ Lm

(
−(12ξ + 65)N2

c + 8Nc + 12(ξ − 1)
))

8N2
c ε

2

+
g3 (N2

c − 1
)
R2m

(
(6ξ + 31)N2

c − 4Nc − 6ξ − 9
)

4N2
c ε

2

−
g3 (N2

c − 1
) (

3g
((
ξ2 + 8ξ + 22

)
N2
c − 4Nc + 3

)
+ Lm

(
−559N2

c + 280Nc − 372
))

48N2
c ε

+
g3 (N2

c − 1
)
R2m

(
−203N2

c + 20Nc + 9
)

24N2
c ε

}
2
,

δm =
{
−
3gm

(
N2
c − 1

)
(g − 4Lm)

2Ncε

}
1

+
{
g3m

(
N2
c − 1

) (
g
(
31N2

c − 4Nc − 9
)
+ 8Lm

(
−23N2

c + 8Nc + 6
))

8N2
c ε

2

+
g3m

(
N2
c − 1

) (
g
(
−203N2

c + 20Nc + 9
)
+ 8Lm

(
145N2

c − 124Nc + 30
))

48N2
c ε

}
2
,

δg =
{
−g

2(g(11Nc − 2) + 24Lm)
6ε

}
1

+
{
g5(2− 11Nc)2 + 48g4Lm

(
12N2

c − 2Nc + 1
)
/Nc

24ε2

+
g4 (g (−34N3

c + 13N2
c − 3

)
+ 24Lm

(
3− 8N2

c

))
12Ncε

}
2
,

δL =
{
−
g2L

(
8N2

c − 2Nc + 15
)

6Ncε

}
1

+
{
g4L

(
80N4

c − 36N3
c + 194N2

c − 40Nc + 75
)

24N2
c ε

2

−
g4L

(
161N4

c − 164N3
c + 1196N2

c − 128Nc + 459
)

144N2
c ε

}
2
,

δR1 =
{
g
(
N2
c − 1

)
(6L− gR1ξ + 2R2ξ)
2Ncε

}
1
+
{
−
g3L

(
N2
c − 1

) (
(3ξ + 38)N2

c − 8Nc − 6(ξ − 5)
)

8N2
c ε

2

+
g3ξ(gR1 − 2R2)

(
N2
c − 1

) (
N2
c (2ξ + 3)− ξ

)
8N2

c ε
2

+
g3L

(
N2
c − 1

) (
(6ξ + 457)N2

c − 88Nc − 12(ξ − 16)
)

48N2
c ε

−
g3(gR1 − 2R2)

(
N2
c − 1

) (
(ξ2 + 8ξ + 22)N2

c − 4Nc + 3
)

16N2
c ε

}
2
,

δR2 =
{
g2(9NcL+R2(4− 22Nc))

12ε

}
1

+
{
g4 (2R2(2− 11Nc)2 − 3L(41N2

c − 8Nc + 15)
)

48ε2

+
g4 (LNc(N2

c (9ξ + 83)− 20Nc + 69)− 8R2(34N3
c − 13N2

c + 3)
)

96Ncε

}
2
. (A.3)
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The expressions for the physical sector (m, g, L) are ξ-independent. For the RGEs we obtain

ṁ =
{
−3gm

(
N2
c − 1

)
(g − 4Lm)

Nc

}
1

(A.4)

+
{
g3m

(
1−N2

c

) (
g
(
203N2

c − 20Nc − 9
)
− 8Lm

(
145N2

c − 124Nc + 30
))

12N2
c

}
2
,

ġ =
{
−1
3g

2(g(11Nc − 2) + 24Lm)
}

1
+

{
−g

4 (g (34N3
c − 13N2

c + 3
)
+ 24Lm

(
8N2

c − 3
))

3Nc

}
2
,

L̇ =
{
−g

2L
(
8N2

c − 2Nc + 15
)

3Nc

}
1
+

{
−g

4L
(
161N4

c − 164N3
c + 1196N2

c − 128Nc + 459
)

36N2
c

}
2
.

