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1 Introduction

Feynman integrals are an essential component of precise predictions of scattering observables
at particle colliders. Moreover, they are increasingly important for making predictions for
gravitational wave experiments. In cutting-edge calculations in perturbative quantum field
theory, one of the major bottlenecks is the large number of Feynman integrals that arise.
For this reason, in modern computational frameworks, one makes extensive use of the fact
that Feynman integrals exhibit linear relations with rational coefficients. These so-called
“integration by parts” (IBP) relations [1, 2] are then used to reduce the number of integrals
to a much smaller number of “master integrals”. Moreover, these integral relations are
essential for the calculation of Feynman integrals, forming the backbone of the “differential
equations” approach [3-6].

Given the large importance of relations between Feynman integrals in perturbative
calculations, it is perhaps not surprising that a large amount of effort has gone into under-
standing them. The classical approach to integral reduction, under the name of the “Laporta”
algorithm [7], is to construct a large set of total derivatives, which integrate to zero. One then
interprets these as relations between Feynman integrals and solves the relations using linear
algebra. This method has been very successful, and many public implementations make use
of it [8-15]. In recent years, many such approaches have been able to reach new heights by



performing the reduction on numerical phase-space points using modular arithmetic [16-18]
and reconstructing analytic results from these evaluations. In tandem, a number of approaches
have been introduced to organize the set of total derivatives that one handles. One such
approach is the “block-triangular form”, where a system of total derivatives is constructed
which allows for rapid numerical evaluations [14, 19]. Another approach recently under study,
is to organize the relations to form symbolic reduction rules [20, 21]. Moreover, there have
been a number of recent investigations into the application of machine-learning techniques to
improving the Laporta algorithm [22-24]. Beyond this, there are the so-called “syzygy-based”
approaches [25], which avoid introducing auxiliary terms into the collection of total derivatives
that one constructs. A further related approach, recently under study is that of constructing
parametric annihilators [26]. There have also been important developments in understanding
mathematical structures that control the IBP relations, in the language of “intersection
theory” [27, 28]. Here, one makes use of the “intersection product” that one can define on
Feynman integrals in Baikov representation to directly reduce integrals to master integrals.

In this work, we study the “syzygy” approach, motivated by its importance in the two-loop
numerical unitarity method [29-32]. Since its introduction in ref. [25], the syzygy approach
to relations between Feynman integrals has received a great deal of study. Beyond its original
formulation in momentum space, it has been formulated in so-called “adapted coordinates” [29,
33|, embedding space [34-36], and, prominently, the Baikov representation [37, 38]. Many
methods of computing solutions of the syzygy problem have been proposed. While some
solutions are known in closed form [33, 39], most approaches to the syzygy problem are
computational in nature. Early approaches made use of Groebner basis techniques based
upon Schreyer’s theorem [40, 41] as implemented in computer algebra packages such as
Singular [42]. More recent approaches make use of the “module intersection” strategy [43]
in Baikov representation. Another prominent approach is to reduce the syzygy problem to
that of solving linear systems [44-47]. By now, the problem of syzygy construction is well
enough understood that there exist public codes such as NeatIBP [48, 49].

In this work, we introduce a novel theoretical contribution to the understanding of
syzygies and Feynman integrals. Specifically, we uncover a deep connection between these
methods and recent applications of intersection theory [27, 50] to Feynman integrals. In recent
work [51], it was observed that the intersection theory of dimensionally-regulated Feynman
integrals greatly simplifies in the limit of large dimension — the large-¢ limit. In the first
part of our work, inspired by this observation, we study the large-e limit of total derivatives
in the syzygy formalism. In this limit, we observe that, when taken on the maximal cut, total
derivatives vanish on the critical locus of the logarithm of the Baikov polynomial: exactly
the locus studied in ref. [51]. We then formulate this observation in the language of algebraic
geometry, discussing how this geometric statement arises from theoretical considerations of
syzygies. Specifically, we highlight a connection between syzygies and the “ideal quotient”: a
geometrical operation which corresponds to the removal of branches of an algebraic variety.
This theoretical correspondence allow us to define a distinguished subset of syzygies that
we dub “critical syzygies” — those singled out in the large-¢ limit. Appealing to the Lee-
Pomeransky approach for counting master integrals [52], we then argue that, in cases where
the critical locus of the maximal cut of the Baikov is isolated, they give rise to a complete
collection of total derivatives in the large-e limit.



In the rest of our work, we study this critical syzygy construction. We first discuss
how critical syzygies arise in the context of one-loop Feynman integrals and how they are
controlled by the geometry of the critical locus of the Baikov polynomial. In particular, we
directly show how critical syzygies give rise to a complete set of total derivatives relevant for
gauge theories in cases where the critical locus of the logarithm of the maximal-cut Baikov
polynomial is isolated. We then turn to the treatment of critical syzygies at two loops, where
their construction is mathematically much more complicated and we satisfy ourselves with
computational studies. An important point is to understand how critical syzygies can be
used to generate the complete set of total derivatives beyond the large-e limit. To study this
question, we develop a computational approach to the construction of critical syzygies. We
then apply this approach to the cutting-edge two-loop pp — ttH process. In this way, we are
able to demonstrate that, in examples where the critical locus of the maximal-cut Baikov is
isolated, critical syzygies are indeed sufficient to generate all necessary total derivatives.

The paper is organized as follows. In section 2 we introduce our setup of syzygies and
surface terms in the Baikov representation. In section 3 we discuss the syzygy method in
the large-e limit and how this gives rise to the phenomenon of critical syzygies. In section 4
we discuss the analytic construction of critical syzygies for one-loop Feynman integrals and
discuss where they do and do not generate a complete set of total derivatives. In section 5,
we discuss critical syzygies at two loops and explore their completeness computationally
in a series of examples focused on the two-loop five-point pp — ttH process. Finally, in
section 6, we summarize and discuss future directions.

2 Feynman integral relations in the Baikov representation

In this section, we introduce the key objects under study: Feynman integrals and their
relations. We will organize these relations in the so-called “syzygy” formalism, particularly
focusing on the construction of “surface terms”, due to their importance in the numerical
unitarity method. Let us consider a dimensionally-regulated, I-loop Feynman integral, that
depends on F independent external momenta pi,...,pg. Each such Feynman integral can
be associated to a graph, I'. We will work in the Baikov representation [37]. We refer the
reader to ref. [53] for a recent, detailed derivation of the representation. In the Baikov
representation, a Feynman integral Ip (N, 7) associated to a graph I', with numerator N
and propagator powers I/ is given as

N

I1 e
ecprops(T) “e

In(N,7) = ¢(D) [ngg lB(z)v , (2.1)

G(pb s apE)7+l/2
where y = (D—E—1-1)/2, N = (é) +[F is the number of Baikov variables (correspondingly
the number of independent scalar products in the diagram) and c is an overall prefactor
which depends only on the dimensional regulator. The function G(p1,...,pg) is the Gram
determinant of the independent external momenta in the Feynman integral, given by

G(ar,...,am) = det(a; - aj). (2.2)

The denominator product in eq. (2.1) is taken over the set of propagators associated to the
graph I", which we collect into the set of indices, props(I'). We refer to the remaining set



of Baikov variables as “irreducible scalar products”, defining the associated set of indices
ISPs(I") through

{z1,...,2n} ={ze : e€props(I')} U{z : ieISPs(I)}. (2.3)

For notational convenience, as in eq. (2.3), we will often denote propagator or “edge” variables
as z. and ISP variables as z;. The function B(Z?) is known as the “Baikov polynomial” and
can be determined by expressing the Gram determinant of the loop momenta and external
momenta in the Feynman integral in terms of Baikov variables. The integration contour, €
in eq. (2.1), has a boundary given by the vanishing locus of the Baikov polynomial. That is,

06 = {Zc RN : B(%) =0}. (2.4)

More explicit details of the contour will not be needed for our discussion.

An important fact about dimensionally-regulated Feynman integrals is that, in an
appropriate representation, if the integrand is a total derivative, then the integral is zero.
In the Baikov representation, this arises as

0= [ F(ouB). (2.5)

where the k index is summed over all Baikov variables and the fj are rational functions of
Baikov variables. A relation such as eq. (2.5) is known as an “integration-by-parts” or “IBP”
relation. IBP relations follow as the total derivative integral can be re-written as an integral
over the integration boundary, 06. However, as the exponent 7 of the Bakov polynomial is
taken generic, the integrand vanishes on the boundary and the result is zero. As the integrand
of all Feynman integrals comes with a factor of B7, it is useful to rewrite eq. (2.5) as

0= / dNZ[B'V . fi] (2.6)
'

where we introduce the twisted covariant derivative 6, which acts as

Vifr = Ok fr + [ (0k log[B]). (2.7)

If we consider appropriate choices of f in eq. (2.5) then we are led to the IBP relations
for Feynman integrals. The space of Feynman integrands modulo these IBP relations is
known as the space of master integrals.

A typical approach to the construction of relations between Feynman integrals is to
judiciously construct f and to act on them with V. The resulting integrands then integrate
to zero by eq. (2.6). These relations can then be organized by linear algebra methods, broadly
known as the Laporta algorithm [7]. In ref. [33], it was observed that, when computing
scattering amplitudes, it can be important to be able to construct total derivatives with a
prescribed denominator structure. The content of the integral relations then is encoded in
the numerators of the relations. This leads to the definition of the vector space of so-called
“surface terms” as

N g

Surface(I', V) = N ¢ ————- =V}
HeepropS(F) e BA Heeprops(F) Zeﬁe

, (2.8)



where A and the . are non-negative integers and we require that N/ and the a; belong to

R:(C(pi-pj,m%,e)[zl,...,zN]. (2.9)

That is, the a; are polynomials in Baikov variables, but rational in scalar products of the
external momenta, particle masses and the dimensional regulator €. The set of surface
terms is therefore an infinite dimensional C(p; - p;, m%, €)-subspace of the polynomial ring R.
Understanding how to explicitly construct a basis of the subspace of Surface(T, /) relevant
for integral reduction is the main topic of this work.

