PUBLISHED FOR SISSA BY 4) SPRINGER

1

RECEIVED: February 17, 2025
ACCEPTED: April 14, 2025
PUBLISHED: May 21, 2025

Refining Integration-by-Parts Reduction of Feynman
Integrals with Machine Learning

Matt von Hippel ©¢ and Matthias Wilhelm ©2?

@ Niels Bohr International Academy, Niels Bohr Institute, University of Copenhagen,
Blegdamsvej 17, 2100 Copenhagen O, Denmark

bCenter for Quantum Mathematics, Department of Mathematics and Computer Science,
University of Southern Denmark,
Campusvej 55, 5230 Odense M, Denmark

E-mail: mattvonhippel@gmail.com, mwilhelm@imada.sdu.dk

ABSTRACT: Integration-by-parts reductions of Feynman integrals pose a frequent bottle-
neck in state-of-the-art calculations in theoretical particle and gravitational-wave physics,
and rely on heuristic approaches for selecting integration-by-parts identities, whose quality
heavily influences the performance. In this paper, we investigate the use of machine-learning
techniques to find improved heuristics. We use funsearch, a genetic programming variant
based on code generation by a Large Language Model, in order to explore possible approaches,
then use strongly typed genetic programming to zero in on useful solutions. Both approaches
manage to re-discover the state-of-the-art heuristics recently incorporated into integration-
by-parts solvers, and in one example find a small advance on this state of the art.

KEYWORDS: Scattering Amplitudes, Automation, Electroweak Precision Physics

ARrRX1v EPRINT: 2502.05121

OPEN AccEss, © The Authors.

Article funded by SCOAP? https://doi.org/10.1007/JHEP05(2025)185

https://orcid.org/0000-0002-6328-2936
https://orcid.org/0000-0002-0032-0181
mailto:mattvonhippel@gmail.com
mailto:mwilhelm@imada.sdu.dk
https://doi.org/10.48550/arXiv.2502.05121
https://doi.org/10.1007/JHEP05(2025)185

Contents

1 Introduction 1
2 Background 3

2.1 Integration-by-parts identities for Feynman integrals 3

2.2 Genetic algorithms and machine learning 7
3 Initial attempt: genetic algorithm 9
4 Exploration with Funsearch 10
5 Improved heuristics via strongly typed genetic programming 17
6 Conclusions and discussion 19
A Integration-by-parts identities for the benchmark integral 21

1 Introduction

Perturbative Quantum Field Theory has proven to be a vastly successful theoretical framework
for calculating precision predictions, with applications ranging from collider physics to
gravitational-wave physics. A crucial step in the calculation of precision predictions is the
reduction of the occurring Feynman integrals to a much smaller set of so-called master
integrals, using integration-by-parts (IBP) identities [1-3]. This IBP reduction is a major
bottleneck in precision calculations, requiring hundred thousands of CPU hours in current
applications [4] and obstructing other applications altogether.

IBP identities relate Feynman integrals with different integer exponents of the propagators
as well as irreducible scalar products (ISP) in the numerator. They can easily be derived
for general values of the exponents, see e.g. ref. [5] for a textbook treatment. In contrast,
it is in most cases not possible to solve the resulting systems of IBP identities in closed
form, i.e. for general values of the exponents. Instead, IBP reduction codes such as AIR [6],
FIRE [7, 8], Reduze [9], LiteRed [10], Kira [11, 12], FiniteFlow [13] and Blade [14] specialize
the identities to a sufficiently large set of different values for the integer exponents — the
so-called seeds — to solve for the desired integrals in terms of the master integrals. The choice
of the seeds is determined by a so-called seeding strategy, a heuristic whose quality heavily
influences the performance of IBP reduction. Recently, a new heuristic was proposed [4, 14—
16], which reduces the size of the resulting system of linear equations and thus the reduction

time by orders of magnitude. However, an optimal choice of seeds is in general not known.!

!There exist attempts to improve IBP reduction by choosing a particular suitable basis in the space of IBP
identities via syzygy methods, see refs. [17, 18] and references therein, which are currently being implemented
in IBP codes. Other approaches aim to replace IBP reduction via intersection theory [19, 20] but have not
produced competitive reduction codes yet.

Motivated by the discovery of the improved heuristic in refs. [4, 14-16], in this paper
we employ automated, machine-learning based methods to search for further improved
heuristics and optimal seeding strategies. Concretely, we use three different versions of genetic
algorithms, two of which involve genetic programming.

Genetic algorithms imitate evolution by natural selection; see e.g. ref. [21] for a textbook
treatment. They involve a population of candidate solutions to a problem. This population is
subject to mutation, in which individuals are randomly altered, and cross-over, in which pairs
of individuals give rise to new members of the population with traits drawn from each parent,
imitating sexual reproduction. The population is then selected based on its performance by
some evaluation metric, with the best individuals kept for the next generation.

In a subset of genetic algorithms, called genetic programming, the individuals in the
population are programs, parametrized e.g. with trees; see for instance ref. [22]. A recent
example of genetic programming, called funsearch [23], instead parametrizes programs in
terms of text, more specifically Python code. Mutation and cross-over of texts are then carried
out using a Large Language Model (LLM). The LLM is given the Python code representing
two individuals in the population, then asked how to improve on it. funsearch has shown
some success in finding novel solutions to problems in pure mathematics [23]. It has the
advantage that one typically needs to know very little about the problem one is applying
it to, as solutions are written in Python code, not in any specialized framework, making
it well-suited to exploratory work. Moreover, the output of funsearch being Python code
makes it easily interpretable, and thus generalizable.

Throughout this paper, we use the two-loop triangle-box integral depicted in figure 1 as
a benchmark to measure to performance of candidate seeding strategies. This integral was
already used as a benchmark in ref. [15]. We begin by trying a traditional genetic algorithm,
treating the list of seed integrals used as a binary vector. This approach is very slow to
converge. We then explore the problem using funsearch. With some judicious prompting,
funsearch is able to find solutions that not only reach the state of the art, but in an example
find slight improvements on it. We then use the insights we gained via funsearch to proposed
a more specialized list of operations appropriate to our problem, running these via strongly
type genetic programming as implemented in the genetic algorithm library DEAP [24]. Strongly
typed genetic programming converges much faster than funsearch, finding the same best
solution in only thirty generations.

The remainder of this paper is structured as follows. In the next section, we will
provide background on integration-by-parts methods for Feynman integrals in subsection 2.1
and background on genetic algorithms, genetic programming, and machine learning in
subsection 2.2. We then describe our initial attempt with a genetic algorithm operating
on binary vectors in section 3, before describing our use of funsearch in section 4 and the
strongly typed genetic programming approach in section 5. Finally we conclude and discuss
ways in which these approaches might be used in the future in section 6. We provide the
identities used for the reduction of our benchmark Feynman integral in appendix A.

2 Background

In this section, we provide a brief introduction to integration-by-part identities for Feynman
integrals as well as to genetic algorithms.

2.1 Integration-by-parts identities for Feynman integrals

In perturbative Quantum Field Theory beyond the leading order, one typically faces the task
of evaluating a large number of Feynman integrals. We give a brief introductions to these
integrals here, illustrated with one example; see e.g. ref. [5] for a detailed text-book treatment.

For each Feynman integral, we have an associated graph with E external edges as well as
further internal edges. Associated to each external edge is an external momentum vector p?

with j=1,...,Fand p=0,...,D — 1, a vector in D-dimensional Minkowski space. These

vectors satisfy so-called momentum conservation, Zle péfb = (. The integration in a Feynman
integral is with respect to L loop momentum vectors k) (I = 1,...,L) in D-dimensional
Minkowski space, corresponding to the L cycles in the associated graph. We organize Feynman
integrals into families indexed by sets of integers ay, ..., an, where n = L(L+1)/24+ L(E —1)
is the number of independent loop-momentum-dependent products that can be formed from

the momenta. The general form of an integral family is

[1i21 d”k
Har, - sa) = [. (2.1)
! [T [Ds (R "’kg)]al
where the polynomials D; = D;(kf', ... k%) are always non-trivial functions of at least one of

the loop momenta k', and can also be functions of the external momenta and masses. For the
vast majority of applications, the D; are quadratic in these variables and Lorentz invariant.
The dimension of space-time D is usually taken to be non-integer in a regularization technique
called dimensional regularization [25]. Note that the a;, used to index a family with a common
set of D;, can be positive, in which case the corresponding D; is a propagator associated to
an edge of the graph. Indices a; that are larger than one correspond to higher powers of the
propagator. Moreover, a; can be negative, corresponding to irreducible scalar products (ISPs)
in the numerator, or zero, in which case D; is absent in that member of the family.