The result for L̇ agrees with ref. [101], the remaining terms with L are new to the best of
our knowledge. For Nc = 3 the expressions reduce to

ṁ =
{
−8g2m+ 32 gLm2

}
1
+

{
−1172 g4m

9 + 1712
3 g3Lm2

}
2
,

ġ =
{
−31g3

3 − 8g2Lm

}
1
+

{
−268g5

3 − 184 g4Lm

}
2
,

L̇ =
{
−9g2L

}
1
+

{
−1621

27 g4L

}
2
. (A.5)

B LEFT RGEs at dimension five in the HV scheme

In the following, we provide the results for the RGEs of the LEFT in our chirally symmetric
HV scheme, at dimension five in the power counting, i.e., including all effects resulting from
a single insertion of a dimension-five operator suppressed by 1/v. Since neutrino interactions
start at dimension five, at this order there is no dependence on the number of neutrino flavors
nν . We compute the complete set of RGEs, including the mixing into the QED and QCD
theta parameters. We use the short-hand notation

Ẋ = d

d logµX = 1
16π2 [Ẋ]1 +

1
(16π2)2 [Ẋ]2 (B.1)

and we only list the two-loop contribution [Ẋ]2 to the RGEs; the scheme-independent one-
loop contribution [Ẋ]1 to the RGEs has been computed to dimension six in ref. [27] (and
independently confirmed in ref. [71]). All RGE results are given in a compact matrix notation
in flavor space. We define the running of the gauge couplings in pure QED plus QCD by

[ė]ℓ = −e
ℓ−1∑
k=0

beℓ−1,k e
2(ℓ−k)g2k , [ġ]ℓ = −g

ℓ−1∑
k=0

bgℓ−1,k g
2(ℓ−k)e2k , (B.2)

where the coefficients of the β-functions up to two loops are

be0,0 = −4
3
(
neq2

e +Nc(nuq2
u + ndq2

d)
)
,

bg0,0 = 11
3 Nc −

2
3(nu + nd) ,
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be1,0 = −4
(
neq4

e +Nc(nuq4
u + ndq4

d)
)
, be1,1 = −4NcCF

(
nuq2

u + ndq2
d

)
,

bg1,0 = 34
3 N

2
c − 2CF (nu + nd)−

10
3 Nc(nu + nd) , bg1,1 = −2

(
nuq2

u + ndq2
d

)
, (B.3)

with CF = (N2
c −1)/(2Nc) the coefficient of the quadratic Casimir operator in the fundamental

representation of SU(Nc). In the following, we use CF to write the results in a compact
way, but we do not claim them to be valid for gauge groups different from SU(Nc). In
particular, we do not distinguish CA from Nc.

B.1 Dimension 3: masses

Since neutrinos do not interact in QED or QCD, the Majorana neutrino mass does not receive
an anomalous dimension in the LEFT at dimension five to any loop order, hence

[Ṁν ]2 = 0 . (B.4)

The RGEs for the other fermion mass matrices are

[Ṁe]2 = −e4q2
e

(
q2
e(4ne + 3) + 4Nc(nuq2

u + ndq2
d)
)
Me

+ 2e3qe
(
q2
e(4ne + 7) + 4Nc(nuq2

u + ndq2
d)
)
(L†

eγM
†
eMe +MeM

†
eL

†
eγ)

+ 4
3e

3qe
(
q2
e(8ne + 15) + 8Nc(nuq2

u + ndq2
d)
)
MeLeγMe

− 40e3q2
e

(
qe(⟨LeγMe⟩+ ⟨L†

eγM
†
e ⟩)

+Ncqu(⟨LuγMu⟩+ ⟨L†
uγM

†
u⟩) +Ncqd(⟨LdγMd⟩+ ⟨L†

dγM
†
d⟩)

)
Me

− 192e3qe
(
q2
e⟨MeM

†
e ⟩+Ncq2

u⟨MuM
†
u⟩+Ncq2

d⟨MdM
†
d⟩
)
L†
eγ , (B.5)

[Ṁu]2 = −e4q2
u

(
4neq2

e + (4Ncnu + 3)q2
u + 4Ncndq2

d

)
Mu

− g2CF
(
6e2q2

u + g2 (3(CF +Nc) + 2(nu + nd))
)
Mu

+ 2equ
(
7(g2CF + e2q2

u) + 4e2(neq2
e +Nc(nuq2

u + ndq2
d))

)
(L†

uγM
†
uMu +MuM

†
uL

†
uγ)

+ 4
3equ

(
15(g2CF + e2q2

u) + 8e2(neq2
e +Nc(nuq2

u + ndq2
d))