In practice, controlling the integral relations via the Laporta algorithm, or constructing
surface terms can prove demanding. To this end, an observation made in ref. [25] about
Feynman integrals is that IBP relations can be controlled by studying “syzygies”, which
allow one to directly generate linear relations between Feynman integrals that do not have
raised propagator powers. We will work with syzygies in the Baikov representation, originally
studied in ref. [38] and will consider syzygies of the form

O=aoB+ Y, adiB+ Y, @zB+ Y G208, (2.10)
1€ISPs(T) ecprops(T") ecprops(T")

where the ag, a;, Ge, G, are members of R. That is, we are looking for tuples ag, a;, e, @e Of
polynomials in Baikov variables, whose coefficients are rational functions in the external
kinematics and €, such that eq. (2.10) is satisfied. We will denote the set of solutions to
eq. (2.10) as Syz(I"). Importantly, the elements of Syz(I") form an R-module. That is, taking
R-linear combinations of solutions of eq. (2.10) yields other solutions. We note that the
syzygy relation eq. (2.10) is subtly different to the one used in ref. [38], due to the a. term.
In practice, it has the effect that the ag term can be studied on the maximal cut, as all
terms proportional to propagators can be moved into the @.. This slight adjustment to the
formalism of ref. [38] will turn out to be fruitful later.

Let us consider how eq. (2.10) aids in the construction of integral relations. We note that
eq. (2.10) is a zero at the level of polynomials, i.e. it is an integrand relation. However, its form
allows one to easily apply integration by parts in order to end up with an interesting relation

that is between integrals. Specifically, by pre-multiplying eq. (2.10) with HLAVG, we

e€props(I") Ze
can rewrite it as

1
0= %
Herrops(F) Ze®

aoB” + l Z a;0;|B7] + Z <(~162er + Plyaezeae[Bv])

1€ISPs(T") ecprops(T")

(2.11)
If we now integrate this 0 over €, we can perform partial integrations on the a; and @. terms
to find a relation between Feynman integrals,

:/ dNz [Bvsf(a’y)ye] ’ (2.12)
3 HeEprops(F) Ze
where we define
1
Sr(a,v) = ag + Z GeZe — — Z 0a2+ Z (2e0ctte — (Ve — 1)ae) | . (2.13)
ecprops(T") 1€ISPs(T ecprops(T")



In this way, we see that a syzygy of the form (2.10) induces a relation between Feynman
integrals of the same dimension and without raising propagator powers. It is clear that the
Sr(a, V) of eq. (2.12) is an element of Surface(I', 7), and in fact Sp maps the set of syzygyies
to the set of surface terms. This leads us to define

SyzSurface(I', V) = {Sr(a@,v) : @ € Syz(I')}, (2.14)
the set of surface terms constructed from syzygies, a manifest subspace of Surface(T', 7). It
is important to observe that there is no claim that the space of surface terms arising from
syzygies is the full space of surface terms. Indeed, experience tells us that this is generally
not the case. One of the contributions of this work is to develop a criteria for when we
can expect the two spaces to be equal.

3 Integral relations and critical points

When working in the syzygy formalism introduced in the previous section, one is faced with
the natural question of how to construct the set of syzygies, Syz(I"). In practice, this turns out
to be a difficult problem. In this work, we make progress on this problem by using geometrical
methods to identify a subset of Syz(I") which, in a broad set of cases, generate a sufficient
set of surface terms for reduction to master integrals. To begin, we decide to consider the
surface term in eq. (2.13) for large values of the dimensional regularization parameter, while
also dropping terms that vanish on the maximal cut. The perhaps surprising decision to
consider the “large-e limit” is motivated by the success of this strategy in the context of
intersection theory, where taking this limit induces important simplifications [50, 51]. In
such a regime, we find that the surface term reduces to simply

| Jim Sr(@,7)]

E— 00

= a0|Cut[‘7 (31)

cutr

where by f|cut;, we mean that we evaluate f on z. = 0 for e € props(I'), i.e. we evaluate f on
the maximal cut of I'. We therefore see that, in this regime, we need to only consider the ag
term on the maximal cut. This represents a dramatic simplification of the IBP relation, as
only a single term from the syzygy relation contributes. This observation provides a strong
motivation to study the ag term of eq. (2.10) alone. In this section, we shall study this
piece geometrically and interpret these features in the language of algebraic geometry. For
background on this language, we direct the reader to standard textbooks such as [54].

3.1 Syzygies and geometry

Our aim is to understand the unknown polynomial ag in eq. (2.10) by considering it geo-
metrically. In principle, the techniques introduced here can be used to study other terms,
but we leave such investigations to further work. In order to isolate the ag term in the
Syzygy, it is natural to consider setting all of the other terms in eq. (2.10) to zero. To
this end, we consider setting

8;B=0, ielISPs(I),

(3.2)
ZeB = 2,0.B = 0, e € props(T).



If we consider these equations as constraints on the z' variables, we see that, for fixed external
kinematics, they cut out a surface in CV. As the equations in eq. (3.2) are algebraic, this
surface is an algebraic variety. We will refer to this variety as the “syzygy” variety associated
to I', which we will denote as Usl;z Importantly, for any point 2" on the syzygy variety,

q. (2.10) reduces to
apB|yr =0, (3.3)

syz

and we see that we have successfully isolated the ag term in the syzygy. We therefore see

that Usl;z is of prime importance, so we consider its structure. Given that a number of the

defining equations in eq. (3.2) factorize, the syzygy variety can naturally be decomposed

into subvarieties.! A first observation is that it naturally splits into two subvarieties where
= 0 and B # 0. That is,

UF _ UCF U UF

Syz sing crit(log(B)]" (34)

The first variety, Us

Smg, corresponds to the case B = 0. By consideration of eq. (3.2) we see

that it is composed of a large number of subvarieties where either propagators are cut, or
derivatives of the Baikov polynomial are set to zero. That is, to each set of edges I'y C T

we consider Usn’jg, the variety in CV defined by

;B =0 : ieclISPs(Iy),
ze =0 : e € props(I'k), (3.5)
B =0.

Geometrically, each Usn’jg corresponds to the singular locus of the Baikov polynomial on

the cut I'g, that is, where the surface fails to be smooth. Explicitly, Usufg is the union of

all these varieties, i.e.

I
Usie = U Ulh, (3.6)
T'LCl

The second variety, UL corresponds to the case where B # 0. Looking once again at

crit[log(B)]
q- (3.2), we see that if the Baikov polynomial is non-zero, then the propagators in I" must

be zero and hence UL

critlog(B)] 1 defined by the equations

Oilog(B) =0 : i€ ISPs(I),

(3.7)
ze =0 : e € props(I),

where we make use of the logarithm to enforce that B # 0. Geometrically, we see that
Ucrrit[l og(B)] is the locus where the logarithm of the I'-cut Baikov polynomial reaches its
extremal, or “critical” values.

Having understood the syzygy variety itself, let us consider what it tells us about ay.

Considering eq. (3.3), in order to further isolate the a¢ term, we impose that the factor

In practical explorations, one also finds that there are further decompositions that are not manifest in
eq. (3.2). We leave systematic understanding of these branchings to further work.



of B does not vanish. That is, we consider eq. (3.3) restricted to U(Erit[1 og(B)] and find that

ap must vanish there, i.e.

=0. 3.8
0 Ucrrituog(s)] ( )
In words, we see that ag vanishes on the critical locus of the logarithm of the Baikov polynomial,
on the cut corresponding to the graph I'. This observation is of strong importance, as this
process-independent constraint on a piece of the syzygy connects the syzygy formalism to other
recent advances in the understanding of relations between Feynman integrals. Specifically,
both the Lee-Pomeransky approach to counting master integrals [52] as well as recent advances
in the application of intersection theory to Feynman integrals [51] make use of the variety

r
Ucrit
Lee and Pomeransky showed in ref. [52] that, in such cases, the number of these points,

log(B)]" It is well-known that in many cases this variety is a finite set of points and

when counted with multiplicity, is exactly the number of master integrals associated to the
topology I'. Moreover, this statement is reinforced in the intersection theory literature, where
intersection numbers can be written in terms of evaluations of the integrand on the points of
UF

orit[log(B)] It is therefore perhaps not surprising that syzygies of Feynman integrals would

also exhibit a connection to UCFrit[l og(B)]" In this work, we shall explore how to constructively

use this connection to build syzygies for Feynman integrals.

3.2 From geometry to algebra

In the previous subsection, we have gained a geometric insight into a piece of the syzygy

relation (2.10), demonstrating a connection to the variety UCF]rit

currently remains unconstructive. While eq. (3.8) tells us that all ap must vanish on the

llog(B)]" However, the connection

critical locus of log(B) on the cut associated to I, it is unclear if this property is sufficient or
simply necessary. Indeed, when considering eq. (3.3) closely, we notice a potential subtlety:

we are unable to exclude the possibility that ag must also vanish on Us%n% In order to gain

control of this subtlety, we shall rephrase our geometric discussion in the algebraic language
of ideals. Let us consider the terms of eq. (2.10) other than ayB. By inspection, we see
that they parameterize an element of the ideal

JL, = (0;B : i €ISPs(T)) + (2.B,2.0.B : e € props(T)). (3.9)

Syz

Here we denote the ideal generated by {g1,...} as (g1,...) and + denotes the ideal sum.
The ideal J&_is an ideal of the polynomial ring R defined in eq. (2.9): polynomials in

Syz
Baikov variables, with coefficients that are rational functions of external kinematics and

€. Importantly, the syzygy variety that we identified earlier, USE,Z is the variety associated
to the ideal JL . That is,?

syz*

UL, =V(JL,). (3.10)

Syz Syz

The importance of Jsl;z is that it encodes algebraic features of the syzygies, such as multiplicity,

Having seen the importance of UL, . let us similarly

which we can associate to the variety UL syz)

syz*

2We recall that the variety V' (J) associated to an ideal J of F[z1, ..., zxn], for some field F, is the set of
7 € Y such that p(2) = 0 for all p € J and refer the reader to ref. [54] for more details.



analyze JSI;,Z. Similar to the splitting of the associated variety, it is possible to prove an

analogous splitting for JL

syz- 11 contrast to splitting a variety, which expresses it as the union

of multiple subvarieties, an ideal can be expressed as the intersection of other ideals, each
of which is larger than the initial ideal. A particularly relevant splitting of Jsl;z is induced
by the explicit factors of B in some of its generators. In order to perform this splitting, we

make use of the lemma proven in appendix A and write JI  as

syz
I8, = T 0 Iy (3.11)

where we define
Jong" = iy + (BM), (3.12)
Jgit(B) = (0;B : 1 € ISPs(T")) + (z¢ : e € props(I")). (3.13)
The two ideals get their names from their associated varieties as V(Js%nrgﬂ ) = Us%fg and

V(JE

rity B)) is the critical locus of the Baikov polynomial on the cut associated to I'. The

exponent p in eq. (3.12) is a positive integer known as the “saturation index” of JSI;,Z with
respect to the Baikov polynomial. It represents the multiplicity of the B = 0 component of
JSFyZ, and its value is a priori unknown. Practical experience says that it is often 1, but there
exist physical examples, such as that discussed in section 5.2, where it is higher.