To illustrate, consider the Feynman integral depicted in figure 1. This integral was one
of the examples used to demonstrate the advantages of the improved seeding strategy in
ref. [15], and we will use it to benchmark our machine-learning approaches throughout this
paper. It has two loops, L = 2, and three external momenta, £ = 3, and thus n = 7. We
can parametrize the seven D; as follows:

Dy =k, Dy = k3, Dy = (k1 +k2)?, Da=(ki+p1),
Ds = (k2 +ps3)®, De=(ka—p1)°, D7=(k1+ps)°. (2.2)
The first six of these polynomials, D1,..., Dg, correspond to internal edges in the graph

depicted in figure 1, and are squares of the momenta flowing through those edges. For
a Feynman integral depicted by the graph in figure 1, these quantities will appear in the
denominator of the corresponding integrand, so aq,...,ag will be positive. For the methods
described in this section to work, the full set of D; must form a basis for quadratic polynomials

Figure 1. The two-loop triangle-box integral we used to benchmark different heuristics. The
quantities at the arrows specify the momenta flowing through the edges of the graph.

in the k}" and p? , up to terms that can be expressed only in terms of Lorentz-invariant
combinations of external momenta. As D1,..., Dg do not constitute such a basis on their
own, we must add D7, which is thus referred to as an ISP, and is an example of the ISPs
mentioned above. These will not occur as denominators in this family of integrals but may
appear as numerators, so the corresponding a; will be zero or negative.

The Feynman integral depicted in figure 1 depends on the invariant quantities p? = m?,
p3 = m3 and p3 = m% that can be formed from the three external momenta p}’, p and p4
with pi' + ph + p4 = 0. Here, the square p? denotes the (pseudo-) norm with respect to the
Lorentz product. The overall dependence on these dimensionful quantities is determined by
dimensional analysis, such that the integral has a non-trivial dependence only on the two
dimensionless ratios my/m; and mgs/m;. For simplicity, we will thus set m; = 1.

Within dimensional regularization, any integral that is independent of both all non-zero
Lorentz invariants composed from the external momenta and all of the masses is set to
zero, and this condition can be enforced independently for the integration over each loop
momentum; see ref. [26] for a pedagogical review that should clarify some topics discussed
here for mathematical readers. These integrals are called “trivial”.

Not all integrals built from a given set of D; are linearly independent. They are related
by integration-by-parts (IBP) identities [1, 2] generated by expressions of the form?

QZ/ﬁde.dqu (2.3)
i=1 delu Hznzl qui7 '

where the so-called IBP vector ¢* is built from external momenta and loop momenta. While
eq. (2.3) holds for any choice of IBP vector, it is sufficient to consider ¢* € {pé‘ ,ki'} to obtain
a generating set of all IBP identities, and we will do so in this paper. Note, however, that
more tailored choices of IBP vectors can be advantageous, as used by syzygy methods [17, 18].
Moreover, there are Lorentz invariance (LI) identities generated by acting on Feynman

2Here, we use Einstein’s summation convention, i.e. the sum over the repeated index p is implied.

integrals with generators of Lorentz transformations. These identities are not independent
from the IBP identities [27], but are often useful to include, and we will include them in
the examples in this paper.

Provided one chooses the set D; so as to be a basis for ISPs of the loop momenta with
each other and the external momenta, applying the product and chain rules in eq. (2.3)
generates linear relations between Feynman integrals I(aq,...,a,) with shifted exponents
a;, with coefficients that are rational functions in the masses, the dimension, and ISPs of
the external momenta (together called kinematic parameters). One wants to solve these
relations, so as to represent all of the integrals that appear in a given calculation in terms
of a minimal basis of so-called master integrals.

In our example, there are eight IBP identities — two loop momenta k; times four total
independent momenta {ki, k2, p1,p2} that can serve as IBP vectors — and one identity
generated by Lorentz transformations. An example of an IBP identity is

(D—ag—ag—az—2ap)I(ai, az,as, as,as, a6, a7) — azl(ay — 1,a2,a3 + 1, a4,as, as, ar)
2
+azl(a1, a2 — 1,a3 + 1, a4, as, as, a7) + agmsl (a1, az, as, a4, as, ag,ar + 1)
- (13[((11 - 1) az, as, a4 + 1,&5,&6, CL?) - CL6I(CL1 - 1,&2,@3,&4,&5, ag, ar + 1)

+asl(ai,az,as,a4 + 1,a5,a6,a7) =0. (2.4)

We give the full set of identities for this integral in appendix A. When these identities are
solved, all integrals in this family can be expressed in terms of a basis of 16 master integrals.
An example choice of such a basis is

1(0,1,1,1,0,0,0), 1(1,0,1,0,1,0,0), I(1,1,0,1,1,0,0),
1(1,0,1,1,1,0,0), I(1,-1,1,1,1,0,0), 1(0,1,1,1,1,0,0),
I(1,1,1,1,1,0,0), 1(1,0,1,0,0,1,0), I(1,1,0,1,0,1,0), I
I(1,-1,1,0,1,1,0), I(1,0,0,1,1,1,0), I(1,1,0,1,1,1,0),

1(0,0,1,1,1,0,0),
I(-1,1,1,1,1,0,0),
(1,0,1,0,1,1,0),
1(1,0,1,1,1,1,0). (2.5)

Sometimes, it is possible to solve the systems of IBP identities in full generality for all
values of a;; see ref. [10] for heuristic code to find these solutions.?> However, there is no known
algorithm that can find these solutions in all cases. As such, in practice one often instead
solves a system generated by a finite list of seeds ay, ..., a, in eq. (2.3). If this finite list is large
enough, it will still allow the reduction of the integrals of interest in terms of a minimal basis.
In practice, seeds corresponding to trivial sectors are often excluded, and we also do this here.

For later convenience, we define the following quantities for a given member of an integral
family, I(ay,...,ay):

tzZl, TEZai, dEr—t:Z(ai—l), SE—ZCI,Z‘. (2.6)
a; >0 a; >0 a; >0 a; <0

The quantity ¢ counts the total number of propagators, r the sum of propagator powers, d the
total number of propagator repetitions, and s the total numerator power. Since repetitions
of propagators are typically depicted by dots on the respective edge in the graph, d is also

3See also ref. [28].

referred to as the total number of dots. In any given problem one typically has one so-called
top sector in each integral family, giving a maximal list of which a; are allowed to be positive;
the other a; will always be zero or negative. Thus there is a maximum value for ¢, tmax,
determined by the top sector.

A number of heuristic seeding strategies have been proposed by different authors and
implemented in different IBP codes, starting with Laporta’s golden rule [3]. We will refer

to these strategies as follows:*

e Rectangular Seeding: use all seeds aq,...,a, such that r < rp. and s < spyax for
choices of rpax and spax that include the integrals of interest.

e Golden Rule: use seeds constrained as above, and also demand that d < dpy.x for a
choice of dpax that includes the integrals of interest, so that the integrals corresponding
to the seeds keep the same number of propagator repetitions in lower sectors.

o Improved Seeding: use seeds constrained as above, and also require s <t —1[+ 1 for a
choice of parameter [that includes the integrals of interest, so that integrals in lower
sectors also have fewer powers of ISPs in the numerator.

For future reference, we will mention that in the case that dy.x = 0, the additional condition
imposed by improved seeding can be simply written as > ;a; > [— 1.

In general one wants to define ryax, Smax, and dmax to be as small as possible while still
including the integrals of interest. However, Laporta observed certain minimal values for these
parameters below which one does not achieve a complete reduction [3]. In particular, he noted
that one sometimes needs to take at least dpax = 1, even if d = 0 for all integrals of interest.

In the example we use to benchmark different approaches throughout this paper, as in
ref. [15], we would like to reduce the integral I(1,1,1,1,1,1, —3) to master integrals, so we
need spax = 3. We consider cases with either ry,x = 6 or ryma = 7, following Laporta’s
observation that one sometimes needs d,.x = 1 even if one is only interested in integrals with
d = 0. To gain an intuition about the size of the corresponding systems of IBP equations,
we list some examples:

¢ Rectangular seeding with spax = 3 and rypax = 7 yields 14,588 seeds.
e The golden rule with spax = 3, Tmax = 7, and dpax = 1 yields 2,148 seeds.
o Improved seeding with spax = 3, Tmax = 6, dmax = 0, and [= 4 yields 92 seeds.