)
MuLuγMu

+ 2gCF
(
7(g2CF + e2q2

u) + g2(19Nc + 2(nu + nd))
)
(L†

uGM
†
uMu +MuM

†
uL

†
uG)

+
(4
3g

3CF (15CF − 7Nc + 4(nu + nd)) + 20gCF e2q2
u

)
MuLuGMu

− 40e3q2
u

(
qe(⟨LeγMe⟩+ ⟨L†

eγM
†
e ⟩)

+Ncqu(⟨LuγMu⟩+ ⟨L†
uγM

†
u⟩) +Ncqd(⟨LdγMd⟩+ ⟨L†

dγM
†
d⟩)

)
Mu

− 20g3CF
(
⟨LuGMu⟩+ ⟨L†

uGM
†
u⟩+ ⟨LdGMd⟩+ ⟨L†

dGM
†
d⟩
)
Mu

− 192e3qu
(
q2
e⟨MeM

†
e ⟩+Ncq2

u⟨MuM
†
u⟩+Ncq2

d⟨MdM
†
d⟩
)
L†
uγ

− 96g3CF
(
⟨MuM

†
u⟩+ ⟨MdM

†
d⟩
)
L†
uG , (B.6)
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[Ṁd]2 = −e4q2
d

(
4neq2

e + 4Ncnuq2
u + (4Ncnd + 3)q2

d

)
Md

− g2CF
(
6e2q2

d + g2 (3(CF +Nc) + 2(nu + nd))
)
Md

+ 2eqd
(
7(g2CF + e2q2

d) + 4e2(neq2
e +Nc(nuq2

u + ndq2
d))

)
(L†

dγM
†
dMd +MdM

†
dL

†
dγ)

+ 4
3eqd

(
15(g2CF + e2q2

d) + 8e2(neq2
e +Nc(nuq2

u + ndq2
d))

)
MdLdγMd

+ 2gCF
(
7(g2CF + e2q2

d) + g2(19Nc + 2(nu + nd))
)
(L†

dGM
†
dMd +MdM

†
dL

†
dG)

+
(4
3g

3CF (15CF − 7Nc + 4(nu + nd)) + 20gCF e2q2
d

)
MdLdGMd

− 40e3q2
d

(
qe(⟨LeγMe⟩+ ⟨L†

eγM
†
e ⟩)

+Ncqu(⟨LuγMu⟩+ ⟨L†
uγM

†
u⟩) +Ncqd(⟨LdγMd⟩+ ⟨L†

dγM
†
d⟩)

)
Md

− 20g3CF
(
⟨LuGMu⟩+ ⟨L†

uGM
†
u⟩+ ⟨LdGMd⟩+ ⟨L†

dGM
†
d⟩
)
Md

− 192e3qd
(
q2
e⟨MeM

†
e ⟩+Ncq2

u⟨MuM
†
u⟩+Ncq2

d⟨MdM
†
d⟩
)
L†
dγ

− 96g3CF
(
⟨MuM

†
u⟩+ ⟨MdM

†
d⟩
)
L†
dG . (B.7)

B.2 Dimension 4: gauge couplings

The two-loop running of the gauge couplings in the LEFT to dimension five is given by

[ė]2 = −be1,0e5 − be1,1e3g2

− 8e2
(
10e2q3

e

(
⟨LeγMe⟩+ ⟨L†

eγM
†
e ⟩
)

+Ncqu(9g2CF + 10e2q2
u)
(
⟨LuγMu⟩+ ⟨L†

uγM
†
u⟩
)

+Ncqd(9g2CF + 10e2q2
d)
(
⟨LdγMd⟩+ ⟨L†

dγM
†
d⟩
)

+ egNcCFq2
u

(
⟨LuGMu⟩+ ⟨L†

uGM
†
u⟩
)

+ egNcCFq2
d

(
⟨LdGMd⟩+ ⟨L†

dGM
†
d⟩
))

, (B.8)

[ġ]2 = −bg1,0g5 − bg1,1g
3e2

− g2
((

2g2(20CF + 11Nc) + 36e2q2
u

) (
⟨LuGMu⟩+ ⟨L†

uGM
†
u⟩
)

+
(
2g2(20CF + 11Nc) + 36e2q2

d

) (
⟨LdGMd⟩+ ⟨L†

dGM
†
d⟩
)

+ 4egqu
(
⟨LuγMu⟩+ ⟨L†

uγM
†
u⟩
)