Having introduced JSFyZ let us now consider how we can use it to understand the ag
term. From eq. (2.10) we see that ag is any polynomial in R, such that when you multiply

it by the Baikov polynomial, you get an element of JL . This leads us to define the set

syz*
of all possible ag terms as

Aj={per : ppeJL,}. (3.14)

Importantly, it is not hard to see that AJ is also an ideal of R. By consideration of eq. (3.1)
we are therefore able to make the remarkable statement that on the maximal cut and in
the large-¢ limit, surface terms actually have the structure of an ideal. This observation will
allow us to better understand the structure of surface terms using methods from the theory
of ideals. In general, explicitly finding a generating set for Af is a non-trivial task. For the
moment, we content ourselves with making structural statements.

We begin by observing that the set in eq. (3.14) is actually the definition of the “ideal
quotient” of JL by the ideal generated by the Baikov polynomial. That is, we have that

Syz

Ay =JL - (B). (3.15)

SyZ

The relation in eq. (3.15) is the crucial constructive observation of this work, allowing us to
study the problem of determining syzygies with the technology of ideal quotients. A first
important property of ideal quotients is that they have a geometrical significance. Specifically,
the ideal quotient can be used to implement the set difference of two varieties: to remove
one variety from another. The relation relevant to our construction is

VIJiy, : (B")] = VIIEI\ V((B)) = Ulitpog(8) (3.16)

Syz crit



where the bar represents that we take the Zariski closure.® That is, if one quotients JSI;,Z by

B*, the associated variety is Usl;z with the B = 0 component removed. From the previous

section, we see that this is just UL log(B)]" Importantly, eq. (3.16) gives us a geometrical

crit

interpretation of the saturation index u. As p represents the multiplicity of the B = 0

removing it requires quotienting JSFyZ by B “up times”. A second important

property of ideal quotients is that they act on each component of an intersection.? By

component of szz,

consideration of eq. (3.11), this allows us to write A as an intersection of ideals as

AY = (Thee - (B)) 0 (J55" (B)) (3.17)

sing

This relation allows us to robustly understand the connection of AF to our geometrical
considerations. First, let us consider the set of all polynomials that vanish on Ucm[10 o(B)]’

denoted I(U" rit[log( B)]) By applying Hilbert’s strong Nullstellensatz to eq. (3.16), we have that

C

(Ugrlt[log(B)}) Jcrnt( B) * <BH>7 (318)

where the square root of an ideal denotes taking its radical. Using elementary properties of
radicals, quotients and intersections, it is not difficult to conclude that

Af € I(Ulispog())- (3.19)

That is, in general, A} is a subset of the polynomials which vanish on Ul In

crit[log(B)]*

other words, we see that while agp must vanish on UL iE it may also satisfy further

crit[log(B
non-trivial constraints.

In practice, it turns out that there is an important case where eq. (3.17) can be shown
to simplify: where 4 = 1. As we will discuss in sections 4 and 5, we experimentally find
that this is almost always the case for Feynman integrals. Let us, therefore, analyze the
i =1 case in detail. In this case, if we look to the definition of Jsmg in eq. (3.12), we see

that any polynomial in R multiplied by the Baikov polynomial is in Jsmg , as the Baikov
polynomial is a generator. Hence, we see that the right intersectand of eq. (3.17) is R and

as R is the identity under intersection, we conclude that

p=1 = Ay = Jhiup) : (B) (3.20)

C

That is, our ideal quotient simplifies exactly if 4 = 1. By the definition of the saturation index,
we see that, in this case, all ag terms must vanish on U" orit[log(B)] An important question that
we will study experimentally in this work is what value of u we will typically encounter. In
practice, we will find that it is most often 1. Nevertheless, we will return to the question
of how to interpret cases where ;1 # 1 in section 3.5.
To close this section, let us note that there is a simple case where we can easily find
a generating set for A. It follows by constructing a simple upper and lower bound for
Al. Specifically, one has that
gt

crit

) € Ab € Jhiym) © (B)- (3.21)

3The Zariski closure of a set is the smallest algebraic variety that contains that set. In the context of
ideal quotients, this has the effect of filling in “holes” in the variety. Further details will not be required for

our discussion.

“That is, for R-ideals A, B and C, one has that (ANB): C = (A: C)N(B:C).
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The left inclusion follows by inspection of the generators of Jg;it( B)- Each of them, when

multiplied by the Baikov polynomial, is an element of J&L . and hence the left inclusion

Syz?
follows. The right inclusion follows by consideration of e}(ll. (3.17). Now, let us consider
the case that JCFrit(B) = JCFrit(B) : (B). Then we have that the upper and lower bounds of
eq. (3.21) are equal leading to A} = JcFrit( B)- In such a case, as a generating set of JcFrit( B)
is given, then we find a generating set for Al. Interpreting this geometrically, we see that
this corresponds to the case where Uslzng is empty, i.e. the zero-set of the maximal cut Baikov
polynomial is a smooth variety.

3.3 Syzygies and critical points

Having understood the ag term in the syzygy relation eq. (2.10) both geometrically and
algebraically, we will now argue that the ag term is of deep importance to integration-by-parts
relations. To this end, we recall the approach of Lee and Pomeransky in ref. [52] for counting
the number of master integrals associated to a Feynman integral with graph I'. To begin, let
us identify the space of master integrals on the maximal cut of I' as the linearly independent
numerators modulo surface terms and terms that vanish on the cut. That is,

Hy = R/(Surface(T', 1) + JL,), (3.22)
where we make use of
JL. = (2o : e € props(I)) (3.23)

and by T we mean that the entries of the exponent vector # are all 1. The question of counting
the number of master integrals can then be understood as counting the dimension of the
vector space Hp. The approach of Lee and Pomeransky argues that dim(Hr) is encoded
in the solution set of the equations

8B =0 : icISPs(I),
ze =0 : e € props(I), (3.24)
B #0.

Precisely, in the case that the solution set of eq. (3.24) is a finite number of points, then
the number of master integrals, dim(Hr), is equal to the number of solutions, counted with
multiplicity. As alluded to earlier, note that eq. (3.24) is entirely equivalent to eq. (3.7) and
so the Lee and Pomeransky approach is counting points in Ucl;it[log( B

In ref. [52], in order to count the number of solutions to eq. (3.24) without directly
computing the set of solutions, the authors introduce an “algebraic formulation”, which is
implemented in the code MINT. This formulation makes use of the ideal

Jip=(0;B : i €ISPs(I'), 2 : e € props(I'),1 —wB)pp, NR, (3.25)

where w is an auxiliary variable. The explicit ideal on the right-hand-side of eq. (3.25)
is an ideal in the ring R[w], the ring of both Baikov variables and w. The intersection
with the ring R eliminates the variable w, and can be implemented with Groebner basis
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techniques. The ideal Jip can be used to compute the number of points in V(Jip) by
exploiting special properties of an ideal J, whose associated variety V(J) is a finite set of
points. Specifically, the number of points, in V(J) counted with multiplicity, is equal to the
number of linearly independent polynomials when they are considered modulo the ideal J [40,
Chapter 4, Corollary 2.6]. That is, one takes the ring of polynomials R and considers any
two elements or R that differ by an element of J to be equivalent. Denoting this equivalence
class ring as R/J, in the case where V(J) is a finite set of points, it turns out that R/J
is a finite-dimensional vector space. The dimension of this vector space, vdim(R/J) gives
the desired point counting. Applying this to the ideal JEP we arrive at the Lee-Pomeransky

formula for counting master integrals,

dim(Hr) = vdim (R/J{p) (3.26)

Importantly, vdim (R/ JEP) can be computed without computing the solutions to eq. (3.24).
It requires only a Groebner basis of JEP, which can easily be computed in modern computer
algebra systems.

Naturally, the master integral counting of Lee and Pomeransky must in some way be
connected to the set of syzygies, as they are intimately related to the construction of the
surface terms. Nevertheless, it turns out that this connection can be made much more
directly. Let us return to consider eq. (3.25). An important observation is that the ideal
in eq. (3.25) can be identified as an application of the so-called “Rabinowitsch trick” to
perform the ideal saturation of Jgrit( B) with respect to B (see ref. [54, Chapter 4, Section 4,
Theorem 14 (ii)]). That is, we have that

JLFP = J(Erit(B) 1 (B"), (3.27)

where p is the saturation index of JCFrit( B) with respect to the Baikov polynomial. Therefore,

in the case u = 1, we have that the Lee-Pomeransky ideal is exactly the ideal to which
all ag terms must belong. That is

p=1 = Jip = Ay (3.28)

This is a striking statement: the ideal involved in counting master integrals with the Lee-
Pomeransky approach also arises in the syzygy approach.

The observation of the direct connection between the syzygy approach and the Lee-
Pomeransky approach has important consequences for considering total derivatives. To see
this, consider that Hr and R/ JEP are two different quotient spaces of R and as such they
each furnish a decomposition of R as a vector space. We can therefore write

o1(Hr) + Surface(I', I) + JL, = 0o(R/Jip) + Jip, (3.29)

where the o; are canonical maps that identify the quotient spaces as subspaces of R. That is,
both the left- and right-hand side of eq. (3.29) can be recognized as a decomposition of R
into R/W + W for some subspace W and are therefore equal. Let us now assume that there
exists a set of master integrals that are linearly independent on the points of V(JII:P)7 i.e. on
Ueritlog()]- This is the statement that we can choose the o; such that o (Hr) = o2(R/JLp).
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In experience of practical applications to Feynman integrals, this is found to be true so we
assume this from now on. Under this assumption, it is a simple application of a standard
fact of linear algebra that the two spaces complementary to the o; spaces in eq. (3.29)

are isomorphic. Under the condition that x4 = 1 and UL

orit[log(B)] 18 @ set of points, we are

therefore able to conclude that

A} ~ Surface(T', T) + JL (3.30)

cut-

This equation, eq. (3.30), is an important result of our work. We interpret eq. (3.30) to
say that a basis of Ag is in one-to-one correspondence with a basis of surface terms, up to
terms that vanish on the cut associated to T'.

3.4 Critical surface terms

The correspondence between the space of ag parts of syzygies and surface terms that we have
just identified suggests an interesting perspective on the syzygy formalism for surface term
construction. Specifically, under the conditions that eq. (3.30) holds, we should only need a
set of syzygies whose ag piece is linearly independent on the maximal cut, in order to be able
to reduce to master integrals, modulo pinch integrals. This is a highly compelling observation
as there are a large number of elements of Syz(I") that satisfy ag = 0, but eq. (3.30) tells us
that we can neglect them. Motivated by this, we will now define the set of “critical surface
terms”: those with linearly independent ay piece on the maximal cut.