As mentioned above, IBP systems for Feynman integrals are systems of linear equations
with rational function coefficients. Historically, such systems were solved using symbolic
algebra. However, this proved excessively cumbersome for larger systems, and in recent years
the community has instead turned to methods using finite fields [13, 30-32]. By substituting
in integers for the kinematic parameters, one can solve the IBP system over a finite (large
prime) field with much less computational cost than solving the full symbolic system. If one
does this for a sufficient number of different points, one can use finite field reconstruction

“While Laporta’s golden rule was proposed first [3], more recent implementations of IBP codes have been
using rectangular seeding [29] before the improved seeding strategy was discovered [4, 14-16].

techniques to determine the rational functions present in the solution. Meanwhile, solving at
just a single point is enough to identify a list of master integrals for the system, provided
the point is sufficiently generic.

Throughout this paper, once we have generated a set of seeds and the resulting system
of IBP equations, we use Kira [11, 12] to check that the system that we have generated
is sufficiently large to provide a full reduction of the target integral I(1,1,1,1,1,1,—3) in
terms of the master integrals. To do this, we have Kira perform only its initialization step,
which uses pyRed to solve the system over a finite field at a single kinematic point, and
check whether the number of master integrals is equal to the number 16 found by solving
the rectangular system.

2.2 Genetic algorithms and machine learning

Genetic algorithms are heuristic methods used to search for solutions that score well on
an evaluation metric by emulating evolution via natural selection. They begin with a
population of individuals, represented by a DNA-like string of symbols (typically, integers),
their “genotype”. These genotypes are mutated, and crossed-over i.e. the genotypes of two
individuals are mixed, to create a new population, from which the fittest elements (i.e. the
ones with the best evaluation metric) are selected. This process is repeated over a number
of generations, in the hope of creating populations with better evaluation metric, while still
retaining the genetic diversity that allows for further improvement. See e.g. ref. [21] for a
textbook introduction to genetic algorithms.

Genetic algorithms have several features which have motivated a variety of methods. We
mention several, highlighting the methods used in parts of this work:

e There are many ways to select for the best individual, and selection can happen
both on the parent (who will mate) and on the children (who will survive). Instead
of strictly selecting the best individuals, one can select individuals randomly with
probability weighted by their fitness in various ways. Examples include roulette
selection, where probabilities are strictly weighted by their fitness, tournament selection,
where individuals are compared in random smaller groups and only the winners from
those groups are preserved, and Boltzmann selection, in which individuals are selected
via a thermal partition function [33].

o It is observed that population diversity tends to decrease from one generation to the
next. As a cure, instead of just maintaining a single population, one can maintain
a number of islands, sub-populations which are independently subject to crossover
and selection. These islands interact with each other more rarely, for example by
occasionally removing the worst-performing islands and re-populating them from the
best-performing ones. Islands can help to preserve a greater diversity of individuals in
order to explore a wider range of possibilities.

e The method heavily depends on the representation chosen for the genotype, and the
operators chosen for crossover. For example, one could randomly choose elements of
the child to come from one or the other parent, or one could form the child by splicing

Figure 2. A tree diagram for a simple program given in the main text.

part of one parent with the complementary part of another, randomly choosing the
position of the splice.

Genetic programming is a particular use of genetic algorithms, in which the individuals
in the population each represent a program; see e.g. ref. [22] for an introduction. Typically,
these programs are represented as trees of operations. For example, the Python function

def func(argl,arg2):
return argl>0 and arg2<argl+3

can be represented by the tree shown in figure 2.

A program’s fitness is determined by running it on a given set of inputs and evaluating
the output. Mutation can involve randomly substituting individual elements of a tree or
replacing whole sub-trees with new randomly generated sub-trees; the latter importantly
allows the tree to grow if a small sub-tree is replaced by a larger one. Crossover can involve
replacing a sub-tree of one tree with a sub-tree from the other tree.

funsearch [23] can be thought of as a genetic programming algorithm with a few
atypical features:

o Instead of representing programs as trees, it represents programs as text, specifically as
Python code.

o Instead of mutation and crossover based on elements of trees, it uses a Large Language
Model (LLM). Specifically, it uses a pretrained language model, finetuned for code
generation (e.g. Copilot [34], Codey [35], CodeLlama [36], CodeStral [37]). The LLM
is prompted with text from two programs from the population ordered by fitness and
labeled vO and v1 as well as an incomplete function labeled v2. It then completes the
function labeled v2, which is entered into the population subject to selection. This both
introduces random variation, as the LLM will typically not reproduce the functions vO
or v1 verbatim, and a kind of crossover, as the function v2 generated will be influenced
by which functions v0 and v1 the LLM is presented with.

e As the code generated can contain arbitrary Python functions, it is imperative that
evaluation of programs in funsearch take place in an appropriate sandbox environment,
as these functions will not always compile or run, and may have adverse consequences
for the system if they do.

Of the features described earlier, funsearch also uses Boltzmann selection and islands, with
the number of islands being ten in the public implementation we make use of.

While we in practice want to minimize the time spent on the IBP reduction of a set of
Feynman integrals to master integrals, the number of seeds and thus IBP equations used to
solve the system provides an easier-to-measure proxy for this quantity.> Within the context
of genetic algorithms, such a minimization problem is typically formulated as a maximization
problem for the fitness. Throughout this paper, we determine the fitness f of an attempt to
generate a seeding strategy as follows. If Ng is the number of seeds selected by a seeding
strategy and Npg is the number of seeds in the rectangular IBP system we allow the seeding
strategy to select from, then the fitness is

e f = —Ng if the seeds solve the system,

e f = —Ng— Np if the seeds do not solve the system for all algorithms except for our
initial attempt in section 3, where we take f = —Ng — N — 1.

If the seeds successfully solve the IBP system in terms of a minimal basis of master integrals,
the strategy is assigned a fitness score equal to minus the number of seeds used, thus
incentivizing strategies that select a small number of seeds. However, if the seeds do not
solve the system, the score receives an extra penalty of Nr. This is because in principle if
one has failed to solve the system one needs to try again with a list of seeds that we already
know can solve the system, in this case the rectangular system. (For one of the algorithms
we try, we moreover punish failure to solve a bit more strongly than successfully solving
the system with the rectangular system, hence the —1.)

In some of the runs of strongly typed genetic programming, we also experimented with
penalizing lists of zero seeds more strongly: such systems are easy to generate and they score
better than all other strategies that fail to solve the system. Thus for some runs we doubled
the penalty for lists of zero size in order to avoid this local maximum. In practice, this did
not appear to make a significant difference in performance.

3 Initial attempt: genetic algorithm

We began with a genetic algorithm that used very little information about the specifics of
the problem, to provide a baseline and check whether the application of more sophisticated
methods is required.

Suppose that we follow rectangular seeding and end up with a list of Ng seed integrals.
We can specify a subset of seeds with a binary vector of length Ng, including only the
relations generated by seeds corresponding to a 1 in the vector. We performed a genetic

5The time spent on a given IBP reduction depends on the implementation and the computer environment
and thus is liable to vary in unpredictable ways.

algorithm on vectors of this form, generating an initial population where each entry has
a 50% chance to be 0 or 1.

We made sure that the vector with highest fitness was always kept and otherwise used
roulette selection with probability proportional to Ng + f, with a 5% chance to mutate a
random entry of each vector and a crossover operation that splices complementary pieces
of two vectors together at a random point. Pairs of vectors were subject to crossover 90%
of the time and remained unchanged the remaining 10%.

For the genetic algorithm in this section, we began with rectangular systems with spax = 3
and either ryax = 6 or ryax = 7, which have 6,764 and 14,588 seeds, respectively. The genetic
algorithm described in this section performs relatively poorly at this task, but still manages
to make progress. Typically, an initial population with between 100 and 500 random vectors
will find one that successfully solves the system with half the number of seeds as in the
rectangular system. Subsequent generations generally lead to much less progress, though,
with 100 generations only able to cut 500 additional seeds from the total and appearing to
slow down with additional generations. Running 100 generations on a single CPU® took
about 24 hours. We also tried beginning with a smaller system of seeds already included in
the population, namely one that followed improved seeding with Spmax = 3, "max = 6, dmax = 1,
and [= 4, but in this case the algorithm never found any better solutions.

Given the lack of success of this initial attempt with a classic genetic algorithm, it is
warranted to employ more advanced versions of genetic algorithms, which we will do in
the subsequent sections.

4 Exploration with Funsearch

The authors of funsearch recommend using it in situations where it is unclear how to
design a genetic algorithm to take advantage of the structure of a problem, as a tool for
exploration [23]. This is precisely how we will use it here.