+ 4egqd
(
⟨LdγMd⟩+ ⟨L†

dγM
†
d⟩
))

. (B.9)
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The two-loop running of the θ-parameters is

[θ̇QED]2 = 128π2i

e

(
10e2q3

e

(
⟨LeγMe⟩ − ⟨L†

eγM
†
e ⟩
)

+Ncqu(9g2CF + 10e2q2
u)
(
⟨LuγMu⟩ − ⟨L†

uγM
†
u⟩
)

+Ncqd(9g2CF + 10e2q2
d)
(
⟨LdγMd⟩ − ⟨L†

dγM
†
d⟩
)

+ egNcCFq2
u

(
⟨LuGMu⟩ − ⟨L†

uGM
†
u⟩
)

+ egNcCFq2
d

(
⟨LdGMd⟩ − ⟨L†

dGM
†
d⟩
))

, (B.10)

[θ̇QCD]2 = 16π2i

g

((
2g2(20CF + 3Nc) + 36e2q2

u

) (
⟨LuGMu⟩ − ⟨L†

uGM
†
u⟩
)

+
(
2g2(20CF + 3Nc) + 36e2q2

d

) (
⟨LdGMd⟩ − ⟨L†

dGM
†
d⟩
)

+ 4egqu
(
⟨LuγMu⟩ − ⟨L†

uγM
†
u⟩
)

+ 4egqd
(
⟨LdγMd⟩ − ⟨L†

dγM
†
d⟩
))

. (B.11)

B.3 Dimension 5: dipole operators

At dimension five, the ∆L = 2 neutrino dipole operator obtains with our normalization an
anomalous dimension only through the photon field,

[L̇νγ ]2 = −(be1,0e4 + be1,1e
2g2)Lνγ . (B.12)

The RGEs for the remaining dipole operators are

[L̇eγ ]2 = −
[
(be1,0e4 + be1,1e

2g2) + e4q2
e

9
(
459q2

e + 116
(
neq2

e +Nc(nuq2
u + ndq2

d)
))]

Leγ ,

(B.13)

[L̇uγ ]2 = −
[
(be1,0e4 + be1,1e

2g2) + e4q2
u

9
(
459q2

u + 116
(
neq2

e +Nc(nuq2
u + ndq2

d)
))

+ g2CF
9

(
630e2q2

u + 26g2(nu + nd) + 171g2CF − 257g2Nc

) ]
Luγ

− 4egCFqu
9

(
72e2q2

u + 8g2(nu + nd) + 72g2CF − 95g2Nc

)
LuG , (B.14)

[L̇dγ ]2 = −
[
(be1,0e4 + be1,1e

2g2) + e4q2
d

9
(
459q2

d + 116
(
neq2

e +Nc(nuq2
u + ndq2

d)
))

+ g2CF
9

(
630e2q2

d + 26g2(nu + nd) + 171g2CF − 257g2Nc

) ]
Ldγ

− 4egCFqd
9

(
72e2q2

d + 8g2(nu + nd) + 72g2CF − 95g2Nc

)
LdG , (B.15)

[L̇uG]2 = −
[
(bg1,0g4 + bg1,1g

2e2) + e4q2
u

9
(
171q2

u + 52
(
neq2

e +Nc(nuq2
u + ndq2

d)
))

− 2e2g2q2
u(12Nc − 35CF )
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− g4

36

(
643N2

c − 932− 459
N2
c

− 4(58CF − 13Nc)(nu + nd)
)]

LuG

−
[
8eg3qu(4CF −Nc) +

32e3gqu
9

(
9q2

u + 2
(
neq2

e +Nc(nuq2
u + ndq2

d)
))]

Luγ ,

(B.16)

[L̇dG]2 = −
[
(bg1,0g4 + bg1,1g

2e2) + e4q2
d

9
(
171q2

d + 52
(
neq2

e +Nc(nuq2
u + ndq2

d)
))

− 2e2g2q2
d(12Nc − 35CF )

− g4

36

(
643N2

c − 932− 459
N2
c

− 4(58CF − 13Nc)(nu + nd)
)]

LdG

−
[
8eg3qd(4CF −Nc) +

32e3gqd
9

(
9q2

d + 2
(
neq2

e +Nc(nuq2
u + ndq2

d)
))]

Ldγ .

(B.17)
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