To begin, let us define the “critical part” of an element @ of Syz(T") as the ag part, i.e.

(@) = ap. (3.31)

Our discussion states that two syzygies that have the same critical part give the same on-shell
relation between Feynman integrals in the large-e limit. Beyond this, the introduction of
the @, in eq. (2.10) terms means that two syzygies will give rise to the same surface term if
they differ by an R-linear combination of syzygies of the form

ag = Ze, ae = —1, (3.32)

with all other entries being 0. We will denote the submodule of Syz(I") generated by the
syzygies of eq. (3.32) as ZSyz(I') as they give rise to surface terms which are zero. Together,
this leads us to observe that there is a natural equivalence relation on Syz(T'): two elements
that differ either by some w; € ZSyz(I') or Wy € Syz(I') such that ¢(w2) = 0 should be
regarded as equivalent. Denoting this equivalence relation as ~, we have

a ~ a-+wp + w, where @ € Syz(I'), ) € ZSyz(I') and sy € ker(c). (3.33)

This motivates us to define the module of “critical syzygies” as the quotient of the module
of syzygies by this equivalence relation. That is, we define

CSyz(T") = Syz(T")/ (ker(¢) + ZSyz(T")), (3.34)

where we recognize the set of elements that are equivalent to zero under ~ as the module
sum of the kernel of ¢ and ZSyz(I"). Elements of CSyz(I") are equivalence classes under ~,

,13,



and can be represented by elements of Syz(T"). For any element a of Syz(T"), we denote the
associated equivalence class in CSyz(I") as [@]. Conversely, given [@] € CSyz(I"), we will refer
to a (non-unique) representative @ € Syz(I") as a lift of [@]. An important observation about
CSyz(T") is its module structure. By construction, two elements of CSyz(I") are inequivalent
only if their critical parts on the maximal cut are distinct. We therefore see that

CSyz(I') ~ AL /JL,. (3.35)

It is therefore clear that the set of critical syzygies is much “smaller” than the full set of
syzygies, as it is only a rank 1 module.

Let us now consider using CSyz(I") to construct surface terms. A technicality here is that
elements of CSyz(I") are equivalence classes of syzygies. That is, CSyz(I") is a quotient space of
Syz(T"). Nevertheless, as a quotient space of Syz(T"), CSyz(T") is isomorphic to some subspace
of Syz(I"). That is, analogous to the o; of eq. (3.29), there exists a linear map 7 such that

m(CSyz(T")) C Syz(T). (3.36)

Practically, defining 7 can be thought of as finding a lift d@; for each basis vector [d@;] of
CSyz(I'). Naturally, the non-uniqueness of this lift implies that 7 is not unique. Nevertheless,
this map 7 allows us to define a subspace of surface terms, built from critical syzygies as®

CSyzSurface(T", V) = {Sr(a, V) : @ € m(CSyzp)}. (3.37)

Interestingly, this construction gives a new perspective on the syzygy equation, eq. (2.10).
In the case where y = 1 and Ucrﬁt[log( B)] is isolated then it can be seen as a recipe to lift
elements of the Lee-Pomeransky ideal J{P to surface terms.

The importance of the set of critical surface terms arises as we have constructed it to be
a set of surface terms that is sufficient in the large-¢, maximal-cut limit and therefore can be
used as a tool to fill the space of surface terms and perform a reduction to master integrals.
To see this explicitly, consider that Sp(@) reduces to ¢(@) in the large-e limit. Looking to
eq. (3.37), we therefore see that the set of critical surface terms becomes the set of maximal-cut
ag terms of CSyz(T') in this limit. As this set of terms is Af/JL, by eq. (3.35), we therefore

see that CSyzSurface(T, ) is isomorphic to Af/JL,. If we now consider eq. (3.30), we see

that, given = 1 and Ucrrit[log( B) & finite collection of points, we have that

CSyzSurface(I, 7) ~ Surface(I', ) /(Surface(I', 1) N JL,), (3.38)

where we have made use of the fact that, for two vector spaces V and W that are subspaces
of some larger space, (V + W)/W ~ V/(V N W). Restricting now to the 7 = I case,
we see that by eq. (3.37) and eq. (3.38) we have that CSyzSurface(I', T) is a subspace of
Surface(I', I) that is isomorphic to Surface(T", 1), modulo surface terms that vanish on the
maximal cut. Naturally, these surface terms that vanish on the cut can be captured by
repeating the procedure for pinch topologies. Therefore, by iteratively constructing the set of
all CSyzSurface(I'y, I) for all T, C T, one can construct the full set of surface terms.

5We note that the space CSyzSurface(T, #) depends on the choice of m. However, under the conditions of

r
Ucrit
maximal cut. We therefore choose to suppress 7 in the notation.

[log(p)] Peing points and p = 1, the space depends only on 7 through surface terms which vanish on the
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3.5 Multiplicity structure

To close out our discussion of syzygies and critical surface terms, we return to interpreting
the case where the saturation index p ## 1, that is, where the multiplicity of the B = 0
component of the syzygy ideal JSI;,Z is not 1. In the analysis of section 3.3, this stopped
us from being able to conclude that critical syzygies provide all relations among Feynman
integrals. In the following, we argue that by expanding our construction, we can find further
relations. To this end, we consider an alternative construction of the syzygy formalism.
Rather than starting directly from a judiciously chosen syzygy equation such as eq. (2.10),
we make contact with the definition of surface terms in eq. (2.8). The driving observation is
that when we construct total derivatives from the syzygy of eq. (2.10) we implicitly restrict
the structure of our total derivatives. Specifically, we assume that the exponent of the Baikov
polynomial inside the total derivative is the same as that of the integrals that are targeted
for reduction. While the constraint is natural, releasing this constraint can allow for more
integral relations, as we will see.

We begin by considering numerator polynomials W that arise from total derivatives as

+ Z O [
I )

e’ Eprops

NBY B 2q;

[ 0; (3.39)
Heeprops(f‘) Ze i€ISPs(T) [Heeprops(F) Ze

BW_Aze/ae/ ]

Heeprops(f‘) Ze

Here, we introduce directly the propagator non-doubling constraint by including a factor of
Zer in the numerator of the second term. Note that here we have made use of unit propagator
powers for ease of analysis. Importantly, in eq. (3.39), we have introduced a (non-negative)
integer A. If A = 0, then this corresponds to the syzygy analysis in section 2, while A > 0
is more general. From the perspective of the Laporta algorithm, eq. (3.39) makes use of
“seed” integrals (those of which we take the derivative) with a power of the Baikov polynomial
that is lower than that of the target integrals. Recalling that v = (D — F —1 —1)/2, one
effectively considers seed integrals defined in D — 2A dimensions, rather than D dimensions.
Let usAeXpand out the argument of the total derivative and remove the common factor of

BY—A-1

, leading to
HeEprops(F) Ze

NBATL = (y—A) Z a;0;B + Z Qe2:.0.B| + B Z O;a; + Z 26060 | .
1€ISPs(T") ecprops(T") 1€ISPs(T") ecprops(T")

(3.40)

Next, we must impose that the right-hand side of eq. (3.40) is proportional to BAtL We

see that this takes on a different character, depending on the value of A. If A = 0, then

the second term on the right-hand side of eq. (3.40) is already proportional to B and so

one only has the constraint that the first term is proportional to the Baikov polynomial.
This leads to the style of syzygy in eq. (2.10).

Let us consider making the right-hand side of eq. (3.40) proportional to BA*! for general

A. We see that the second term can no longer be ignored and that the proportionality

constraints now involve not only syzygy-like terms, but also terms involving derivatives

of the a; and @.. Such constraints provide an interesting challenge, but we leave direct

understanding of the mathematical structure of their solution to future work. To make
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progress, we, therefore, consider restricting to v independent solutions for the a; and @..
While not the general class of solutions to eq. (3.40), this strategy is automatic in the A =0
case and we consider it more generally due to its success there. This allows us to break down
the proportionality constraint into two separate constraints

ARIBE = N G+ Y zeDea, (3.41)
1€ISPs(T") ecprops(T")

ABUBATE = N 0B+ Y Geze0eB, (3.42)
1€ISPs(T) ecprops(T)

where we impose that the A% are polynomial. Note that, for A = 0, the constraint that
AR g polynomial, is solved for any values of a; or @.. However, for higher values of A,
this constraint is non-trivial.

Let us consider the two proportionality constraints in turn. First, we see that eq. (3.41)
depends on the derivatives of the unknown polynomials. If we take it both on the maximal
cut and the zero locus of the Baikov polynomial, that is, we set B = z. = 0, we see that
eq. (3.41) can be read as a statement that vector field of the a; is divergenceless. The second
constraint, eq. (3.42) depends linearly on the unknown polynomials, and so is again a syzygy
constraint. We can make an analogous analysis to section 3.2 by decomposing A2 into
an on-shell and off-shell part as

AR = g™ S g (3.43)
ecprops(T)
The requirement that the agA’l] is polynomial therefore implies the constraint that agA’”
belongs to the ideal

A
Ay =T, a (BTR), (3.44)
where
JSI;,ZA = <8Z-B . 1 €ISPS()) + (2.0.B, zB2 : ec props(P)>. (3.45)

Note that this constraint is a generalization of the discussion of section 3.2, as Ag’o = Ag.
Moreover, note that if we use eq. (3.40) to build the associated surface term N, then the
large-¢, maximal cut limit is agA’H. Therefore, we again see that, in the large-e¢, maximal
cut limit, a surface term belongs to an ideal.

We can develop further insight into the meaning of A by observing that we can rewrite

r,A
Ay~ as®

Ay = [(0iB : i € ISPS(T)) + (20.B : e € props(I))] : (B*2) + JL .. (3.46)

This representation of AS’A tells us that A controls the power of the Baikov polynomial in the
quotient of the inner ideal of eq. (3.46). We therefore see that there exists a finite A for which
Ag’A stabilizes, which can be recognized as the saturation index of the quotient in eq. (3.46).

5This follows by the more general identity that for two R-ideals J, K and x, an element of R, one has that
(J+ Kz™): (™) = J : 2V + K, which can be easily proven by simple two-sided inclusion arguments.
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Moreover, we see that AS’A may be larger than Ag as quotienting by higher powers may lead
to new elements of the ideal. As we have recognized Ag’A as the set of surface terms in the
large €, on-shell limit, we can expect this construction to lead to more surface terms in cases
where A > 0. We will see in section 5.2 that there do exist physical examples where A # 0,
and, correspondingly, that this construction leads to more surface terms.