Specifically, we built off of the fork of funsearch in ref. [38] which implements two features
left off of the initial authors’ public implementation, namely sandboxing (via containerization,
which can be done via Podman [39] or Docker [40]) and calls to the LLM (implemented via the
11m package [41]). We modified this code slightly, both to use an alternate containerization
software available on our local cluster (Apptainer [42, 43]) and to call Kira outside of the
container to keep the container environments lightweight. We use Code Llama 7B [36], a
light-weight model trained for code completion, as our LLM.

To use funsearch, one must specify an evaluation function and an initial function titled
priority which will be included in the initial prompts to the LLM labeled priority_vO.
We use essentially the same evaluation function as described in the previous section, with
the exception of the extra —1 penalty for failing to solve the system which we did not find
to be necessary here.

As above, we begin with a rectangular system, this time specifically with rp.c = 7.
We then use the priority functions generated by the LLM to choose which seeds to use
based on the list of a; for that seed.

5We used either an AMD EPYC 7F72 or an Intel Xeon CPU E5-2698 v4 @ 2.20GHz, depending on the run.

,10,

def priority(a_list: list[int]) -> bool:
"""Decides whether to include the seed a_list in the ibp system.
Returns True or False."""

len_alist=len(a_list)

#Number of propagators, which are entries in a_list greater than zero
num_props=sum(map(lambda x: 1 if x>0 else 0,a_list))

#Numbers of numerators, which are entries in a_list less than zero
numerators=sum(map(lambda x: 1 if x<0 else 0,a_list))

#Dots, the sum of all entries in a_list greater than one
dots=sum(map(lambda x: x-1 if x>1 else 0,a_list))

#The simplest choice: if there is more than one dot, exclude the seed
#else include it
if dots>1:
return False
else:

return True

Figure 3. Priority function used for the initial prompt to funsearch, corresponding to a golden rule
system with dpyax = 1.

We tried several initial priority functions. In practice, we found the code in figure 3 to
be the most successful. Note that here comments matter: the LLM is given this function as
a prompt including comments. As such, it will be biased towards generating code that would
typically have comments of this sort, for example code that defines similar variables. This
initial priority function corresponds to a golden rule system with dpax = 1 with 2,148 seeds.

While the initial genetic algorithm found a better solution fairly quickly and then
advanced steadily but slowly, funsearch advanced in large jumps. We used funsearch’s
default settings, which resulted in a much smaller population but, because this meant fewer
evaluations of new solutions, much faster generations. It fairly quickly found a solution with
444 seeds, and after 1000 generations had been able to find a solution with 214 seeds, shown
in figure 4. Using the same CPU resources of the previous section along with an Nvidia
A100 or V100 GPU, this took about 16 hours. Running 1400 more generations found a
solution with 92 seeds, shown in figure 5, taking another 22 hours. This solution turned
out to be equivalent to the improved seeding strategy with dpax = 0 and [= 4. Finally,
running for an additional 24 hours with 1400 more generations found a solution with 88 seeds,
shown in figure 6. It achieved this solution by imposing the same conditions as improved
seeding, with the extra condition that the number of propagators be four or more, t > 4, thus
excluding seeds with three propagators which would otherwise be included in the system.

— 11 —

def priority(a_list: list[int]) -> bool:
"""Decides whether to include the seed a_list in the ibp system.
Returns True or False."""
#The number of negative entries in a_list
num_negs=sum(map(lambda x: 1 if x<0 else 0,a_list))

if num_negs>1:
return False

#The number of dots in a_list
dots=sum(map(lambda x: x-1 if x>1 else 0,a_list))

if dots>0:
return False

even_numbers=sum(map(lambda x: 1 if x
if even_numbers>4:
return False

#The number of positive entries in a_list
num_props=sum(map(lambda x: 1 if x>0 else 0,a_list))

if num_props+num_negs<4:
return False

return True

Figure 4. A function generated by funsearch which gives 214 seeds for our test case.

While we do not know if this strategy is only valid due to a quirk of the problem we are
considering, it is the case that it results in a smaller number of seeds than any seeding
strategy currently on the market would provide.

We note here that the solutions found by funsearch differ from what a human program-
mer would propose in several ways. There are several lines of code that simply have no effect
in our test case: for example, the code in figure 5 demands that the number of propagators
is two or greater, but this is already ensured by excluding trivial sectors, while the code in
figure 6 has several lines imposing conditions on a; less than a fractional number, which as
all a; are integer are equivalent to a condition on a; less than one. Others impose unusual
conditions that happen to restrict the list of seeds but are probably not generally useful
outside of this context, in a way that would be clear to a human familiar with the problem:
for example, the demand in figure 4 that there be no more than four even numbers in the
a;. Others still are described misleadingly: the code in figure 5 and in its “descendant” in
figure 6 define a variable nz that they describe as the number of non-zero elements in a_list,

— 12 —

def priority(a_list: list[int]) -> bool:
"""Decides whether to include the seed a_list in the ibp system.
Returns True or False."""\n #The number of dots in a_list
dots=sum(map(lambda x: x-1 if x>1 else 0,a_list))

if dots>O0:
return False

#The number of positive entries in a_list
num_props=sum(map(lambda x: 1 if x>0 else 0,a_list))

if num_props<2:
return False

#Number of nonzero elements in a_list
nz=sum(a_list)

if nz<3:

return False

if nz>8:
return False

#Number of elements less than 1 in a_list
nl=sum(map(lambda x: 1 if x<1 else 0,a_list))

if ni1>4:
return False

return True

Figure 5. A function generated by funsearch which gives 92 seeds for our test case, equivalent to
improved seeding with dy.x = 0 and [= 4.

but actually define the number as the sum of a;, which as mentioned in section 2.1 can be
constrained to replicate the improved seeding strategy in cases without dots such as this one.

We were curious to what extent the results we obtained were influenced by the level of
detail present in our prompt, so we investigated what happens when we use a prompt with
an essentially empty priority function, shown in figure 7. This initial function results in a
rectangular system with 14,588 seeds. After running for a total of 34 hours funsearch was
able to find a solution with 476 seeds, shown in figure 8. Further runs from this point did
not find substantial improvements, suggesting that without more extensive input funsearch
plateaus here. The resulting code is quite strange, with many redundant or irrelevant

,13,

def priority(a_list: list[int]) -> bool:
"""Decides whether to include the seed a_list in the ibp system.
Returns True or False."""
if len(a_list) < 4:
return False

dots=sum(map(lambda x: x-1 if x>1 else 0,a_list))

if dots>0:
return False

#The number of positive entries in a_list
num_props=sum(map(lambda x: 1 if x>0 else 0,a_list))

if num_props<2:
return False

#Number of nonzero elements in a_list
nz=sum(a_list)

if nz<3:
return False

if nz>8:
return False

#Number of elements less than 1 in a_list
nl=sum(map(lambda x: 1 if x<1 else 0,a_list))

if n1>3:
return False

#The number of entries in a_list that are less than 1/2
ni2=sum(map(lambda x: 1 if x<1/2 else 0,a_list))

if n12>3:
return False

#Number of entries that are less than 1/4
ni4=sum(map(lambda x: 1 if x<1/4 else 0,a_list))

if n14>3:
return False

#Number of elements less than 1/8
ni8=sum(map(lambda x: 1 if x<1/8 else 0,a_list))

if n18>3:
return False

#Number of elements less than 1/16
nil6=sum(map(lambda x: 1 if x<1/16 else 0,a_list))

if n116>3:
return False

return True

Figure 6. A function generated by funsearch which gives 88 seeds, thus performing better than the
improved seeding strategy for our test case.

— 14 —

def priority(a_list: list[int]) -> bool:
"""Decides whether to include the seed a_list in the ibp system.
Returns True or False."""

return True

Figure 7. An essentially empty priority function used to prompt funsearch in test cases, which
returns the original rectangular system.

conditions on counts of ones and zeroes described in repetitive and for the most part useless
ways and some odd conditions on adjacent entries.

In general, funsearch’s best solutions suggest that in addition to the constraints usually
imposed during seeding that we discussed in subsection 2.1 (such as restrictions on t,r,d,
and s) we should also consider restrictions on the full sum of a; and on the count of entries
equal to 1 or 0. We will use these insights in the next section to more efficiently find our best
seeding strategy using a more traditional approach to genetic programming.