4 One-loop critical syzygies

Having introduced the theory of critical syzygies in the previous section, here we begin their
practical study by considering them at one loop. At this loop order, it is well understood that
there is at most one master integral associated to each topology. In this section, we will discuss
how this statement arises by using critical syzygies to explicitly construct surface terms. An
important practical aspect that we study is that of power-counting constraints. It is well
known that the Feynman rules of gauge theory lead to an upper bound on the total polynomial
degree of the numerators that one must consider in an amplitude calculation. Specifically,
letting |I'| be the number of edges in I', the numerator associated to I' is a polynomial in

RTD = {pe R : deg(p) <|T|}, (4.1)

where deg(p) is the total polynomial degree of p in Baikov variables and the index 1 in R(T:1)
denotes that it is the one-loop power-counting space. Concretely, our aim is to construct a
basis of the space of critical surface terms for Feynman integrals with unit propagator powers
that are compatible with power counting, i.e. a basis of CSyzSurface(I’, T) N RV,

To begin our analysis, let us consider the discussion at the end of section 3.2, which tells
us that non-trivial calculation is only required if the zero-locus of the I'-cut of the Baikov

polynomial is a smooth surface. Explicitly we must check if Uslzng

is empty, that is, if there
are any solutions to eq. (3.5) for I'; = I". To understand this, an important observation is to
recall that, at one loop, the Baikov polynomial is at most quadratic in each Baikov variable.
Without loss of generality, we will order the Baikov parameters such that zg, ..., zr_1 label
the I irreducible scalar products and zj,...,zy_1 label the propagators. It is then easy to

write the one-loop Baikov polynomial as

1 Hr X %?l Z;
B= (20| X7 0 @ ||z, (4.2)
T T
B, B. By 1

where we gather the ISPs and propagators into z; and 2. respectively and the #1 and O are
symmetric matrices of side-length I and N — I respectively. Notice that the matrix #' has
been defined so that it is the Hessian of the cut Baikov polynomial, i.e.

(%F)ij = 8i8jB|cutp' (43)

The representation of eq. (4.2) allows us to easily compute the partial derivatives of the
Baikov polynomial with respect to an ISP as

8B = HrZ + Xz, + Bi. (4.4)
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It is therefore clear that the critical locus of the I'-cut Baikov polynomial at one loop is
given by an intersection of hyperplanes. The dimensionality of this configuration is controlled
by the rank of the rectangular matrix (#r @Z) For the moment, we will proceed with the
assumption that this rank is maximal, and so the critical locus is given by a single point.
In this situation we can solve for the ISPs as a function of the Baikov derivatives, which
allows us to rewrite the Baikov polynomial on the maximal cut as

1, = #r! 0 a.B
B|ze:0:e€props(f‘) = 5(6137 1) ( 0 Bg-— g}T%lg}> ( 1 ) (4.5)
i r i

Taking eq. (4.5) on B = 9;B = 0, we see that the smoothness condition is translated into the
algebraic constraint on the external kinematics that the constant term in eq. (4.5) is non-zero.

4.1 Regular cases

Let us begin with a class of critical syzygies that clearly arise without involved calculation. At
one loop, they turn out to generate the full collection of surface terms in the case where the
number of master integrals associated to I' is 1, and are almost sufficient in the case where
the number of master integrals is 0. They (non-manifestly) contain the set of surface terms
in the OPP basis [55] as well as those that allow for reduction of e-dimensional numerators
(see e.g. [29]). For each ISP z;, let us consider a syzygy where

apg = (’)ZB, a; = —B, Qjti = 0, and a.,=a.=0. (46)

This clearly solves eq. (2.10) as all we have done is to take anti-symmetric combinations of
the generators. Indeed, they are a subset of “principal syzygy” solutions to eq. (2.10). For
this reason, we will denote each such principal critical syzygy as @.. As the solution set of
eq. (2.10) has the structure of a module, we can multiply any solution by a polynomial and
still get a solution. We therefore consider the syzygy Aa which gives rise to the surface term

Bo;\
—p\ ) () 4
Sr(Aa@;) = Ao + Y1 (4.7)
where we implicitly use that all of the v; = 1, suppressing the notation and define
a; = GlB (4.8)

Due to the fact that, at one loop, the Baikov polynomial is quadratic in all variables, the
«; are degree 1 in Baikov variables. Moreover, for generic kinematics they are linearly
independent. Therefore, they form a natural set of variables on the cut associated to I', and
we will phrase our surface term construction in terms of them.

Let us now consider using the principal critical syzygies to build surface terms. The task
is to choose an appropriate set of A such that we have a basis of the full space of associated
surface terms on the cut associated to I', while remaining in the one-loop power counting

(1)

space, R To this end, let us first observe that, in the large-e limit

lim Sp(AG) € ey (4.9)

C
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We can therefore regard the full Sp(A\a¥) as a prescription to lift an element of JCFrit( p) toa
surface term. It is easy to see that, given that the «; are linear in the z;, Jcr;it( B) / qut is just
the space of all monomials in the «; with degree at least 1. By this argumentation, through
an appropriate choice of A and i we can generate a surface term associated to every such
monomial. These surface terms are clearly linearly independent, as their large-e¢ limit is a
linearly independent set of monomials in «;. Moreover, as

deg (Sp(Aa?)) = deg ( lim Sp(Aa?)) = deg(A) + 1, (4.10)

we see that, first, the lifting procedure from a monomial to a surface term does not change the
power counting away from that of the large e limit and, second, by consideration of eq. (4.1),
we have a degree bound on the monomial A\ which is easy to satisfy.

To consider this procedure more concretely, let us construct a series of surface terms
for a box diagram I'" that is a subtopology of a top-level pentagon. To this end, we begin
by working in the Baikov parameterization of the pentagon, where v = —1 — e. Power
counting limits us to at most degree 4 numerator polynomials for the box. The associated
set of surface terms is then

{a{}“ — %Bag_l(ao)QB . nei0,1, 2,3}} , (4.11)

where we denote the ISP of the box as «g. It is clear that all of these functions are linearly
independent and that they are linearly independent of the scalar integral, which we can
take as our master, as expected.

4.2 Singular cases

From the discussion at the top of the section, there are naturally two situations where the
non-singularity of the Baikov polynomial on the maximal cut comes into question. The first
is when the Hessian of the cut Baikov polynomial is not invertible. The second is when
the constant term in eq. (4.5) vanishes, and hence the Baikov polynomial gives a singular
variety. Let us consider these two cases in turn.

Firstly, we consider the Hessian of the cut Baikov. In order to do this, we write the
Baikov polynomial in a special form, making use of the well-known “Cayley-Menger” trick.”
To employ the Cayley-Menger trick, let us begin by defining the momenta ¢ and masses
my. as those associated to the Baikov variable z;. That is,

2= (0 — qp)* — mi. (4.12)

This allows us to write the Baikov polynomial as

x5 —det : S ; S (4.13)

zv-1 Cv—1yo - Cv—1y(v-1) 1
1 1 1 0

"This trick is intimately related to the so-called “Embedding-space formalism” [29, 34].
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where Ci; = (qx —q1)* — m% — le is the so-called “Cayley matrix”. The benefit of this notation
is that it allows us to write the entries of the matrices in eq. (4.2) as minors of the matrix

C1
€ = (fT o)’ (4.14)

where the T represents a column containing just 1s. Note that, again by the Cayley-Menger
trick, we have that

(=Y
G(q1,...qn-1) = N1 det(6), (4.15)

i.e. it is the Gram determinant associated to the Baikov parameterization. We will denote
the minor of € where row i and column j have been removed as €[z, 7]. With this notation,
differentiation of eq. (4.13) gives

(=1)FHI+N o
(), = —5x——6l.j),  iiel0.. 11 (4.16)

To understand if #r is invertible, we compute its determinant. By Jacobi’s theorem on
complementary minors this is given by

det(%r) = (-1% Id t(®)~'a
r)— 2N—1 e( ) 1) (417>
where

Gr = det (B.y, e,fell,...,N—1,NJ]) (4.18)

is the determinant of the minor of € corresponding to the propagators of I'. By the Cayley-
Menger trick, we have that this determinant is a constant multiple of the Gram determinant
that we associate to I.% The case where det(#r) vanishes because det(®) vanishes is not of
interest as, looking to eq. (2.1), we see that it corresponds to a region of phase-space where
the Baikov parameterization itself is degenerate. We therefore conclude that the critical locus
of the Baikov polynomial at one loop can only be non-isolated if the Gram determinant of the
external momenta of I' is zero. For fixed-angle scattering at one loop, this can occur in only
one case where the associated integrals are not scaleless: the “external leg correction”-bubble
that we depict in figure 1. In practice, it turns out that all maximal minors of the rectangular
matrix (#r é,) vanish and hence the critical locus of this topology is not a finite set of
points. In such cases, critical syzygies are insufficient for a complete reduction to master
integrals. We therefore leave further study to future work.

If the Hessian of the Baikov matrix is of full rank on the maximal cut, then the critical
locus is isolated. As stated earlier, it remains to check the non-singularity condition. To this
end, let us rewrite the constant term of eq. (4.5) by recognizing it as a Schur complement as

H 9_3‘1 =T, 1.3
det <@§ %0> = (930 — B, %rl%‘) det(#r). (4.19)

8We define Gr of a tadpole graph, that involves no momenta, to be 1.
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Figure 1. The single one-loop graph in fixed-angle scattering for which the critical locus is not
isolated. The red lines represent a field of mass m (e.g. a top). The black lines represent massless
particles, that is p?> = 0. The associated Feynman integral is only not scaleless for m # 0.

Figure 2. Representative examples of one-loop diagrams which have vanishing Cayley determinant.
Black lines represent massless particles. Doubled red lines represent massive particles. Blue or
single-red lines represent off-shell particles. For these examples, the set of critical syzygies is larger
than the set generated by principal syzygies and further computation is required.