,15,

def priority(a_list: list[int]) -> bool:
"""Decides whether to include the seed a_list in the ibp system.
Returns True or False."""
If there are too many 1’s, we can’t do anything.
if a_list.count(1) > 10:
return False

If there are too many 0O’s, we can’t do anything.
if a_list.count(0) > 10:
return False

If there are too many 1’s and O’s, we can’t do anything.
if a_list.count(1) + a_list.count(0) > 12:
return False

Check if there are enough 1’s and 0O’s.
if a_list.count(1) + a_list.count(0) >= 6:
return True

If there are not enough 1’s and 0’s, we can’t do anything.
if a_list.count(1l) + a_list.count(0) <= 4:
return False

Check if we are in a trivial solution.
for i in range(len(a_list) - 1):
if a_list[i] == 0 and a_list[i + 1] == O:
return False

Check if we are in a trivial solution.
for i in range(len(a_list) - 1):
if a_list[i] == 1 and a_list[i + 1] == 1:
return False

Find the number of 1’s and 0’s.
ones = a_list.count(1)
zeros = a_list.count(0)

If there are not enough 1’s, we can’t do anything.
if ones < 3:
return False

Find the number of 1’s in groups of 3 or more.
groups = 0

If there are too many groups, we can’t do anything.

if groups > 4:
return False

Figure 8. The best priority function found by funsearch from the essentially empty prompt in fig 7,
resulting in 476 seeds.

,16,

5 Improved heuristics via strongly typed genetic programming

Based on the exploration in the previous section, we now use genetic programming to
evolve seeding strategies, which places more restrictions on what kind of conditions can arise
compared to funsearch. In genetic programming, one must specify

the arguments of the program to evolve,

a list of primitive elements, which are functions that may be included in the program,

optionally, a list of terminal elements, elements which are not functions or arguments,

and

as in genetic algorithms in general, one also needs an evaluation function.

We will specifically use strongly typed genetic programming, in which our primitive elements
have specified data types for input and output which constrain which elements can follow
each other. We employ the implementation of strongly typed genetic programming in the
DEAP package [24]. Specifically, we use that package’s eaSimple algorithm, with tournament
selection using three-member tournaments.

As above, the program we want to evolve will be a function to decide whether or not
to include a seed with a given list of a; in the system, returning True if the seed is to be
included and False if not. In principle, one has a large number of choices for how to specify
the arguments of the program and the list of primitive elements consistent with this goal. One
intuitive choice would be to let the arguments be the individual a;, and then have primitive
elements that include simple operations on integers (greater than >, less than <, equal to =,
sum + and difference —), boolean operations (and, or, not), and terminal elements including
simple integers (say, between —10 and +10). However, we find that this choice performs
poorly, often not even finding a valid solution.

We can gain more insight by looking at the solutions which were successful in funsearch.
Typically, these solutions did not involve imposing conditions on the individual a;. Instead,
they used a relatively small list of variables constructed out of the a;, including sums of the
full list, total propagator and numerator powers, number of dots, number of propagators,
and number of zeros. Inspired by this, we chose the following lists of arguments, primitives,
and terminal elements for our genetic programming.

As arguments, we chose

sum_gt_0: the sum of all a; greater than zero,

e sum_gt_1: the sum of all a; greater than one

e minus_sum_lt_O: minus the sum of all a; less than zero,
e sum_all: the sum of all a;,

e count_gt_0: the number of a; greater than zero,

e count_gt_1: the number of a; greater than one,

,17,

count_1t_0: the number of a; less than zero,

count_eq_0: the number of a; equal to zero,

count_eq_1: the number of a; equal to one, and

count_all: the length of the list of a;.

As primitives, we chose
e and_: and, which takes two booleans returning a boolean,
e gt: greater than, which takes two numbers returning a boolean,
e 1t: less than, which takes two numbers and returns a boolean,
e eq: equal to, which takes two numbers and returns a boolean,

e add: addition, which takes two numbers returning a number, and

sub: subtraction, which takes two numbers returning a number.
Finally, as the terminal elements we chose

e True,

° O’

e r_max,

e S_max,

and the integers between —10 and +10.

When we construct the initial population, we use DEAP’s function genHalfAndHalf to
generate a random valid tree with depth between 3 and 5. genHalfAndHalf has a 50% chance
of generating a tree where each leaf has the same depth, and a 50% chance of generating a
tree where each leaf can have different depth. When building trees, DEAP first determines
whether a node will be terminal, then chooses uniformly between the appropriate bullet
points above, choosing an argument or terminal element for terminal nodes and one of
the other primitives for non-terminal nodes. We thus include True as a primitive element
because DEAP requires there to be a terminal element of each type, and we list 0 separately
in addition to being included in the integers as constraining something (for example dots)
to zero should be a frequent move, so DEAP would have an equal chance of completing a
branch of a tree with 0 specifically and completing it with a random uniformly chosen integer
between —10 and +10 inclusive.

For each generation, two individuals have a 50% chance to crossover, replacing a randomly
chosen sub-tree of one with a randomly chosen sub-tree of another, and a 10% chance to
mutate, replacing a randomly chosen sub-tree with a freshly generated sub-tree of depth 0 to
2. Both operations are restricted to never generate individuals with depth greater than 17.

,18,

Figure 9. A tree diagram for a program generated via strongly typed genetic programming in DEAP
which achieves our best-case seeding of 88 seeds.

Running with a population of 300, we found that we could find the best solution found
by funsearch, with 88 seeds, in fairly few generations, with one run finding this seeding
strategy in only 18 generations while others found it in 30-40.” A particularly interesting
function that achieved this best-case seeding is depicted in figure 9.

The function in figure 9 may appear quite complicated, however, it can be readily seen
that many of the conditions it imposes are redundant. Cleaning redundant conditions and
simplifying by removing statements which are always true in the context of our example,

we are left with
4sum_all + count_1t_0 > 15sum_gt_1 + 12. (5.1)

This result achieves our best-case seeding in a fairly interesting way. As the multiplier on
sum_gt_1 is quite high, it appearing on the right-hand size of the inequality forces this term
to vanish, as it is impossible for the left-hand size to be high enough to be greater than it.
This enforces d = 0. If there is at least one numerator then we have > a; > 3, which is
equivalent to the condition imposed by improved seeding. If we have no numerators then we
instead have Y a; > 3, which in this situation demands that there be at least four propagators,
the additional condition that takes the number of seeds down to 88.

The results above were obtained with minimal tuning of the hyperparameters, such as
the probabilities for different actions during the generation of the trees, the probability for
crossover and mutation, and the maximal depth. It is likely that a scan over hyperparameters
or the re-inclusion of individual a;s with low probability leads to even smaller systems of
seeds. We leave corresponding investigations for future work.

6 Conclusions and discussion

Integration-by-parts reduction is a frequent bottle neck in state-of-the-art calculations in
perturbative Quantum Field Theory, making it a crucial target for improvements. In this

"The longest of these runs ran for eight hours on a single CPU, with some running for less than three.

,19,

paper, we have applied machine-learning techniques to this problem, adding to a short
but growing list of applications of machine learning to analytic calculations in theoretical
high-energy physics [44-47].

Surprisingly simple changes to the heuristics used for seeding integration-by-parts systems
can have a dramatic effect. In such an environment, the ability to try a large number of
heuristics, recombining the best parts to form new ones, has great potential, reproducing in a
way the experimentation that can occur within a scientific community. We have found that,
using methods from genetic algorithms, we can rediscover the latest strategy from known
seeding algorithms [4, 14-16] and even modestly improve on it. Knowing very little about
the kinds of methods we needed, we could find these improvements via the methodology of
funsearch [23], generating code with a Large Language Model. With a bit of inspiration
from these results, we could use a more classic type of strongly typed genetic programming
instead, leading to much faster convergence.

In this paper, we have provided a proof of principle that genetic programming can be
used to improve seeding strategies, using a simple two-loop Feynman integral as a benchmark.
In the future, it would be interesting to consider also larger sets of more complicated
Feynman integrals. In contrast to other machine-learning methods, the strategies produced
by funsearch and strongly typed genetic programming are fully interpretable. Considering
a range of different integrals thus promises to reveal fully general strategies that can be
included in future IBP software. Complementarily, we could also imagine the machine-learning
techniques being incorporated into IBP software to find optimal seeding strategies tailored
to a given problem and corresponding set of integrals. As current methods rely on solving
the same IBP system many times on different kinematic points for rational reconstruction, it
should be possible to use genetic programming over the course of a reconstruction, optimizing
the seed list while evaluating at different kinematic points so as to make the subsequent
evaluations faster.