It therefore remains to compute the determinant on the left-hand-side. This is easily achieved
using the same logic as the computation of det(#r), only noting that we now include the
last row and column of 6, hence we have that

3 N7
det <;—f:1; ﬁ;) = [(QN)l ] det(®)"Cr, (4.20)

where

Cr = det(Cey, e, fell,...,N—1]), (4.21)

is the minor of the Cayley-matrix C, associated to the propagators that are cut. Altogether,
we find that we can write
N
By — By K G = (2_]V121G(q1, . ,qN_l)%. (4.22)
r

We therefore see that the zero locus of the I'-cut Baikov polynomial is a singular variety
either if G(q1,...,qn-1) = 0 or if Cr = 0. As earlier, we discard the zero-Gram case and
consider the more interesting case, Cr = 0. It is well-known that this corresponds to the
occurrence of first-type Landau singularities (see, e.g. [56] for recent discussion). Examples
of diagrams that exhibit this phenomenon are infra-red divergent triangle graphs, such as
those that we exemplify in figure 2. Here, the set of critical syzygies becomes larger than
the set generated by principal syzygies. Specifically, as the critical locus is already a point,
we expect that there is exactly one interesting non-principal syzygy. Concretely, the ideal
generated by the partial derivatives does not contain the constant polynomial, whereas A}
does, hence there must be a syzygy where ag is a constant. This is most easily displayed in
the Baikov representation associated to the cut, that is, the one where there are no ISPs.
Considering the case of the one-mass triangle in figure 2, we explicitly find the syzygy

0=agB +a12101 B + G22909 B + G32303B + G229, (4.23)
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where the components of the syzygy are given by

ag = —232,
@ = s> — slz1 — 23] +429[28 — 223 + 29 — 21],
ag = 252 + 65z + 42’% + 8(2’1 + 23) — 4[,212’2 + 2329 + 2’123], (4.24)

T3 = 5% — s[zg — 21] + 420[25 — 221 + 29 — 23],

ELQ = —8(5 + 29— 21 — 23).

It would be interesting to understand if the full syzygy could be determined from geometrical
arguments, but we leave this to future work. This syzygy then gives rise to a surface term,

1
(@) = —25% — 820(s + 22 — [21 + 23]) (1 - 7) + %(zl b 42),  (4.25)

which manifestly becomes constant on the triangle cut z; = 2o = 23 = 0, and hence provides
a reduction relation for the scalar triangle.

5 Critical surface terms at two loops

The construction of critical surface terms at two loops is a more complicated affair than at one
loop. At two loops, the structure of the Baikov polynomial is more involved than a quadric,
and so we are more constrained in our ability to analytically construct critical surface terms.
In this section, we study the question: can we computationally use critical surface terms to
perform reduction to master integrals? While surface terms from standard syzygies have
been found to be sufficient in many calculations, as critical surface terms are effectively a
subset, this question should be studied. As at one loop, in practical applications to two-loop
integral reduction, surface terms are constructed satisfying power-counting constraints. For
concreteness, we again adopt gluonic power counting, defining the two-loop power-counting
space of numerator polynomials associated to a diagram I as

RTD ={a e R : deg,(a) < 1|, deg,(a) <o, degy (a)+ degy,(a) <[}, (5.1)

where |I';| is the number of edges in I' that depends on loop momentum 4, |I'| is the total
number of edges in I" and degy, (a) is the polynomial degree of a in loop momentum 7. In order
to reduce the integrals arising in a QCD amplitude that are associated to the set of propagators
I" and exponents 7/, an integral reduction program needs to explicitly construct elements of

Surface™(T', 7) = Surface(T", 7) N R, (5.2)

surface terms that live within power counting. The goal of this section is to study compu-
tational construction of surface terms from critical syzygies. Naturally, the isomorphism in
eq. (3.38) implies that, if a diagram has isolated critical points and p = 1, critical surface
terms are in principle sufficient to reduce all tensor integrals associated to this diagram.
However, it is a priori unclear if it is possible to construct a finite-dimensional restriction
of CSyzSurface(I', ) that lives within power counting in a finite number of steps. That
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is, can we computationally construct a set of critical syzygies that give rise to a subspace
CSyzSurface®(T', 7) € Surface®(I', #) such that

CSyzSurface’(T', 7) ~ Surface® (I, 7) /[Surface™ (', 7) N JL ]? (5.3)

In this section, we study this question in non-trivial examples and thereby provide evidence
that critical surface terms are a useful tool for the reduction of tensor integrals in gauge
theory. Unlike in the one-loop case, generic analytic construction of surface terms is a
non-trivial problem. Indeed, at two loops, one experimentally finds that B = 0 on the
maximal cut is a singular variety. That is, Uslgng is never empty, and, therefore, principal
syzygies are insufficient. For this reason, to study the question posed in eq. (5.3), we set
up an algorithm to determine critical syzygies within power counting. We then consider a
cutting-edge example: the leading-color contributions to the two-loop ttH amplitude. We
demonstrate that, for the light-quark contributions (whose master integrals were recently
computed [57]) the critical locus is always a finite set of points and that the u = 1 hypothesis
holds in all but one case. In this way we are able to provide a positive answer to the question
raised in eq. (5.3) in a physically interesting example.

5.1 Computational construction of critical surface terms

Let us now turn to the question of constructing a basis of critical surface terms that are
compatible with the power-counting constraints. The practical strategy that we will employ is
to take the definition of CSyzSurface(T",7) in eq. (3.37) as a prescription to construct critical
surface terms. Specifically, we will explicitly construct a finite subspace CSyz®(I") ¢ CSyz(T),
and define

CSyzSurface’ (T, ) = {Sr(@,?) : @ € w(CSyz™(I"))}. (5.4)

Furthermore, we will constrain the basis of 7(CSyz™(T")) such that all surface terms are within
power counting. An important observation is that this construction of CSyzSurface® (T, 7)
develops a strong dependence on the choice of m. To see this, consider specifying 7 by
specifying a basis {[d1], ...} of CSyz(I") and their associated lifts @; € Syz(I'). Note that,
for any choice of lift @ of some [d], the large-¢, on-shell limit of Sp(d@,7) is independent
of the specific choice. However, the polynomial degree of Sp(d@,7) does depend on the
specific choice of the lift, through the sub-leading terms in the large-¢, on-shell limit. We
can therefore see that to computationally construct Surface®(T', 7) via critical syzygies will
require carefully choosing the lifts.

A conceptually simple way to construct CSyz’* (T") is to write an ansatz for some @ that
is a syzygy whose associated surface term lives within power counting. One then uses linear
algebra to find a basis of such terms which are linearly independent in the large-¢, on-shell
limit. Nevertheless, due to the high polynomial degrees involved, this is a computationally
demanding approach. Instead, we construct an approach to generate critical surface terms
which exploits the module properties of CSyz(T"), thereby keeping the computation tractable.
Specifically, we break the problem down into two steps. We first construct a generating set
of CSyz(I") using linear algebra methods given by low-degree representatives in Syz(I"). We
then construct a basis of CSyz™(I') by taking polynomial combinations of our generating set,
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constraining the combinations such the associated surface terms satisfy the power-counting
constraints and are linearly independent in the large-¢, on-shell limit. In the following, we
elaborate on the details of each component of our approach, highlighting tricks for reducing
the size of the involved linear systems. We provide a summary of the approach in section 5.1.3.

5.1.1 Constructing a generating set of critical syzygies

Let us consider the question of constructing a generating set of the module of critical syzygies,
CSyz(I"), defined in eq. (3.34). Our approach will be to use linear algebra to construct a
generating set {[t7],...} of CSyz(I") by finding representatives #; of these elements in Syz(T").
Note that a generating set of a module is not unique and it is a non-trivial problem to
construct a minimal generating set of a module. Instead, we will construct a generating set of
CSyz(I") up to a input power-counting bound. This is naturally not a minimal construction
and, therefore, the number of generators will depend on this bound. We will then check if
this set generates CSyz(I") by exploiting the isomorphism of CSyz(T") to A§/JL,.

We begin by expressing all unknowns of the syzygy equation, eq. (2.10), as polynomials
in Baikov variables with coefficients that are rational functions of kinematics. Writing all

unknowns in eq. (2.10) as some a; for simplicity, we parameterize them as
aj= Y cr(3)2%, (5.5)
k:|dik| <N;

where we write a monomial in Baikov variables as

N
2% =[] 22, om € Zx, (5.6)
m=1

|| = >, aum is the total degree and the coefficients c¢;;, are unknown rational functions in
external kinematics 5.° In eq. (5.5), we denote the total degree of a; in Baikov variables as
N; € Z>p. The set of N; are the input power-counting bounds to our procedure and control
its computational cost. A useful computational observation is that there are a number of
easily identifiable syzygies @ which lead to Sp(a, 7) = 0. Specifically, this is the set of syzygies,
ZSyz(T") discussed in section 3.4. Such syzygies can be seen as an artefact of our decision
to break up the coefficient of the Baikov polynomial in eq. (2.10) into an on-shell part, ag
and off-shell parts, the a., which was useful for the analysis of section 3.2. Nevertheless,
computationally, such syzygies are irrelevant and we remove them from the ansatz by letting
ag depend only on ISPs and a. depend on ISPs and only on propagators z. such that e’ < e.

By inserting the ansatz eq. (5.5) into the syzygy equation eq. (2.10) and requiring that
the coefficient of each monomial in Baikov variables should vanish, we convert a linear system
with polynomial unknowns a; into a linear system of unknown rational functions c¢j;. That
is, gathering all unknowns c;;, of eq. (5.5) into the object C' = Uj.k ¢jk, We reparametrize
the syzygy equation eq. (2.10) as

> MG =0, (5.7)
J

9While CSyz(T) is an R-module, and so elements of CSyz(T") can depend on ¢, the syzygy equation eq. (2.10)
is independent of € and so the generating set need not depend on e. Hence, choosing the c;i to be € independent
is no restriction.
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where M is a matrix of rational functions of the kinematics and the index i runs over all
monomials in Baikov variables that arise when inserting the ansatz into eq. (2.10). By
eq. (5.5), a basis of solutions to eq. (5.7) corresponds to a basis of the degree-bounded

subspace of Syz(I') controlled by the N;, which we denote as {7, ... } Naturally, each

U; is a representative of some [¥;] of CSyz(I"). We note that, as repres(éntatlves U that differ
by an element with zero critical part are equivalent, the elements {[?1],..., [UC( N)]} are not
necessarily linearly independent. Nevertheless, we choose to leave these redundancies in our
system, as they will be tackled at the next stage.

The set {[v1],..., [170( ﬁ)]} forms a natural guess for a generating set of the unbounded

CSyz(I") as, for sufficiently high N it must generate the module, by the ascending chain
condition. In order to check if we indeed do have a generating set of CSyz(I") we make use of
the fact that it is isomorphic to A} /JL ;. Specifically, the set {[71], ..., [UC( ]\7)]} generates

CSyz(T') if and only if the critical parts of the @; generate A}/JL,.. Equivalently,
([th],- -+, [170(]\7)]> = CSyz(T) = (c(th),..., c(UC( ))> +JL, = AL, (5.8)

To check if we indeed have a generating set of CSyz(I"), we can therefore check equality of the
two ideals on the right-hand side of eq. (5.8). This can easily be performed by checking if their
reduced Groebner bases are equal. For the ideal generated by critical parts of syzygies, this
is easily performed in the computer algebra system Singular [42] as we have the generating
set by construction. In order to compute a Groebner basis of Af, we perform the ideal
quotient of eq. (3.15) computationally, again using Singular. If the two Groebner bases
are distinct then we do not have a generatlng set of CSyz(I"), reflecting that the degree
bounds N are too low. In this way, given N we construct a generating set of CSyz(I") or
report that the degree bound is too low.

Having set up an algorithm for computing a generating set of CSyz(T'), let us make some
practical remarks. While it is trivial to obtain M analytically, solving the system of equations
analytically is highly non-trivial due to the large size of M. For this reason, we apply our
approach numerically, at a given phase-space point. This approach allows for a number of
optimizations that are frequently applied in finite-field-based approaches, which we record
here for completeness. An important feature is that many of the c; in eq. (5.5) are zero.
This can be detected when solving eq. (5.5) on an initial, randomly-chosen, phase-space point
5p and imposing this constraint for later evaluations. That is, we impose

cjk(50) =0 = cik(5) =0, (5.9)

and, therefore, in practice we use the refined ansatz

aj= > cp(8)Z%. (5.10)

k:c;r (50)#0

In eq. (5.7) this has the effect of removing the columns of M that correspond to C;(5p) = 0.
Moreover, we decrease the number of unknowns even further by observing that the c;j;, (or
equivalently the C;) are Q-linearly dependent. Analogous to the approach applied when
reconstructing scattering amplitudes [58], with a small number of evaluations of the C}(35),
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we resolve the Q-linear dependencies and write

C;=> AuCy, (5.11)
k

where the entries of matrix A are rational numbers and Cj, are a linearly independent subset
of the C;. Combining with eq. (5.7) leads to

ZMjlél = 0, where Mjl = Z MjkAkl- (512)
I k:Ci(30)#0
That is, one only has to row reduce the matrix Mjl. These optimizations can result in linear
systems that are hundreds of times smaller than eq. (5.7).

In summary, given a set of power-counting bounds N;, we construct a generating set for
CSyz(T") on a fixed phase-space point . The size of the generating set depends on N and
is neither a Groebner basis, nor a minimal generating set. The generating set is specified
analytically, though implicitly, through the linear equation system eq. (5.12), which can
easily be solved numerically.

5.1.2 Critical surface terms within the power-counting window

Using the algorithm of the previous subsection, for each diagram and an appropriately chosen
power-counting bound N, we can determine a generating set of CSyz(T). It therefore remains
to use these to construct a basis of CSyzSurfaceR(F). The approach we will take to this
problem is to build surface terms from polynomial combinations of our generators set of
CSyz(I"). That is, we look for syzygies W such that
C(N)
W= Y MNt; and  Sp(w, ) € R, (5.13)
j=1

where the \; are polynomials in R and the ¢); are representatives in Syz(I') of the [¥}] in
CSyz(I"). As the ; are known, eq. (5.13) is a non-trivial constraint on the polynomials A;.
In this section we discuss two methods for satisfying this constraint. In the first, we take
monomial multiples of each generator ¥ that satisfy eq. (5.13), finding that this is often
sufficient to find a basis of surface terms. In the second, we write an ansatz for the \; and
then use linear algebra to find @ such that all terms which violate power counting vanish,
analogous to the approach used in ref. [47].
To begin, we parameterize our linear combination of the generators w as
W= Wk(5) 2% (5.14)
3k

Here, the sum over j runs over a suitably large set of monomials in the Baikov variables.
For practical purposes, we take this to be the set of monomials in ISPs that satisfy the
power-counting constraints. Given the ansatz in eq. (5.14), we then consider constructing
the surface term Sp(u, 7). This can be written as a linear combination of monomials that
live within power counting and those that do not. That is,

St (1177 17) = Z nl(§777w)zdl + Z mek(ga "}/)’UN)ij&i, (515)
Z%ieR(T:2) Z%igR(IT:2) jk
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where the m;;;, and n; are rational functions of kinematics and D and the n; are linear
in the w;;. In order to live within power counting, each term in eq. (5.15) that is not in
RT2) must vanish. That is, we have

> mi(5, )W, =0, (5.16)
i,k
which is a linear constraint on the ansatz parameters w;j.

We consider finding a basis of critical syzygy solutions to eq. (5.16) in two separate
ways. The first approach is combinatorical. Specifically, we enumerate all possible values
of j and k, setting wj; = 1 and otherwise letting the entries of @ be zero. We then check
if this @ satisfies eq. (5.16). Effectively, this amounts to taking @ = Z% @), and checking
if it satisfies the conditions

wo + Z Weze € R,
ecprops(T)

Z Oyw; + Z 2e0oWe € RT2),

1€ISPs(T) e€props(T")

(5.17)

In this way, we generate a collection of « which satisfy the power-counting bounds. Naturally,
the associated set of [@] exhibit linear dependencies. We therefore select from our collection a
subset with linearly independent ¢(), which is a simple linear algebra problem. Importantly,
as St(w, V) — ¢(w) in the large-¢, on-shell limit, we see that this allows us to count how
many independent surface terms associated to I' we have constructed. If this is equal to
the number of surface terms on the maximal cut, we conclude that we have found a basis
set of solutions to eq. (5.16) and therefore found a basis of Surface®(I', 7) modulo pinches
and so our set of critical syzygies is complete.

Naturally, this combinatorical approach of solving eq. (5.16) is not guaranteed to find
all solutions, as it may be necessary to take non-trivial linear combinations of products of
monomials and CSyz(I") generators. Therefore, if the completeness test fails, we consider
directly solving eq. (5.16) as a linear system. In order to easily identify a linearly independent
set of critical surface terms from our solutions, we additionally require that the w;, are
independent of €.' This again allows us to certify sufficiency of the basis of Su(rof)’ace tergl)s

by looking only at the critical part of the involved syzygy. Writing m;;, = m, ikt %mz e

we therefore require that the 0, satisfy
0 ~ 1 -
Zmz(jl)c<§>wjk =0, Zm%,l(s?’)wjk =0, (5.18)
Jk 5.k

(X)
ijk
via linear algebra methods which leads to a collection of syzygies @ that live within power

where we recall the m,;,’ are matrices rational in the external kinematics. We solve eq. (5.18)
counting. We then select from this set of syzygies, a subset with linearly independent critical
part, thereby finding a basis of CSyz®(I") and consequently, CSyzSurface® (T, 7).
Analogous to the construction of the generating set of CSyz(I") discussed in section 5.1.1,
the linear equation system in eq. (5.18) can pose a non-trivial challenge to solve. We therefore

YTmportantly, it can be shown that a basis of the e-independent solutions of eq. (5.16) is also a basis of the
e-dependent solutions of eq. (5.16), so this practical trick causes no conceptual issues.
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close this subsection by discussing a number of computational optimizations. First, note that,
in practice, the 'm( k) are constructed from a set of generators of CSyz(I") that are known
on a numerical phase—space point §%. We therefore discuss solving eq. (5.18) at § = 50,
Next, we note that the matrices in eq. (5.18) are sparse and so we apply sparse linear algebra
methods to solve them. The sparsity of the solution basis can therefore depend on the order
in which the equations in eq. (5.18) are solved. Practically, we first solve one of the two m&)
systems and insert the solutions into the other in order to solve the full system, choosing
the ordering based upon the sparsity of the final solution.

Having evaluated a basis of solutions to eq. (5.18) on a single phase-space point, we are
able to use the structure of the resulting basis (and the sparsity properties that it inherited
from our construction method) to ease its evaluation on further phase-space points. Letting
the {w™, ..., @M} be a basis of solutions to eq. (5.18), we make two structural observations
about the basis. First, it is clear that rotating the basis by any element of GL(M) will
lead to a second basis {@w'(V, ... @M} that also satisfies eq. (5.18). One is only able to
uniquely fix a basis after specifying this GL(M) freedom, which can be achieved by choosing
an appropriate sub-matrix to be the identity matrix. In practice, an appropriate such choice
is automatically performed when solving for the wj(.lk)(é’o) numerically. Therefore, we interpret
the structure of zeros and ones in @) (5,) as fixing this GL(M) freedom in the phase-space
independent basis. Secondly, many of the entries of the evaluation w§’,3 (5p) are either zero,
or identical. It is natural to interpret these zeros/equalities as phase-space independent.

Altogether, we are able to write an ansatz for the GL(M) fixed basis as
oy = o) + Z Ym (30", (5.19)

where e is the number of distinct, non-zero (and not equal to 1) entries of ! ik (_'0) and the

=(D[m]

entries of each w;; " are either zero or one. Inserting the basis ansatz eq. (5.19) into the
power-counting constraints eq. (5.18), we end up with a linear system for the y(3) as

Ze: AnmYm (3) = bn, (5.20)

where the inhomogeneous term on the right-hand side is a consequence of the inhomogeneous
term, wl, of eq. (5.19). In this way, the y,, can be fixed by solving a simpler linear system
than eq. (5.18). Importantly, e is often very small and so this represents an important speed up.

In summary, given a generating set of CSyz(I"), we construct a basis of a space of surface
terms CSyzSurface’(T',#) C Surface’(I',#/). The construction is performed for a given
numerical phase-space point, and optimized by structures learned from an initial evaluation.

5.1.3 Summary of approach

Let us now summarize our approach for critical surface term generation. We use critical
syzygies to generate a set of surface terms within gluonic power counting associated to a given
diagram I'" that are linearly independent on the maximal cut associated to I'. By collecting
these surface terms for all diagrams I', one then has the necessary ingredients for integral
reduction without raising propagator powers. The resulting surface terms are implicitly stated
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as a set of analytic linear systems that can be solved numerically on a given phase-space
point. The approach makes use of the Baikov representation, taking the Baikov polynomial
as input. In principle, this can be the Baikov polynomial of the top topology, or the Baikov
polynomial associated to the graph itself. Our approach is composed of three major steps.

1. Working on a numerical phase-space point, we compute the saturation index p of the
JSFyZ with respect to the Baikov polynomial to check if it is 1. We compute the dimension

of U git[log( B)] to check if it is zero. If either of these checks fail, we abort.!!

2. We construct a generating set of CSyz(I") following the discussion of section 5.1.1. We
fix an initial polynomial degree bound for the ansatz, N , typically N; = 2. We construct
a tentative generating set with this degree bound and check if it generates CSyz(I") via
eq. (5.8). If not, we raise the degree bounds in an ad-hoc manner until we successfully
find a sufficiently high degree bound. The resulting generating set is presented as the
solution to an analytic linear equation system, eq. (5.12), which we optimize following
the discussion in the latter part of section 5.1.1.