In the genetic algorithms used in this work, we began with a large system of seeds and
applied a filter. One could imagine progressing in the opposite way, beginning with a small
list of seeds containing the integrals of interest and learning how to expand efficiently to
solve the full system. We will explore this idea in future work [48].

Acknowledgments

We thank Justin Berman, Frangois Charton, Jordan Ellenberg, Garrett Merz, Maja Rudolph
and Johann Usovitsch for fruitful discussions, Baptiste Roziére and Alexander Smirnov for
communication, Frangois Charton and Johann Usovitsch for comments on the manuscript
as well as Cynthia Rodriguez for initial collaboration. Parts of the computations done for
this project were performed on the UCloud interactive HPC system, which is managed by
the eScience Center at the University of Southern Denmark. Other parts were performed
on SCIENCE AI Centre’s GPU cluster at the University of Copenhagen. The work of MvH
and MW was supported by the research grant 00025445 from Villum Fonden. MW was
further supported by the Sapere Aude: DFF-Starting Grant 4251-00029B. MW moreover
acknowledges the warm hospitality of the Data Science Institute, University of Wisconsin.

— 20 —

A Integration-by-parts identities for the benchmark integral

In this appendix, we provide the explicit form of the IBP identities for the integral depicted
in fig 1, which is the example we use as a benchmark for all machine-learning approaches
in this paper.

In total, there are 8 IBP identities for general indices a;:

(D —as — a7y — a4 — 2@1)[((11, as, as, a4, as, e, CL7)

—asl(ay — 1,a9,a3 + 1,a4,as,a6,a7) + azl(ay,az — 1,a3 + 1, a4, as, ag, az)

+ a7m4I(a1, ag, as, a4, as, g, At + 1) — a4I(a1 — 1, as,as, a4 + 1, as, ag, CL7)

— a7I(a1 —1,a9,as, a4, as, ag, a7 + 1) + a4I(a1, ag,as, a4 + 1, as, ag, a7) =0, (Al)
(D —2ay — ag — a3 — as)I(a1, a2, a3, aq, as, ag, az)

+ agl(al — 1,a2,a3 + 1,a4,a5,a6,a7) — agl(al, ag — 1,@3 -+ 1, a4, as, aﬁ,a7)
+agl(ai,az,as3,a4,a5,a6 + 1,a7) —asl(a,a2 — 1,as,a4,a5 + 1, ag, ar)

—agl(ay,a2 — 1,a3,a4,a5,a6 + 1,a7) + myasI(ai,as,as,aq4,a5 + 1,a6,a7) =0, (A.2)
(—aq +a1)I(a1,az,as,a4,as,a6,a7) —arl(a; + 1,a2,as3,a4 — 1, a5, ag, ay)

+a1l(a1 + 1, a9, as,a4,as,a¢,a7) + agl(ay — 1,as,a3 + 1, aq, as, ag, az)

—asl(ay,a2 — 1,a3 + 1,a4,as,a6,a7) — azl(ay,az,a3 + 1,a4 — 1, a5, ag, az)

+ a3[(a1, as,as + 1,a4,as,ag — 1,a7) + a4I(a1 —1,a9,a3,a4 + 1, as, aﬁ,a7)

+ (—arm3 + 2a7 + azmy)I(ay, as, az, ay, as, ag, ay + 1)

—aql(ay,az,a3,a4 + 1,as5,a¢,a7) + a7rl(a; — 1, a9,a3, a4, as, ag, a7 + 1)
—a7I(a1,a2,a3,a4—1,a5,a6,a7+1) =0, (A3)
(—ag + ag)I(a1,az,as,aq,as,a6,a7) + azl(ay, a2 + 1, a3, aq, as,a6 — 1,a7)

—agl(a1,a2 + 1,a3,a4,as5,a6,a7) + asl(ar — 1,a2,a3 + 1, a4, as, ag, ay)

—asl(ay,a2 — 1,a3 + 1,a4,as,a6,a7) — azl(ay,az,a3 + 1,a4 — 1, a5, ag, az)
+asl(ai,as,a3 + 1,a4,a5,a6 — 1,a7) — asl (a1, a2 — 1,a3,a4,a5 + 1, ag, ar)
+ asI (a1, as,a3,a4,a5 + 1,a6 — 1, a7) + (maas — asm3)I (a1, as, az, as, a5 + 1, a6, ar)
—agl(ar,a2 — 1,as3,a4,as,a6 + 1,a7) + agl (a1, az,as,aq,as,a6 + 1,a7) =0, (A.4)
aQI(al — 1, as + 1, as, a4, as, ag, a7) + (CLQ - ag)I(al,ag,ag, a4, as, ag, a7)

—agl(ar,a2 + 1,a3 — 1,a4,a5,a6,a7) — azl(ay — 1,a2,a3 + 1, a4, as, ag, az)

—+ (131(611, as — 1,a3 + 1,a4,a5,a6,a7) — aﬁl(al, az,as,a4,0as, 06 + 1, a7)

+ 2a51(a; — 1,a9,a3,a4,a5 + 1,a6,a7) + asl (a1, a2 — 1,a3,a4,a5 + 1, ag, ar)

— a5I(a1, as,as — 1, a4, as + 1,@6,617) — a5I(a1, az,as3,04,as + 1,&6, a7 — 1)

+ (myas)I (a1, az2,as,aq,a5 + 1,a¢,a7) + agl(a1,as — 1,as3,a4,as,a6 + 1, ar)

—agl(a1,a2,a3 — 1,a4,a5,a6 + 1,a7) + agl(ar,az,a3,a4 — 1,a5,a6 +1,a7) =0, (A.5)

— 21 —

(—a3 + al)I(al,aQ,a3,a4,a5,a6, a7) + all(al +1,a92 — 1, a3, a4,a5,a6,a7)

—a1l(ay + 1,a9,a3 — 1,a4,as,a6,a7) + azl(ay — 1,a9,a3 + 1, a4, as, ag, az)
— a3[al,as — 1 ,a3 + 1 ,Qa4,05, 06, Q7 (CL7WL4) (al, az,as, a4, as,ag, a7 + 1)
+aql(a; — 1,a9,a3,a4 + 1,a5,a¢,a7) — agl(ay,a2,a3 — 1,a4 + 1, a5, ag, ay)

() +

(ar) —
+ a4I(a az,as, a4 + 1, as, g — 7) — a4I(a1, az,as3, a4 + 1 a5,a6,a7)
+a7l(a; — 1,a9,a3,a4,a5,a6,a7 + 1) + 2a7l (a1, a2 — 1, a3, a4, as, a6, a7 + 1)
—arl(ai,az,a3 — 1,a4,as5,a6,a7 + 1) — arl(ay, az,as, a4,a5 — 1,a6,a7 +1) =0, (A.6)
agl(ay,as + 1,a3,a4,a5 — 1,a6,a7) — azl(a1,as + 1,as3,a4,as,a6 — 1, ar)
+ (CLQ — a2m4)l(a1,a2 + 1, ag,a4,a5,a6,a7) — 2a3](a1 — 1, as, as -+ 1,(14,@5,@6,(17)
+asl(ai,az,a3 + 1,a4 — 1,as5,a¢6,a7) + asl(ay,a2,a3 + 1,a4,a5 — 1, ag, ay)
— agl(al,ag,ag +1,a4,as5,a — 1,(17) + agl(al,ag,ag +1,a4,as5,a¢,a7 — 1)
— 2a3m4I(a1,a2,a3 =+ 1, a4,a5,a6,a7) + (CL5 — aﬁ)I(al, as, as, a4, as, de, a7)
—asl(ay,az,a3,a4,a5 + 1,a6 — 1,a7) + ag,mgl(al, az,as, a4, as + 1, a6, a7)
+ agl(a1,as,a3,a4,a5 — 1,a6 + 1,a7) — aﬁmgl(al,ag,ag,a4,a5,a6 +1,a7) =0, (A.7)
(a7 + aq — 2a1)I(a1, a9, as, a4, as,a¢6,a7) + arl(a; + 1,a9,a3,a4 — 1, as, ag, az)
+ all(al -+ 1,a2,a3,a4,a5,a6,a7 — 1) — (a1 + m4a1)I(a1 + 1,a2,a3,a4,a5,a6,a7)
— 2(13]((11 —1,a0,a3 + 1, a4, as, ag, CL7) + CL3[(CL1, az,as3 + 1,a4 — 1, as, ag, CL7)
+ a3I(a1,a2,a3 + 1,a4,a5 — 1,a6,a7) — agl(al,ag,ag + 1,&4,@5,@6 — 1,(17)
+asl(ai,az,a3 + 1,a4,as5,a6,a7 — 1) — 2asmqyl(ay, az, a3 + 1, a4, as, ag, az)
—2a4l(a1 — 1,a2,a3,a4 + 1,as,a6,a7) + (a7m§ —2a7)I(a1,as,as, a4, as,ag,a7 + 1)
+ aql(a1,as,a3,a4 + 1,as5,a¢,a7 — 1) + (a4m§ — 2myaq)I(a1,as,a3,a4 + 1,as, ag, ar)