3. Given this generating set of CSyz(I'), we construct a basis of CSyzSurface’(T', ) as
discussed in section 5.1.2. To maintain compact results, we employ two possible
strategies to construct these surface terms. We first construct monomial multiples of
our generating set. If such syzygies do not span the power counting space, we construct
appropriate linear combinations via linear algebra. If this results in an incomplete set
of surface terms, we return to step 2. We increase the degree bounds N and construct
a new, larger generating set of CSyz(I"). We repeat this iteratively until an appropriate
N has been found such that a complete set of surface terms is produced. The resulting
basis of power-counting compatible surface terms is then either implicitly stated as an
analytic linear system, eq. (5.18), or as monomial multiples of CSyz(I") generators.

The output of this procedure is two fold. First, there is an implicit representation of a
generating set of CSyz(I") as a compact, analytic linear system in eq. (5.12). Second, the basis
of surface terms is either presented implicitly as a further compact, analytic linear system,
eq. (5.18) or as explicit products of monomials in Baikov variables and CSyz(I") generators.
The linear systems can then be solved to produce the necessary surface terms. In practice,
it is most fruitful to solve these systems numerically, as we do in section 5.2.

Let us make a few comments on our approach. Firstly, we do not guarantee that it
produces a basis that spans CSyzSurfaceR(F,ﬁ). That is, we do not guarantee that the
isomorphism of eq. (5.3) holds. Nevertheless, we find in practical applications that it does.
Secondly, in step 3, we see that we cannot use an arbitrary generating set of CSyz(T") to
construct a set of critical surface terms within power counting by taking linear combinations.
For this reason, we allow ourselves to return to step 2 and increase the degree bounds.

5.2 Application to planar contributions to pp — ttH at two loops

In order to show that critical syzygies are a useful tool in practical application to scattering
processes, we apply our approach to the two-loop leading-color contributions to the pp — ttH

11Study of the higher dimensional case is beyond the scope of this paper and left for future work. We discuss
an ad-hoc solution to a single u # 1 case in section 5.2.
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Figure 3. Four top sectors of leading color ttH production with light quark loop. Red lines denote
the top quark, the blue dashed line denotes the Higgs boson. Black lines are massless particles (gluons

DD

or light quarks).

process. Importantly, this allows us to study, in a physically relevant case, the strength of
the assumption that the saturation index, u, is 1 and the critical locus of the logarithm of
the Baikov polynomial, UL

crit (log[B]) is a finite set of points.

We begin by applying the approach in section 5.1.3 to generate a power-counting-
compatible basis of surface terms for all diagrams in leading-color light-quark-loop contribu-
tions in ttH production. With a view to implementing these surface terms in the Caravel
framework, for each graph I' we work with the Baikov polynomial associated to this graph
(and not the top topology) as the remaining class of surface terms are known analytically [29].
Diagrams depicting the four top-sectors are shown in figure 3. We find that there are 123
non-factorizable subsectors which are inequivalent under relabelling of external legs. As our
representation of surface terms is analytic, it is sufficient to analyze only these inequivalent
sectors. We compute the saturation index p and the dimension of the critical locus of the
cut Baikov polynomial, using the computer algebra system Singular. We perform the
computation of both quantities on a numerical, finite-field phase-space point, which leads
to a negligible computation time.

Of the 123 inequivalent topologies, 122 give rise to a saturation index of 4 =1 and a
critical locus of log(B) on the maximal cut which is a finite set of points. We consider these
first. Constructing the surface terms with our approach for each sector requires solving linear
equation system in eq. (5.12). In practice, we find that the largest linear equation system is
of side-length 400. In order to find a basis of surface terms within power counting, we must
choose a strategy for solving the power-counting constraints eq. (5.18). In most cases, we
find it sufficient to use the first strategy. Nevertheless, there are 9 sectors for which we apply
the second strategy. In this case, after optimization, the most complicated linear system that
we must solve for the unknowns vy, of eq. (5.19) contains 80 unknowns. Having constructed
the complete set of surface terms, we see that all generating sets for the CSyz(I") can be
constructed with degree bounds satisfying IN; < 3.

The single topology that has a saturation index of p = 2 is depicted in figure 4. We note
that the critical locus of the logarithm of the Baikov polynomial is still a finite set of points.
To compute the set of surface terms in this case, we take a two step approach. First, we
use the approach of section 5.1.3 to compute as many surface terms as possible. In practice,
we find that we miss only one surface term. We then turn to the analysis of section 3.5 to
construct the remaining surface term. We first compute the saturation index A and find that
it is 2, telling us that this construction does indeed produce a single new surface term in
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Figure 4. ttH topology for which the saturation index of JSI;,Z with respect to the Baikov polynomial
is not 1. In this case, to recover the full set of surface terms, we allow for dimension shifted seed
integrals. Black lines represent massless particles (i.e. gluons/light quarks), red lines represent the top
quark and the blue dashed line represents the Higgs.

Figure 5. Collection of non-factorizable topologies from planar massive quark loop contributions
to pp — ttH for which the critical locus of log(B) is not isolated. Red lines represent massive top
quarks, black lines represent massless particles (gluons) and the blue line represents the Higgs. All
integral topologies that contribute to pp — #£H which have a non-isolated critical locus are either
permutations of those displayed, or are factorizable.

the large €, on-shell limit. To explicitly construct the surface term, we then solve egs. (3.41)
and (3.42) by using a polynomial ansatz, successfully recovering the remaining surface term
and therefore constructing the full set. We note that, due to the high degree of the Baikov
polynomial, this is quite computationally demanding. Nevertheless, the resulting surface term
is quite simple. It is interesting to also analyze this topology with the traditional Laporta
approach. We use LiteRed [59] to generate IBP relations using only single propagator powers
as seeds and find that a single relation is also missing. However, if one allows for higher degree
powers of the propagators in seed integrals, then a complete reduction is observed. This
suggests that it would be interesting to study how to interpret seeds with raised propagator
powers in a critical-syzygy framework, a question we leave to future work.

In order to check the validity of the surface terms that we produce, we implement the
analytic systems of linear equations that define the surface terms into Caravel [32], which
is able to use such systems to perform numerical reductions of tensor integrals. We then
use Caravel to perform numerical reductions of tensor integrals within power counting and
check the validity of our implementation with FIRE 6.5 [12] at a series of randomly chosen
numerical phase-space points.
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Having considered the light-fermion-loop contributions to pp — ttH, we next make an
analysis of the pentabox topology that contributes to the closed-top-loop contributions. Here,
we find a number of topologies for which the critical locus of the logarithm of the Baikov
polynomial is not a finite set of points. Many of these topologies are factorizable, containing
the one-loop integral of figure 1 as a factor, so this observation is natural. Nevertheless,
many of these integrals are not factorizable, and we depict them in figure 5. For these
topologies, critical syzygies as studied in this paper are insufficient to perform a complete
reduction to master integrals, and we leave such a study to further work. Interestingly, for
each topology depicted in figure 5, when considered in the Baikov representation associated
to corresponding graph, the critical locus on the maximal cut is only one-dimensional. This
unexpected simplicity hints that extension of the critical syzygy formalism to cover these
cases may be within reach.

6 Summary and outlook

In this work, we have uncovered a new mathematical structure hidden within the linear
relations exhibited by Feynman integrals. Working in the syzygy approach for constructing
relations between Feynman integrals and motivated by recent advances in intersection theory,
we considered how the numerators of integral relations, or “surface terms” behave in the limit
where the dimensional regulator, ¢, is taken to be large. We showed how surface terms in the
large-e on-shell limit, must vanish on critical points of the logarithm of the Baikov polynomial.
Moreover, we showed how this statement can be interpreted in the algebro-geometric language
of ideals, and how the ideals that arise are connected to the Lee-Pomeransky approach for
counting the number of master integrals. This connection then motivated us to define a
special class of syzygies, which we dubbed “critical syzygies”. Strikingly, while critical syzygies
are effectively a subset of the full syzygy module, for cases where the critical locus of the
Baikov polynomial is a finite set of points, we argued that they can be used to construct
the full set of surface terms in the large-e¢ limit.

In order to understand the practical construction of critical syzygies for loop amplitude
calculations, we made a number of studies at the one- and two-loop level. We first discussed
how critical syzygies arise at one loop, providing an alternative construction of OPP-like
integrand bases. We then moved to consider two-loop approaches, where we presented a
computational approach to construct critical syzygies. We used this approach to study the two-
loop example of planar Feynman integrals for contributions to pp — ttH production, directly
showing the applicability of critical syzygies to the light-fermion-loop case. Interestingly, this
allowed us to identify a case where careful study of the multiplicity structure of the syzygies
becomes important to obtain a complete reduction to master integrals.

There are a number of further important avenues for work within the critical syzygy
approach. Firstly, critical syzygies are insufficient to perform IBP reduction in cases where
the critical locus of the cut Baikov polynomial is not a finite set of points. A natural extension
of our work would be to understand if the critical syzygy framework could be extended to
cover such cases. Moreover, our study in section 5.2 of the integral topology relevant to t¢H
production where the multiplicity structure plays an important role suggests that it would be
useful to understand higher propagator seeding in a critical syzygy framework. Finally, the
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geometrical connection between critical syzygies and critical/singular points of the Baikov
polynomial motivates further work into constructing analytical critical syzygy solutions.
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A Extended splitting lemma

Here we prove the lemma necessary to decompose Jsl;z in section 3.2. This lemma can be

regarded as an extended version of the splitting lemma described in [18, section B.3].

Lemma A.1. Let R be a polynomial ring, J, K be ideals of R and b be an element of R such
that Kb C J. In this case one has that

J=(J+K)n(J+b"), (A.1)
where p is the saturation index of b with respect to J.

Proof. Tt is clear that J C (J + K) N (J + b*) as the intersection is of two sets which each
contain J. Hence, if we have the reverse (non-proper) inclusion, then we have equality. Let
us consider an element of the intersection. We shall prove that it is a member of J, which
will therefore prove (A.1).

Let us name the element in question c. By definition we can write that

c=7+k=jo+tbH, (A.2)
where j; € J, k € K and t € R. We aim to prove that tb* € J. To do this, we shall consider
o = j1b + kb — jab. (A.3)

Manifestly the right hand side is a sum of three elements of J, and as J is an ideal this
implies that tb**! is also an element of .J. By the definition of an ideal quotient, we have
that this means that ¢ € J : b**!. However, as ju is chosen to be the saturation index of b, we
have that J : b**t1 = J : b*, which implies that tb* € J. Looking back to the definition of ¢,
it is clear that ¢ € J and therefore the equality in (A.1) is proven. O
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