- 20’7](@1 -]-a az, as, a4, as, ag, Ay +]-) + (I7I(CL]_, az,as, a4 —]-a as, aeg, ar +]-) = 0 . (A8)
Moreover, there is a single LI relation, namely

a3(3 —m3 +m2)I(a; — 1,as,a3,a4 + 1,as, ag, ar)

+ (ag(m3 — m3 — 1) + aa(1 + m3 — m3) + as(m3 —m3 — 1) — ag(1+m3 + m3))x
I(ay,az,a3, a4, a5, a6, ay)

+ a3(1 —m3 4+ 3m3)I(ay, as, a3, a4 + 1, a5, ag, ar)

+ ag(m3m3 — 3m3 — m3)I (a1, az, a3, aq, as, ag, a7 + 1)

+ 2a6m3[(a1,a2,a3,a4 —1,as,a6,a7 + 1) — 2a3l (a1, az,a3,a4 + 1, a5, a¢,a7 — 1)

—2m3aql (a1, as,a3,a4,a5 + 1,a6 — 1,a7)

+ ag(m3 +m3 —1)I(a1, a2 — 1,a3, a4, a5 + 1, ag, az)

+ ag(m3 — 3m3 — DI (a1 — 1, as, a3, a4, as, ag, a7 + 1)

+asm3 (1 +m3 — m3)I(ay, az, a3, as, as + 1, ag, az)

+ a5(1 — m3 — m3)I(ay, a9, as, as, as, ag + 1, ar)

+ 2a51(ay,az,as,a4,a5 — 1,a6 + 1,a7)

+ as(m3 —m3 — 1)I(a1, a2 — 1,0a3,a4,as,a6 + 1,a7) = 0. (A.9)

— 922 —

Data Availability Statement. This article has no associated data or the data will not

be deposited.

Code Availability Statement. This article has no associated code or the code will not

be deposited.

Open Access. This article is distributed under the terms of the Creative Commons Attri-

bution License (CC-BY4.0), which permits any use, distribution and reproduction in any

medium, provided the original author(s) and source are credited.

References

[1]

2]

F.V. Tkachov, A theorem on analytical calculability of 4-loop renormalization group functions,
Phys. Lett. B 100 (1981) 65 [INSPIRE].

K.G. Chetyrkin and F.V. Tkachov, Integration by parts: the algorithm to calculate B-functions in
4 loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].

S. Laporta, High-precision calculation of multiloop Feynman integrals by difference equations, Int.
J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].

M. Driesse, G.U. Jakobsen, G. Mogull, J. Plefka, B. Sauer and J. Usovitsch, Conservative black
hole scattering at fifth post-Minkowskian and first self-force order, Phys. Rev. Lett. 132 (2024)
241402 [arXiv:2403.07781] INSPIRE].

S. Weinzierl, Feynman integrals. A comprehensive treatment for students and researchers,
Springer (2022) [DOI:10.1007/978-3-030-99558-4] [INSPIRE].

C. Anastasiou and A. Lazopoulos, Automatic integral reduction for higher order perturbative
calculations, JHEP 07 (2004) 046 [hep-ph/0404258] [INSPIRE].

A.V. Smirnov, Algorithm FIRE — Feynman Integral REduction, JHEP 10 (2008) 107
[arXiv:0807.3243] INSPIRE].

A.V. Smirnov and M. Zeng, FIRE 6.5: Feynman integral reduction with new simplification
library, Comput. Phys. Commun. 302 (2024) 109261 [arXiv:2311.02370] [INSPIRE].

A. von Manteuffel and C. Studerus, Reduze 2 — distributed Feynman integral reduction,
arXiv:1201.4330 [INSPIRE].

R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685
[NSPIRE].

P. Maierhofer, J. Usovitsch and P. Uwer, Kira — a Feynman integral reduction program, Comput.
Phys. Commun. 230 (2018) 99 [arXiv:1705.05610] [INSPIRE].

J. Klappert, F. Lange, P. Maierhofer and J. Usovitsch, Integral reduction with Kira 2.0 and finite
field methods, Comput. Phys. Commun. 266 (2021) 108024 [arXiv:2008.06494] [INSPIRE].

T. Peraro, FiniteFlow: multivariate functional reconstruction using finite fields and dataflow
graphs, JHEP 07 (2019) 031 [arXiv:1905.08019] [INSPIRE].

X. Guan, X. Liu, Y.-Q. Ma and W.-H. Wu, Blade: a package for block-triangular form improved
Feynman integrals decomposition, Comput. Phys. Commun. 310 (2025) 109538
[arXiv:2405.14621] INSPIRE].

— 23 —

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0370-2693(81)90288-4
https://inspirehep.net/literature/167175
https://doi.org/10.1016/0550-3213(81)90199-1
https://inspirehep.net/literature/171845
https://doi.org/10.1142/S0217751X00002159
https://doi.org/10.1142/S0217751X00002159
https://doi.org/10.48550/arXiv.hep-ph/0102033
https://inspirehep.net/literature/552763
https://doi.org/10.1103/PhysRevLett.132.241402
https://doi.org/10.1103/PhysRevLett.132.241402
https://doi.org/10.48550/arXiv.2403.07781
https://inspirehep.net/literature/2767745
https://doi.org/10.1007/978-3-030-99558-4
https://inspirehep.net/literature/2009154
https://doi.org/10.1088/1126-6708/2004/07/046
https://doi.org/10.48550/arXiv.hep-ph/0404258
https://inspirehep.net/literature/649280
https://doi.org/10.1088/1126-6708/2008/10/107
https://doi.org/10.48550/arXiv.0807.3243
https://inspirehep.net/literature/791167
https://doi.org/10.1016/j.cpc.2024.109261
https://doi.org/10.48550/arXiv.2311.02370
https://inspirehep.net/literature/2719314
https://doi.org/10.48550/arXiv.1201.4330
https://inspirehep.net/literature/1085338
https://doi.org/10.48550/arXiv.1212.2685
https://inspirehep.net/literature/1207080
https://doi.org/10.1016/j.cpc.2018.04.012
https://doi.org/10.1016/j.cpc.2018.04.012
https://doi.org/10.48550/arXiv.1705.05610
https://inspirehep.net/literature/1599858
https://doi.org/10.1016/j.cpc.2021.108024
https://doi.org/10.48550/arXiv.2008.06494
https://inspirehep.net/literature/1811816
https://doi.org/10.1007/JHEP07(2019)031
https://doi.org/10.48550/arXiv.1905.08019
https://inspirehep.net/literature/1735575
https://doi.org/10.1016/j.cpc.2025.109538
https://doi.org/10.48550/arXiv.2405.14621
https://inspirehep.net/literature/2789587

[15] J. Usovitsch, Improved integral reduction with Kira, talk at QCD meets gravity at CERN,
https://indico.cern.ch/event /1317494 /contributions/5697745 /attachments /2770593 /4827307
/Kira_ QCD_ meets_Gravity.pdf, CERN, Geneva, Switzerland, 13 December 2023.

[16] Z. Bern et al., Amplitudes, supersymmetric black hole scattering at O (G5), and loop integration,
JHEP 10 (2024) 023 [arXiv:2406.01554] [INSPIRE].

[17] J. Gluza, K. Kajda and D.A. Kosower, Towards a basis for planar two-loop integrals, Phys. Rev.
D 83 (2011) 045012 [arXiv:1009.0472] [INSPIRE].

[18] Z. Wu, J. Boehm, R. Ma, H. Xu and Y. Zhang, NeatIBP 1.0, a package generating small-size
integration-by-parts relations for Feynman integrals, Comput. Phys. Commun. 295 (2024) 108999
[arXiv:2305.08783] [INSPIRE].

[19] P. Mastrolia and S. Mizera, Feynman integrals and intersection theory, JHEP 02 (2019) 139
[arXiv:1810.03818] [iNSPIRE].

[20] H. Frellesvig, F. Gasparotto, M.K. Mandal, P. Mastrolia, L. Mattiazzi and S. Mizera, Vector
space of Feynman integrals and multivariate intersection numbers, Phys. Rev. Lett. 123 (2019)
201602 [arXiv:1907.02000] [NSPIRE].

[21] A.E. Eiben and J.E. Smith, Introduction to evolutionary computing, Springer, Berlin, Heidelberg,
Germany (2015) [DOI:10.1007/978-3-662-44874-8].

[22] J.R. Koza, Genetic programming as a means for programming computers by natural selection,
Stat. Comput. 4 (1994) 87.

[23] B. Romera-Paredes et al., Mathematical discoveries from program search with large language
models, Nature 625 (2023) 468.

[24] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau and C. Gagné, DEAP:
evolutionary algorithms made easy, J. Machine Learn. Res. 13 (2012) 2171.

[25] G.’t Hooft and M.J.G. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys.
B 44 (1972) 189 [INSPIRE].

[26] S. Abreu, R. Britto and C. Duhr, The SAGEX review on scattering amplitudes. Chapter 3:
mathematical structures in Feynman integrals, J. Phys. A 55 (2022) 443004 [arXiv:2203.13014]
[INSPIRE].

[27] R.N. Lee, Group structure of the integration-by-part identities and its application to the reduction
of multiloop integrals, JHEP 07 (2008) 031 [arXiv:0804.3008] [INSPIRE].

[28] D.A. Kosower, Direct solution of integration-by-parts systems, Phys. Rev. D 98 (2018) 025008
[arXiv:1804.00131] [nSPIRE].

[29] P. Maierhofer and J. Usovitsch, Kira 1.2 release notes, arXiv:1812.01491 [INSPIRE].

[30] A. von Manteuffel and R.M. Schabinger, A novel approach to integration by parts reduction,
Phys. Lett. B 744 (2015) 101 [arXiv:1406.4513] [INSPIRE].

[31] T. Peraro, Scattering amplitudes over finite fields and multivariate functional reconstruction,
JHEP 12 (2016) 030 [arXiv:1608.01902] [INSPIRE].

[32] J. Klappert and F. Lange, Reconstructing rational functions with FireFly, Comput. Phys.
Commun. 247 (2020) 106951 [arXiv:1904.00009] [INSPIRE].

[33] M.d.l. Maza and B. Tidor, An analysis of selection procedures with particular attention paid to
proportional and Boltzmann selection, in Proceedings of the 5th international conference on
genetic algorithms, San Francisco, CA, U.S.A., Morgan Kaufmann Publishers Inc., (1993),

p- 124.

— 24 —

https://indico.cern.ch/event/1317494/contributions/5697745/attachments/2770593/4827307/Kira_QCD_meets_Gravity.pdf
https://indico.cern.ch/event/1317494/contributions/5697745/attachments/2770593/4827307/Kira_QCD_meets_Gravity.pdf
https://doi.org/10.1007/JHEP10(2024)023
https://doi.org/10.48550/arXiv.2406.01554
https://inspirehep.net/literature/2794077
https://doi.org/10.1103/PhysRevD.83.045012
https://doi.org/10.1103/PhysRevD.83.045012
https://doi.org/10.48550/arXiv.1009.0472
https://inspirehep.net/literature/866930
https://doi.org/10.1016/j.cpc.2023.108999
https://doi.org/10.48550/arXiv.2305.08783
https://inspirehep.net/literature/2659772
https://doi.org/10.1007/JHEP02(2019)139
https://doi.org/10.48550/arXiv.1810.03818
https://inspirehep.net/literature/1697508
https://doi.org/10.1103/PhysRevLett.123.201602
https://doi.org/10.1103/PhysRevLett.123.201602
https://doi.org/10.48550/arXiv.1907.02000
https://inspirehep.net/literature/1742524
https://doi.org/10.1007/978-3-662-44874-8
https://doi.org/10.1007/bf00175355
https://doi.org/10.1038/s41586-023-06924-6
https://jmlr.csail.mit.edu/papers/v13/fortin12a.html
https://doi.org/10.1016/0550-3213(72)90279-9
https://doi.org/10.1016/0550-3213(72)90279-9
https://inspirehep.net/literature/74886
https://doi.org/10.1088/1751-8121/ac87de
https://doi.org/10.48550/arXiv.2203.13014
https://inspirehep.net/literature/2058000
https://doi.org/10.1088/1126-6708/2008/07/031
https://doi.org/10.48550/arXiv.0804.3008
https://inspirehep.net/literature/783745
https://doi.org/10.1103/PhysRevD.98.025008
https://doi.org/10.48550/arXiv.1804.00131
https://inspirehep.net/literature/1665547
https://doi.org/10.48550/arXiv.1812.01491
https://inspirehep.net/literature/1706809
https://doi.org/10.1016/j.physletb.2015.03.029
https://doi.org/10.48550/arXiv.1406.4513
https://inspirehep.net/literature/1301230
https://doi.org/10.1007/JHEP12(2016)030
https://doi.org/10.48550/arXiv.1608.01902
https://inspirehep.net/literature/1479771
https://doi.org/10.1016/j.cpc.2019.106951
https://doi.org/10.1016/j.cpc.2019.106951
https://doi.org/10.48550/arXiv.1904.00009
https://inspirehep.net/literature/1727558

[34] Announcing Microsoft Copilot, your everyday AI companion webpage,
https://news.microsoft.com/september-2023-event,/.

ot

Codey: Google AI’s revolutionary coding assistant webpage, https://lablab.ai/tech/google/codey.

w
D

B. Roziere et al., Code Llama: open foundation models for code, arXiv:2308.12950.

Codestral webpage, https://mistral.ai/en/news/codestral.

w
oo

J. Aalto, FunSearch GitHub repository, https://github.com/jonppe/funsearch.

= w W W W
L X N o >

N}

Podman: a tool for managing oci containers and pods GitHub repository,
https://github.com/containers/podman.

[40] D. Merkel, Docker: lightweight linuxz containers for consistent development and deployment,
Linux J. 2014 (2014).

[41] S. Willison, llm: access large language models from the command-line,
https://github.com/simonw /llm.

[42] Apptainer: application containers for linuz, https://github.com/apptainer/apptainer.

[43] G.M. Kurtzer, V. Sochat and M.W. Bauer, Singularity: scientific containers for mobility of
compute, PLoS One 12 (2017) e0177459.

[44] A. Dersy, M.D. Schwartz and X. Zhang, Simplifying polylogarithms with machine learning, Int. J.
Data Sci. Math. Sci. 1 (2024) 135 [arXiv:2206.04115] [INSPIRE].

[45] T. Cai et al., Transforming the bootstrap: using transformers to compute scattering amplitudes in
planar N = 4 super Yang-Mills theory, Mach. Learn. Sci. Tech. 5 (2024) 035073
[arXiv:2405.06107] [INSPIRE].

[46] C. Cheung, A. Dersy and M.D. Schwartz, Learning the simplicity of scattering amplitudes,
SciPost Phys. 18 (2025) 040 [arXiv:2408.04720] [INSPIRE].

[47] Y.S. Koay, R. Enberg, S. Moretti and E. Camargo-Molina, Generating particle physics
Lagrangians with transformers, arXiv:2501.09729 [INSPIRE].

[48] J. Berman, F. Charton, M. von Hippel and M. Wilhelm, in progress.

,25,

https://news.microsoft.com/september-2023-event/
https://lablab.ai/tech/google/codey
https://doi.org/10.48550/arXiv.2308.12950
https://mistral.ai/en/news/codestral
https://github.com/jonppe/funsearch
https://github.com/containers/podman
https://github.com/simonw/llm
https://github.com/apptainer/apptainer
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1142/S2810939223500028
https://doi.org/10.1142/S2810939223500028
https://doi.org/10.48550/arXiv.2206.04115
https://inspirehep.net/literature/2093808
https://doi.org/10.1088/2632-2153/ad743e
https://doi.org/10.48550/arXiv.2405.06107
https://inspirehep.net/literature/2785299
https://doi.org/10.21468/SciPostPhys.18.2.040
https://doi.org/10.48550/arXiv.2408.04720
https://inspirehep.net/literature/2816931
https://doi.org/10.48550/arXiv.2501.09729
https://inspirehep.net/literature/2869708

	Introduction
	Background
	Integration-by-parts identities for Feynman integrals
	Genetic algorithms and machine learning

	Initial attempt: genetic algorithm
	Exploration with Funsearch
	Improved heuristics via strongly typed genetic programming
	Conclusions and discussion
	Integration-by-parts identities for the benchmark integral

